283 research outputs found

    Phase I/II study of S-1 combined with paclitaxel in patients with unresectable and/or recurrent advanced gastric cancer

    Get PDF
    Both paclitaxel and S-1 are effective against gastric cancer, but the optimal regimen for combined chemotherapy with these drugs remains unclear. This phase I/II study was designed to determine the maximum tolerated dose (MTD), recommended dose (RD), dose-limiting toxicity (DLT), and objective response rate of paclitaxel in combination with S-1. S-1 was administered orally at a fixed dose of 80 mg m−2 day−1 from days 1 to 14 of a 28-day cycle. Paclitaxel was given intravenously on days 1, 8, and 15, starting with a dose of 40 mg m−2 day−1. The dose was increased in a stepwise manner to 70 mg m−2. Treatment was repeated every 4 weeks unless disease progression was confirmed. In the phase I portion, 17 patients were enrolled. The MTD of paclitaxel was estimated to be 70 mg m−2 because 40% of the patients given this dose level (two of five) had DLT. The RD was determined to be 60 mg m−2. In the phase II portion, 24 patients, including five with assessable disease who received the RD in the phase I portion, were evaluated. The median number of treatment courses was six (range: 1–17). The incidence of the worst-grade toxicity in patients given the RD was 28 and 8%, respectively. All toxic effects were manageable. The response rate was 54.1%, and the median survival time was 15.5 months. Our phase I/II trial showed that S-1 combined with paclitaxel is effective and well tolerated in patients with advanced gastric cancer

    The BET inhibitor JQ1 selectively impairs tumour response to hypoxia and downregulates CA9 and angiogenesis in triple negative breast cancer

    Get PDF
    The availability of bromodomain and extra-terminal inhibitors (BETi) has enabled translational epigenetic studies in cancer. BET proteins regulate transcription by selectively recognizing acetylated lysine residues on chromatin. BETi compete with this process leading to both downregulation and upregulation of gene expression. Hypoxia enables progression of triple negative breast cancer (TNBC), the most aggressive form of breast cancer, partly by driving metabolic adaptation, angiogenesis and metastasis through upregulation of hypoxia-regulated genes (for example, carbonic anhydrase 9 (CA9) and vascular endothelial growth factor A (VEGF-A). Responses to hypoxia can be mediated epigenetically, thus we investigated whether BETi JQ1 could impair the TNBC response induced by hypoxia and exert anti-tumour effects. JQ1 significantly modulated 44% of hypoxia-induced genes, of which two-thirds were downregulated including CA9 and VEGF-A. JQ1 prevented HIF binding to the hypoxia response element in CA9 promoter, but did not alter HIF expression or activity, suggesting some HIF targets are BET-dependent. JQ1 reduced TNBC growth in vitro and in vivo and inhibited xenograft vascularization. These findings identify that BETi dually targets angiogenesis and the hypoxic response, an effective combination at reducing tumour growth in preclinical studies

    MTH1 deficiency selectively increases non-cytotoxic oxidative DNA damage in lung cancer cells: more bad news than good?

    Get PDF
    Representative images of “Comets” and the corresponding intensity profiles, showing (i) ~ 5% Tail DNA damage, typical of the NSCLC cells treated with no siRNA or scramble siRNA, and analysed by regular Fpg-modified alkaline comet assay (0.8 U Fpg/gel); and (ii) comets showing ~ 10% tail DNA, typical of the NSCLC cells treated with MTH1 siRNA. Superimposed on the Comet images are the image analysis software (Komet 5.5, Andor Technology) determined boundaries demarcating the ‘Comet head’ (pink circle) and ‘tail extent’ (vertical orange line) (Barber RC, Hickenbotham P, Hatch T, Kelly D, Topchiy N, Almeida GM, et al. Radiation-induced transgenerational alterations in genome stability and DNA damage. Oncogene. 2006;25(56):7336–7342). % tail DNA = 100 - % head DNA; % head DNA = (integrated optical head intensity / (integrated optical head intensity + integrated optical tail intensity)) × 100. (PDF 1431 kb

    D1 Dopamine Receptor Signaling Is Modulated by the R7 RGS Protein EAT-16 and the R7 Binding Protein RSBP-1 in Caenoerhabditis elegans Motor Neurons

    Get PDF
    Dopamine signaling modulates voluntary movement and reward-driven behaviors by acting through G protein-coupled receptors in striatal neurons, and defects in dopamine signaling underlie Parkinson's disease and drug addiction. Despite the importance of understanding how dopamine modifies the activity of striatal neurons to control basal ganglia output, the molecular mechanisms that control dopamine signaling remain largely unclear. Dopamine signaling also controls locomotion behavior in Caenorhabditis elegans. To better understand how dopamine acts in the brain we performed a large-scale dsRNA interference screen in C. elegans for genes required for endogenous dopamine signaling and identified six genes (eat-16, rsbp-1, unc-43, flp-1, grk-1, and cat-1) required for dopamine-mediated behavior. We then used a combination of mutant analysis and cell-specific transgenic rescue experiments to investigate the functional interaction between the proteins encoded by two of these genes, eat-16 and rsbp-1, within single cell types and to examine their role in the modulation of dopamine receptor signaling. We found that EAT-16 and RSBP-1 act together to modulate dopamine signaling and that while they are coexpressed with both D1-like and D2-like dopamine receptors, they do not modulate D2 receptor signaling. Instead, EAT-16 and RSBP-1 act together to selectively inhibit D1 dopamine receptor signaling in cholinergic motor neurons to modulate locomotion behavior

    The Effectiveness of Pharmacological and Non-Pharmacological Interventions for Improving Glycaemic Control in Adults with Severe Mental Illness: A Systematic Review and Meta-Analysis

    Get PDF
    People with severe mental illness (SMI) have reduced life expectancy compared with the general population, which can be explained partly by their increased risk of diabetes. We conducted a meta-analysis to determine the clinical effectiveness of pharmacological and non-pharmacological interventions for improving glycaemic control in people with SMI (PROSPERO registration: CRD42015015558). A systematic literature search was performed on 30/10/2015 to identify randomised controlled trials (RCTs) in adults with SMI, with or without a diagnosis of diabetes that measured fasting blood glucose or glycated haemoglobin (HbA1c). Screening and data extraction were carried out independently by two reviewers. We used random effects meta-analysis to estimate effectiveness, and subgroup analysis and univariate meta-regression to explore heterogeneity. The Cochrane Collaboration’s tool was used to assess risk of bias. We found 54 eligible RCTs in 4,392 adults (40 pharmacological, 13 behavioural, one mixed intervention). Data for meta-analysis were available from 48 RCTs (n = 4052). Both pharmacological (mean difference (MD), -0.11mmol/L; 95% confidence interval (CI), [-0.19, -0.02], p = 0.02, n = 2536) and behavioural interventions (MD, -0.28mmol//L; 95% CI, [-0.43, -0.12], p<0.001, n = 956) were effective in lowering fasting glucose, but not HbA1c (pharmacological MD, -0.03%; 95% CI, [-0.12, 0.06], p = 0.52, n = 1515; behavioural MD, 0.18%; 95% CI, [-0.07, 0.42], p = 0.16, n = 140) compared with usual care or placebo. In subgroup analysis of pharmacological interventions, metformin and antipsychotic switching strategies improved HbA1c. Behavioural interventions of longer duration and those including repeated physical activity had greater effects on fasting glucose than those without these characteristics. Baseline levels of fasting glucose explained some of the heterogeneity in behavioural interventions but not in pharmacological interventions. Although the strength of the evidence is limited by inadequate trial design and reporting and significant heterogeneity, there is some evidence that behavioural interventions, antipsychotic switching, and metformin can lead to clinically important improvements in glycaemic measurements in adults with SMI

    Neonatal Fc Receptor: From Immunity to Therapeutics

    Get PDF
    The neonatal Fc receptor (FcRn), also known as the Brambell receptor and encoded by Fcgrt, is a MHC class I like molecule that functions to protect IgG and albumin from catabolism, mediates transport of IgG across epithelial cells, and is involved in antigen presentation by professional antigen presenting cells. Its function is evident in early life in the transport of IgG from mother to fetus and neonate for passive immunity and later in the development of adaptive immunity and other functions throughout life. The unique ability of this receptor to prolong the half-life of IgG and albumin has guided engineering of novel therapeutics. Here, we aim to summarize the basic understanding of FcRn biology, its functions in various organs, and the therapeutic design of antibody- and albumin-based therapeutics in light of their interactions with FcRn

    Multi-ancestry genome-wide association study of major depression aids locus discovery, fine mapping, gene prioritization and causal inference.

    Get PDF
    Most genome-wide association studies (GWAS) of major depression (MD) have been conducted in samples of European ancestry. Here we report a multi-ancestry GWAS of MD, adding data from 21 cohorts with 88,316 MD cases and 902,757 controls to previously reported data. This analysis used a range of measures to define MD and included samples of African (36% of effective sample size), East Asian (26%) and South Asian (6%) ancestry and Hispanic/Latin American participants (32%). The multi-ancestry GWAS identified 53 significantly associated novel loci. For loci from GWAS in European ancestry samples, fewer than expected were transferable to other ancestry groups. Fine mapping benefited from additional sample diversity. A transcriptome-wide association study identified 205 significantly associated novel genes. These findings suggest that, for MD, increasing ancestral and global diversity in genetic studies may be particularly important to ensure discovery of core genes and inform about transferability of findings
    corecore