352 research outputs found

    Tsetse and human trypanosomiasis challenge in south eastern Uganda

    Get PDF
    Pièges pyramidaux (8000) ont été mis en place contre #Glossina fuscipes fuscipes afin de lutter contre la maladie du sommeil à #Trypanosoma rhodésiense dans le Busoga. Dans le but de comprendre les modalités du contact homme/mouche, la récolte des données sur la densité, la distribution spatiale et la mobilité des mouches, ont été mis en relation avec la dynamique de la transmission de la trypanosomiase humaine dans le Bugosa. Comme pour #T. gambiense$, peu de corrélations entre la densité globale de mouche et l'incidence de la maladie ont été trouvées. Cependant, des observations de terrain avec un enregistrement daté des mouvements saisonniers des hommes et des animaux dans des habitats favorables aux mouches demeure la clé de la compréhension de la transmission de la maladie. (Résumé d'auteur

    Punctate vascular expression1 is a novel maize gene required for leaf pattern formation that functions downstream of the trans-acting small interfering RNA pathway

    Get PDF
    The maize (Zea mays) gene RAGGED SEEDLING2-R (RGD2-R) encodes an ARGONAUTE7-like protein required for the biogenesis of trans-acting small interfering RNA, which regulates the accumulation of AUXIN RESPONSE FACTOR3A transcripts in shoots. Although dorsiventral polarity is established in the narrow and cylindrical leaves of rgd2-R mutant plants, swapping of adaxial/abaxial epidermal identity occurs and suggests a model wherein RGD2 is required to coordinate dorsiventral and mediolateral patterning in maize leaves. Laser microdissection-microarray analyses of the rgd2-R mutant shoot apical meristem identified a novel gene, PUNCTATE VASCULAR EXPRESSION1 (PVE1), that is down-regulated in rgd2-R mutant apices. Transcripts of PVE1 provide an early molecular marker for vascular morphogenesis. Reverse genetic analyses suggest that PVE1 functions during vascular development and in mediolateral and dorsiventral patterning of maize leaves. Molecular genetic analyses of PVE1 and of rgd2-R;pve1-M2 double mutants suggest a model wherein PVE1 functions downstream of RGD2 in a pathway that intersects and interacts with the trans-acting small interfering RNA pathway

    Laser Microdissection of Narrow Sheath Mutant Maize Uncovers Novel Gene Expression in the Shoot Apical Meristem

    Get PDF
    Microarrays enable comparative analyses of gene expression on a genomic scale, however these experiments frequently identify an abundance of differentially expressed genes such that it may be difficult to identify discrete functional networks that are hidden within large microarray datasets. Microarray analyses in which mutant organisms are compared to nonmutant siblings can be especially problematic when the gene of interest is expressed in relatively few cells. Here, we describe the use of laser microdissection microarray to perform transcriptional profiling of the maize shoot apical meristem (SAM), a ~100-μm pillar of organogenic cells that is required for leaf initiation. Microarray analyses compared differential gene expression within the SAM and incipient leaf primordium of nonmutant and narrow sheath mutant plants, which harbored mutations in the duplicate genes narrow sheath1 (ns1) and narrow sheath2 (ns2). Expressed in eight to ten cells within the SAM, ns1 and ns2 encode paralogous WUSCHEL1-like homeobox (WOX) transcription factors required for recruitment of leaf initials that give rise to a large lateral domain within maize leaves. The data illustrate the utility of laser microdissection-microarray analyses to identify a relatively small number of genes that are differentially expressed within the SAM. Moreover, these analyses reveal potentially conserved WOX gene functions and implicate specific hormonal and signaling pathways during early events in maize leaf development

    Microarray screening for target genes of the proto-oncogene PLAG1.

    Full text link
    PLAG1 is a proto-oncogene whose ectopic expression can trigger the development of pleomorphic adenomas of the salivary glands and of lipoblastomas. As PLAG1 is a transcription factor, able to activate transcription through the binding to the consensus sequence GRGGC(N)(6-8)GGG, its ectopic expression presumably results in the deregulation of target genes, leading to uncontrolled cell proliferation. The identification of PLAG1 target genes is therefore a crucial step in understanding the molecular mechanisms involved in PLAG1-induced tumorigenesis. To this end, we analysed the changes in gene expression caused by the conditional induction of PLAG1 expression in fetal kidney 293 cell lines. Using oligonucleotide microarray analyses of about 12 000 genes, we consistently identified 47 genes induced and 12 genes repressed by PLAG1. One of the largest classes identified as upregulated PLAG1 targets consists of growth factors such as the insulin-like growth factor II and the cytokine-like factor 1. The in silico search for PLAG1 consensus sequences in the promoter of the upregulated genes reveals that a large proportion of them harbor several copies of the PLAG1-binding motif, suggesting that they represent direct PLAG1 targets. Our approach was complemented by the comparison of the expression profiles of pleomorphic adenomas induced by PLAG1 versus normal salivary glands. Concordance between these two sets of experiments pinpointed 12 genes that were significantly and consistently upregulated in pleomorphic adenomas and in PLAG1-expressing cells, identifying them as putative PLAG1 targets in these tumors

    Resource partitioning to male and female flowers of Spinacia oleracea L. in relation to whole-plant monocarpic senescence

    Get PDF
    Male plants of spinach (Spinacea oleracea L.) senesce following flowering. It has been suggested that nutrient drain by male flowers is insufficient to trigger senescence. The partitioning of radiolabelled photosynthate between vegetative and reproductive tissue was compared in male (staminate) versus female (pistillate) plants. After the start of flowering staminate plants senesce 3 weeks earlier than pistillate plants. Soon after the start of flowering, staminate plants allocated several times as much photosynthate to flowering structures as did pistillate plants. The buds of staminate flowers with developing pollen had the greatest draw of photosynthate. When the staminate plants begin to show senescence 68% of fixed C was allocated to the staminate reproductive structures. In the pistillate plants, export to the developing fruits and young flowers remained near 10% until mid-reproductive development, when it increased to 40%, declining to 27% as the plants started to senesce. These differences were also present on a sink-mass corrected basis. Flowers on staminate spinach plants develop faster than pistillate flowers and have a greater draw of photosynthate than do pistillate flowers and fruits, although for a shorter period. Pistillate plants also produce more leaf area within the inflorescence to sustain the developing fruits. The 14C in the staminate flowers declined due to respiration, especially during pollen maturation; no such loss occurred in pistillate reproductive structures. The partitioning to the reproductive structures correlates with the greater production of floral versus vegetative tissue in staminate plants and their more rapid senescence. As at senescence the leaves still had adequate carbohydrate, the resources are clearly phloem-transported compounds other than carbohydrates. The extent of the resource redistribution to reproductive structures and away from the development of new vegetative sinks, starting very early in the reproductive phase, is sufficient to account for the triggering of senescence in the rest of the plant

    Molecular Genetic Features of Polyploidization and Aneuploidization Reveal Unique Patterns for Genome Duplication in Diploid Malus

    Get PDF
    Polyploidization results in genome duplication and is an important step in evolution and speciation. The Malus genome confirmed that this genus was derived through auto-polyploidization, yet the genetic and meiotic mechanisms for polyploidization, particularly for aneuploidization, are unclear in this genus or other woody perennials. In fact the contribution of aneuploidization remains poorly understood throughout Plantae. We add to this knowledge by characterization of eupolyploidization and aneuploidization in 27,542 F1 seedlings from seven diploid Malus populations using cytology and microsatellite markers. We provide the first evidence that aneuploidy exceeds eupolyploidy in the diploid crosses, suggesting aneuploidization is a leading cause of genome duplication. Gametes from diploid Malus had a unique combinational pattern; ova preserved euploidy exclusively, while spermatozoa presented both euploidy and aneuploidy. All non-reduced gametes were genetically heterozygous, indicating first-division restitution was the exclusive mode for Malus eupolyploidization and aneuploidization. Chromosome segregation pattern among aneuploids was non-uniform, however, certain chromosomes were associated for aneuploidization. This study is the first to provide molecular evidence for the contribution of heterozygous non-reduced gametes to fitness in polyploids and aneuploids. Aneuploidization can increase, while eupolyploidization may decrease genetic diversity in their newly established populations. Auto-triploidization is important for speciation in the extant Malus. The features of Malus polyploidization confer genetic stability and diversity, and present heterozygosity, heterosis and adaptability for evolutionary selection. A protocol using co-dominant markers was proposed for accelerating apple triploid breeding program. A path was postulated for evolution of numerically odd basic chromosomes. The model for Malus derivation was considerably revised. Impacts of aneuploidization on speciation and evolution, and potential applications of aneuploids and polyploids in breeding and genetics for other species were evaluated in depth. This study greatly improves our understanding of evolution, speciation, and adaptation of the Malus genus, and provides strategies to exploit polyploidization in other species
    corecore