59 research outputs found

    Plasma volume after heat acclimation: Variations due to season, fitness and methods of measurement

    Get PDF
    Purpose The reported magnitude of plasma volume increase (Δ%PV) following heat acclimation (HA) varies widely. Variations may result from differences in measurement techniques, season and subjects’ fitness. This report compares direct and indirect measurements of Δ%PV after 10 days of HA from studies in winter (WIN, n = 8) and summer (SUM, n = 10) in men, age 21–43 yr, at two fitness levels (VO2max: 35 and 51 ml/min/kg). Direct measurements were made before and after HA (cycling at 30% of VO2max at 50 °C, for 100 min/day) by carbon monoxide (CO) rebreathing and compared with indirect estimates from changes in hematocrit, hemoglobin and plasma protein concentration. Results Overall, Δ%PV by CO was small (2.9%) and greater in SUM than WIN (5.0 vs. 0.3%). Red cell, blood and plasma volumes/kg lean body mass increased in SUM and decreased in WIN, the difference being significant, and Δ%PV by CO was similar for high and low VO2max. Conclusion Overall, indirect estimates of Δ%PV by hemoglobin and hematocrit were similar to CO, but tended to differentiate by fitness and not season. The difference in THb increase in SUM and decrease in WIN was significant. This probably accounts for the differences from the seasonal and fitness results by the direct CO method

    V<sub>E</sub>STPD as a measure of ventilatory acclimatization to hypobaric hypoxia

    Get PDF
    This study compared the ventilation response to an incremental ergometer exercise at two altitudes: 633 mmHg (resident altitude = 1,600 m) and following acute decompression to 455 mmHg (≈4,350 m altitude) in eight male cyclists and runners. At 455 mmHg, the VESTPD at RER EBTPS was higher because of higher breathing frequency; at VO2max, both VESTPD and VEBTPS were not significantly different. As percent of VO2max, the VEBTPS was nearly identical and VESTPD was 30% lower throughout the exercise at 455 mmHg. The lower VESTPD at lower pressure differs from two classical studies of acclimatized subjects (Silver Hut and OEII), where VESTPD at submaximal workloads was maintained or increased above that at sea level. The lower VESTPD at 455 mmHg in unacclimatized subjects at submaximal workloads results from acute respiratory alkalosis due to the initial fall in HbO2 (≈0.17 pHa units), reduction in PACO2 (≈5 mmHg) and higher PAO2 throughout the exercise, which are partially pre-established during acclimatization. Regression equations from these studies predict VESTPD from VO2 and PB in unacclimatized and acclimatized subjects. The attainment of ventilatory acclimatization to altitude can be estimated from the measured vs. predicted difference in VESTPD at low workloads after arrival at altitude

    The physiological effects of hypobaric hypoxia versus normobaric hypoxia: a systematic review of crossover trials

    Get PDF
    Much hypoxia research has been carried out at high altitude in a hypobaric hypoxia (HH) environment. Many research teams seek to replicate high-altitude conditions at lower altitudes in either hypobaric hypoxic conditions or normobaric hypoxic (NH) laboratories. Implicit in this approach is the assumption that the only relevant condition that differs between these settings is the partial pressure of oxygen (PO2), which is commonly presumed to be the principal physiological stimulus to adaptation at high altitude. This systematic review is the first to present an overview of the current available literature regarding crossover studies relating to the different effects of HH and NH on human physiology. After applying our inclusion and exclusion criteria, 13 studies were deemed eligible for inclusion. Several studies reported a number of variables (e.g. minute ventilation and NO levels) that were different between the two conditions, lending support to the notion that true physiological difference is indeed present. However, the presence of confounding factors such as time spent in hypoxia, temperature, and humidity, and the limited statistical power due to small sample sizes, limit the conclusions that can be drawn from these findings. Standardisation of the study methods and reporting may aid interpretation of future studies and thereby improve the quality of data in this area. This is important to improve the quality of data that is used for improving the understanding of hypoxia tolerance, both at altitude and in the clinical setting

    Sunscreens - Which and what for?

    Get PDF
    It is well established that sun exposure is the main cause for the development of skin cancer. Chronic continuous UV radiation is believed to induce malignant melanoma, whereas intermittent high-dose UV exposure contributes to the occurrence of actinic keratosis as precursor lesions of squamous cell carcinoma as well as basal cell carcinoma. Not only photocarcinogenesis but also the mechanisms of photoaging have recently become apparent. In this respect the use of sunscreens seemed to prove to be more and more important and popular within the last decades. However, there is still inconsistency about the usefulness of sunscreens. Several studies show that inadequate use and incomplete UV spectrum efficacy may compromise protection more than previously expected. The sunscreen market is crowded by numerous products. Inorganic sunscreens such as zinc oxide and titanium oxide have a wide spectral range of activity compared to most of the organic sunscreen products. It is not uncommon for organic sunscreens to cause photocontact allergy, but their cosmetic acceptability is still superior to the one given by inorganic sunscreens. Recently, modern galenic approaches such as micronization and encapsulation allow the development of high-quality inorganic sunscreens. The potential systemic toxicity of organic sunscreens has lately primarily been discussed controversially in public, and several studies show contradictory results. Although a matter of debate, at present the sun protection factor (SPF) is the most reliable information for the consumer as a measure of sunscreen filter efficacy. In this context additional tests have been introduced for the evaluation of not only the protective effect against erythema but also protection against UV-induced immunological and mutational effects. Recently, combinations of UV filters with agents active in DNA repair have been introduced in order to improve photoprotection. This article reviews the efficacy of sunscreens in the prevention of epithelial and nonepithelial skin cancer, the effect on immunosuppression and the value of the SPF as well as new developments on the sunscreen market. Copyright (C) 2005 S. Karger AG, Basel

    A case study evaluation of competitors undertaking an antarctic ultra-endurance event: nutrition, hydration and body composition variables

    Get PDF
    Background: The nutritional demands of ultra-endurance racing are well documented. However, the relationship between nutritional consumption and performance measures are less obvious for athletes competing in Polar conditions. Therefore, the aim of this study was to evaluate dietary intake, hydration status, body composition and performance times throughout an 800-km Antarctic race. Methods: The event organisers declared that 17 competitors would participate in the South Pole race. Of the 17 competitors, pre-race data were collected from 13 participants (12 males and 1 female (M±SD): age: 40.1±8.9 years; weight 83.9±10.3kg; and body fat percentage: 21.9±3.8%). Dietary recall, body composition and urinary osmolarity were assessed pre-race, midway checkpoint and end race. Data were compared on the basis of fast finishers (the Norwegian team (n=3) who won in a record of 14 day) and slower finishers (the remaining teams (n=10) reaching the South Pole between 22 and 28 days). Results: The percentage contribution of macronutrients to daily energy intake for all participants was as follows: carbohydrate (CHO) - 23.7% (221±82 g.day-1), fat = 60.6% (251±127g.day-1) and protein = 15.7% (117±52g.day-1). Energy demands were closer met by faster finishers compared to slower finishers (5,332±469 vs. 3,048±1,140kcal.day-1, p=0.02). Average reduction in body mass throughout the race was 8.3±5.5kg, with an average loss of lean mass of 2.0±4.1kg. There as a significant negative correlation between changes in lean mass and protein intake (p=0.03), and lean mass and energy intake (p=0.03). End-race urinary osmolarity was significantly elevated for faster finishers compared to slower finishers and control volunteers (faster finishers: 933±157mOsmol.L-1; slower finishers: 543±92mOsmol.L-1; control: 515±165mOsmol.L-1, p+0.04). Conclusions: Throughout the race, both groups were subjected to a negative change in energy balance which partly explained reduced body mass. Carbohydrate availability was limited inferring a greater reliance on fat and protein metabolism. Consequently, loss in fat-free mass was more prevalent with insufficient protein and caloric intake, which may relate to performance
    corecore