3,337 research outputs found

    Pathophysiological and Therapeutical Studies in Human Diabetic Cardiomyopathy

    Get PDF
    Kramer, M.H.H. [Promotor]Lammertsma, A.A. [Promotor]Ouwens, D.M. [Copromotor]Knaapen, P. [Copromotor

    Above- and below-ground competition in high and low irradiance: tree seedling responses to a competing liana Byttneria grandifolia

    Get PDF
    Abstract: In tropical forests, trees compete not only with other trees, but also with lianas, which may limit tree growth and regeneration. Liana effects may depend on the availability of above- and below-ground resources and differ between tree species. We conducted a shade house experiment to test the effect of light (4% and 35% full sun, using neutral-density screen) on the competitive interactions between seedlings of one liana (Byttneria grandifolia) and three tree species (two shade-tolerant trees, Litsea dilleniifolia and Pometia tomentosa, and one light-demanding tree, Bauhinia variegata) and to evaluate the contribution of both above- and below-ground competition. Trees were grown in four competition treatments with the liana: no competition, root competition, shoot competition and root and shoot competition. Light strongly affected leaf photosynthetic capacity (light-saturated photosynthetic rate, Pn), growth and most morphological traits of the tree species. Liana-induced competition resulted in reduced Pn, total leaf areas and relative growth rates (RGR) of the three tree species. The relative importance of above- and below-ground competition differed between the two light levels. In low light, RGR of the three tree species was reduced more strongly by shoot competition (23.1¿28.7% reduction) than by root competition (5.3¿26.4%). In high light, in contrast, root competition rather than shoot competition greatly reduced RGR. Liana competition affected most morphological traits (except for specific leaf area and leaf area ratio of Litsea and Pometia), and differentially altered patterns of biomass allocation in the tree seedlings. These findings suggest that competition from liana seedlings can greatly suppress growth in tree seedlings of both light-demanding and shade-tolerant species and those effects differ with competition type (below- and above-ground) and with irradianc

    A DEM study of silo discharge of a cohesive solid

    Get PDF
    Bulk handling of powders and granular solids is common in many industries and often gives rise to handling difficulties especially when the material exhibits complex cohesive behaviour. For example, high storage stresses in a silo can lead to high cohesive strength of the stored solid, which may in turn cause blockages such as ratholing or arching near the outlet during discharge. This paper presents a Discrete Element Method study of discharge of a granular solid with varying levels of cohesion from a flat-bottomed silo. The DEM simulations were conducted using the commercial EDEM code with a recently developed DEM contact model for cohesive solids implemented through an API. The contact model is based on an elasto-plastic contact with adhesion and uses hysteretic non-linear loading and unloading paths to model the elastic-plastic contact deformation. The adhesion parameter is a function of the maximum contact overlap. The model has been shown to be able to predict the stress history dependent behaviour depicted by a flow function of the material. The effects of cohesion on the discharge rate and flow pattern in the silo are investigated. The predicted discharge rates are compared for the varying levels of cohesion and the effect of adhesion is evaluated. The ability of the contact model to qualitatively predict the phenomena that are present in the discharge of a silo has been shown with the salient feature of mixed flow from a flat bottomed hopper identified in the simulation

    Optimal simultaneous mapping and clustering for FPGA delay optimization

    Get PDF

    Spectrum and power optimization for wireless multiple access networks.

    Get PDF
    Emerging high-density wireless networks in urban area and enterprises offer great potential to accommodate the anticipated explosion of demand for wireless data services. To make it successful, it is critical to ensure the efficient utilisation of limited radio resources while satisfying predefined quality of service. The objective of this dissertation is to investigate the spectrum and power optimisation problem for densely deployed access points (APs) and demonstrate the potential to improve network performance in terms of throughput and interference. Searching the optimal channel assignment with minimum interference is known as an AfV-haxd problem. The increased density of APs in contrary to the limited usable frequencies has aggravated the difficulty of the problem. We adopt heuristic based algorithms to tackle both centralised and distributed dynamic channel allo cation (DCA) problem. Based on a comparison between Genetic Algorithm and Simulated Annealing, a hybrid form that combines the two algorithms achieves good trade-off between fast convergence speed and near optimality in centralised scenario. For distributed DCA, a Simulated Annealing based algorithm demon strates its superiority in terms of good scalability and close approximation to the exact optimal solution with low algorithm complexity. The high complexity of interactions between transmit power control (TPC) and DCA renders analytical solutions to the joint optimisation problems intractable. A detailed convergence analysis revealed that optimal channel assignment can strengthen the stability condition of TPC. Three distributed algorithms are pro posed to interactively perform the DCA and TPC in a real time and open ended manner, with the ability to appropriately adjust power and channel configurations according to the network dynamics. A real network with practical measurements is employed to quantify and verify the theoretical throughput gain of their inte gration. It shows that the integrated design leads to a substantial throughput improvement and power saving compared with conventional fixed-power random channel allocation system

    Uniform bounds on the 1-norm of the inverse of lower triangular Toeplitz matrices

    Get PDF
    A uniform bound on the 1-norm is given for the inverse of a lower triangular Toeplitz matrix with non-negative monotonically decreasing entries whose limit is zero. The new bound is sharp under certain specified constraints. This result is then employed to throw light upon a long standing open problem posed by Brunner concerning the convergence of the one-point collocationmethod for the Abel equation. In addition, the recent conjecture of Gauthier et al. is proved

    Sodium leak pathway and substrate binding order in the Na+-glucose cotransporter

    Get PDF
    The Na+-glucose cotransporter (SGLT1) expressed in Xenopus laevis oocytes was shown to generate a phlorizin-sensitive sodium leak in the absence of sugars. Using the current model for SGLT1, where the sodium leak was presumed to occur after two sodium ions are bound to the free carrier before glucose binding, a characteristic concentration constant (Kc) was introduced to describe the relative importance of the sodium leak versus Na+-glucose cotransport currents. Kc represents the glucose concentration at which the Na+-glucose cotransport current is equal to the sodium leak. As both the sodium leak and the Na+-glucose cotransport current are predicted to occur after the binding of two sodium ions, the model predicted that Kc should be sodium-independent. However, by using a two-microelectrode voltage-clamp technique, the observed Kc was shown to depend strongly on the external sodium concentration ([Na+]o): it was four times higher at 5 mM [Na+]o than at 20 mM [Na+]o. In addition, the magnitude of the sodium leak varied as a function of [Na+]o in a Michaelian fashion, and the sodium affinity constant for the sodium leak was 2–4 times lower than that for cotransport in the presence of low external glucose concentrations (50 or 100 microM), whereas the current model predicted a sigmoidal sodium dependence of the sodium leak and identical sodium affinities for the sodium leak and the Na+-glucose cotransport. These observations indicate that the sodium leak occurs after one sodium ion is associated with the carrier and agree with predictions from a model with the binding order sodium-glucose-sodium. This conclusion was also supported by experiments performed where protons replaced Na+ as a "driving cation.

    A eubacterial origin for the human tRNA nucleotidyltransferase?

    Get PDF
    tRNA CCA-termini are generated and maintained by tRNA nucleotidyltransferases. Together with poly(A) polymerases and other enzymes they belong to the nucleotidyltransferase superfamily. However, sequence alignments within this family do not allow to distinguish between CCA-adding enzymes and poly(A) polymerases. Furthermore, due to the lack of sequence information about animal CCA-adding enzymes, identification of corresponding animal genes was not possible so far. Therefore, we looked for the human homolog using the baker's yeast tRNA nucleotidyltransferase as a query sequence in a BLAST search. This revealed that the human gene transcript CGI-47, (\#AF151805) deposited in GenBank is likely to encode such an enzyme. To identify the nature of this protein, the cDNA of the transcript was cloned and the recombinant protein biochemically characterized, indicating that CGI-47 encodes a bona fide CCA-adding enzyme and not a poly(A) polymerase. This confirmed animal CCA-adding enzyme allowed us to identify putative homologs from other animals. Calculation of a neighbor-joining tree, using an alignment of several CCA-adding enzymes, revealed that the animal enzymes resemble more eubacterial ones than eukaryotic plant and fungal tRNA nucleotidyltransferases, suggesting that the animal nuclear cca genes might have been derived from the endosymbiotic progenitor of mitochondria and are therefore of eubacterial origin
    corecore