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Abstract

Emerging high-density wireless networks in urban area and enterprises offer great 

potential to accommodate the anticipated explosion of demand for wireless data 

services. To make it successful, it is critical to ensure the efficient utilisation of 

limited radio resources while satisfying predefined quality of service. The objective 

of this dissertation is to investigate the spectrum and power optimisation problem 

for densely deployed access points (APs) and demonstrate the potential to improve 

network performance in terms of throughput and interference.

Searching the optimal channel assignment with minimum interference is known as 

an N V -hard problem. The increased density of APs in contrary to the limited 

usable frequencies has aggravated the difficulty of the problem. We adopt heuristic 

based algorithms to tackle both centralised and distributed dynamic channel allo­

cation (DCA) problem. Based on a comparison between Genetic Algorithm and 

Simulated Annealing, a hybrid form that combines the two algorithms achieves 

good trade-off between fast convergence speed and near optimality in centralised 

scenario. For distributed DCA, a Simulated Annealing based algorithm demon­

strates its superiority in terms of good scalability and close approximation to the 

exact optimal solution with low algorithm complexity.

The high complexity of interactions between transmit power control (TPC) and 

DCA renders analytical solutions to the joint optimisation problems intractable. 

A detailed convergence analysis revealed that optimal channel assignment can 

strengthen the stability condition of TPC. Three distributed algorithms are pro­

posed to interactively perform the DCA and TPC in a real time and open ended 

manner, with the ability to appropriately adjust power and channel configurations 

according to the network dynamics. A real network with practical measurements 

is employed to quantify and verify the theoretical throughput gain of their inte­

gration. It shows that the integrated design leads to a substantial throughput 

improvement and power saving compared with conventional fixed-power random 

channel allocation system.
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Chapter 1

Introduction

1.1 Introduction

The first generation of wireless local area network (WLAN) system was designed 

based on the Ethernet hub-like media access control (MAC) model. It assumes 

that the typical WLAN deployment is one, stand-alone access point (AP) for wire­

less data traffic, either in a small business or in a corporate hot spot such as a 

conference room. In fact, such a system does provide a fairly high-quality user 

experience, as long as there is only one AP and there are only one to three users 

(clients) connected to it [1]. However, since the ratification of the first IEEE802.il 

standard in 1997, the landscape for WLANs has undergone dramatic changes. The 

initial design for the non-bandwidth-intensive applications but coverage oriented 

WLANs, now has to provide far greater performance due to the multi-cell deploy­

ment and high user densities, which are typically found in larger scale environment 

such as enterprises and public areas. Thanks to the high-density deployment, not 

only the coverage problem of traditional WLANs can be automatically eliminated, 

but also the higher throughput requirement can be achieved with low transmission 

power.

However, the high density deployment also poses several non-trivial disadvantages. 

If the devices are being increasingly added into the network in a chaotic way

16



Chapter 1. Introduction 17

( “devices” here refer to both APs and wireless communication equipments, such 

as laptops, personal digital assistants (PDAs) and mobile phones), it will pose 

many technical challenges to the network deployment and operation. First of 

all, in a typical high-density WLAN (HD-WLAN), a large number (in the order 

of hundreds and thousands) of clients are served by several APs. Consider the 

IEEE standard that only defines a limited number of channels for communication, 

there will be a high probability for each device to suffer co-channel interference 

from close neighbours. Besides, the contention based MAC protocol also results in 

suboptimal overall user throughput, as congestions force devices to wait in the back 

off state. Therefore, it is essential to coordinate the channel access among APs and 

clients. Secondly, in traditional WLANs with isolated APs, the minimum link rate 

can be provisioned over a careful radio frequency (RF) site-survey [2]. However, 

in HD-WLANs, this static site-survey planning is not adequate. This is due to the 

fact that, these APs belong to different administrative domains and the network 

dynamics resulting from newly added APs or traffic variations are unpredictable 

in the system. It is impossible to ensure that the perfect configuration valid at the 

time the network was initially designed will continue to be valid and deliver good 

service in future. Consequently, a single static and centralised processing unit 

could easily become a vulnerable performance bottleneck and a main obstacle 

towards scalability of the HD-WLANs.

1.2 M otivations and Objectives

Generally, there is a range of different techniques available to improve the sys­

tem throughput, including dynamic channel allocation (DCA), adaptive transmit 

power control (TPC), spatial diversity, multiple antennas system, etc. In this the­

sis, we focus on the distributed design of the first two techniques to deal with the 

interference problem in HD-WLANs. They have been extensively studied in the 

centralised cellular systems, both in a separate and integrated way, where a cen­

tralised based station is dedicated to perform the resource allocation. For 802.11 

WLANs, channel selection is currently performed in a static way, where each AP
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selects a channel with the least interference when it was initially deployed and 

then stays in that channel until it is powered off and on again next time. In addi­

tion, transmit power is usually configured at the default maximum level regardless 

of the interference environment. These configurations cannot account for varying 

traffic conditions and thus have been proved with limited performance gain. In this 

work, we are more interested in investigating dynamic schemes, regarding DCA 

and TPC, which can quickly respond to the changing propagation environment and 

multiple access interference. From the reported research literature, the resource 

allocation problem is usually solved by traditional constraints based optimisation 

techniques, which eventually falls into an AA'P-hard problem. The complexity of 

the problem grows exponentially against the size of the input. Therefore, instead 

of finding the exact optimal allocation, we introduce heuristic-based algorithms 

which are believed to deliver suboptimal solutions.

The aims of this research program are to identify the constraints and limitations 

of the current licence-exempt wireless networks and to advance the state of the art 

in such systems. Efforts have been devoted to establishing a framework of using 

optimisation heuristics to solve the spectrum and power optimisation problems in 

single-hop multiple-AP HD-WLANs. This task is accomplished through following 

steps:

1. We first proposed biologically inspired approaches to solve the centralised 

DCA problem.

2. And then considering that the real systems are deployed by different network 

vendors, distributed algorithm is employed with the aim to search for sup- 

optimal channel assignment with a sensible time scale.

3. In order to further improve the system throughput and minimise power us­

age, a joint design between DCA and TPC is then proposed in a distributed 

manner.
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4. In the end, all the distributed algorithms proposed in this work are validated 

through a set of real data, in order to provide useful guidelines to further 

network deployment.

The reason of employing biologically inspired approaches, such as Genetic Algo­

rithm (GA) and Simulated Annealing (SA), is that traditional optimisation algo­

rithms are not capable of obtaining the optimal solutions within a sensible time 

scale. The work is started by defining the feasibility of applying these heuristics 

to the practical DCA problem and proposing centralised algorithms to solve it. 

Simulation results are analysed carefully to evaluate the performance of each al­

gorithm and identify the possible limitations. In the second step, we apply these 

heuristics in a distributed way, with the requirements to deliver acceptable results 

within reasonably short time and be capable of handling different networks with 

good scalability. Inspired from previous research, further throughput improvement 

can be achieved by combining the DCA and TPC together. This is because DCA 

scheme is susceptible to service disconnection or at least degraded service qual­

ity due to frequent channel switching. TPC can be incorporated into DCA with 

the potential to compensate these deficiencies, as appropriately adjusted transmit 

power can reduce the overlapping coverage to enhance the channel access effi­

ciency. Therefore, in the third step, we consider joint design between DCA and 

TPC. Instead of using simulations to verify the benefit of the joint design, we will 

first theoretically prove this and then use a simulation case to support this finding. 

In the end, all the distributed algorithms proposed in this thesis are validated by 

using the measurement data from a real network of BT Wireless City project [3]. 

The validation results provide some useful insights and guidelines towards further 

network size expansion and improve the service quality delivered to the clients.

The research work is mainly focused on 802.11b networks where the spectrum 

restrictions are even harder because there are only three non-overlapping chan­

nels available. However, the methodologies developed using 802.11b can be easily 

extended to any other networks with spectrum restrictions.
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1.3 Contributions

The primary goal of this research is to investigate and solve the dynamic resource 

allocation problem in 802.11 HD-WLANs. It has demonstrated a novelty in suc­

cessfully applying biologically inspired methods to tackle the interference problem 

via DCA and TPC. The main contributions of this research work are summarised 

as follows:

•  This work has established a framework of using GA and SA to solve the DCA 

problem in wireless communication networks. It defined the detailed anal­

ogy to apply the theory to the practical channel optimisation problem and 

conducted necessary modifications to fit into the specific problem structure.

•  This work identified the limitations of each heuristic algorithm by statistical 

analysis of the simulation results and proposed a hybrid form to address the 

channel optimisation problem, and demonstrated a good trade-off between 

the fast convergence rate and optimality of the solution.

•  This work also explored the possibility of using SA in a distributed manner 

for channel allocation to accommodate the situation that APs deployed in 

real networks have low coordination with each other. The implementation of 

the distributed algorithm is effective and simple and requires no knowledge 

about the wireless channels. However, it still demonstrated superior perfor­

mance in terms of near optimality, low complexity and good scalability.

• In the joint design of DCA and TPC, this work theoretically proved that in 

the case of optimal channel allocation, stability condition of power control 

can be strengthened. This finding is also supported by a simulation case.

• This work proposed three real time and open ended algorithms to inter­

actively perform DCA and TPC. The proposed algorithms can handle the 

dynamic network by instantaneously adjust channel and power configuration 

to respond to the changing environment.
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• The DCA and TPC algorithms proposed in this work were validated by 

a real WLAN system in BT’s Wireless City project. All the algorithms 

contributed to the minimisation of the interference in the system. The joint 

design between power control and channel allocation substantially increased 

the user throughput.

• This work provided valuable insights to the further deployment of the HD- 

WLANs and effective methods on how to appropriately adjust the network 

setting in order to achieve a specific performance target.

These contributions have led to the following publications:

1. J. Y. Chen, S. Olafsson, Y. Yang and X. Gu, “Joint optimisation of the 

distributed channel allocation and power control in scalable wireless LANs,” 

submitted to IEEE Transactions on Communications.

2. J. Y. Chen, S. Olafsson, X. Gu and Y. Yang, “SACA: A simulated annealing 

based distributed channel allocation algorithm with low interference for high- 

density WLANs,” submitted to IEEE Transactions on Mobile Computing.

3. J. Y. Chen, S. Olafsson, Y. Yang and X. Gu, “Joint Distributed Trans­

mit Power Control and Dynamic Channel Allocation for Scalable WLANs, 

” accepted by IEEE Wireless Communications & Networking Conference 

(WCNC 09), Budapest, Hungary, 4-8 April, 2009

4. J. Y. Chen, S. Olafsson, X. Gu and Y. Yang, “Joint optimisation of the dis­

tributed channel allocation and power control in scalable wireless LANs,” 

accepted by the IEEE International Conference on Wireless Commu­

nications, Networking and Mobile Computing (WiCOM 08), Dalian, China, 

12-14 October, 2008.

5. J. Y. Chen, S. Olafsson, X. Gu and Y. Yang, “A Fast Channel Allocation 

Scheme Using Simulated Annealing in Scalable WLANs,” in the Proceed­

ings of the 5th International Conference on Broadband Communications, 

Networks and Systems (Broadnets 08), London, 8-11 September, 2008.
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6. J. Y. Chen, S. Olafsson and X. Gu, “Observations on Using Simulated An­

nealing for Dynamic Channel Allocation in 802.11 WLANs,” in the Pro­

ceedings of 67th IEEE Vehicular Technology Conference (VTC2008Spring), 

Singapore, 11-14 May, 2008, pp. 1801-1805.

7. J. Y. Chen, S. Olafsson and X. Gu, “A Biologically Inspired Dynamic Chan­

nel Allocation Technique in 802.11 WLANs with Multiple Access Points,” in 

the Proceedings of 18th Annual IEEE International Symposium on Personal, 

Indoor and Mobile Radio Communications (PIMRC07’), Athens, Greece, 3-6 

September, 2007, pp. 1-5.

8. J. Y. Chen, S. Olafsson and X. Gu, “Dynamic Channel Allocation through 

Improved Genetic Algorithm in 802.11 WLANs with Multiple APs,” in the 

proceedings of Networking and Electronic Commerce Research Conference, 

Lake Garda, Italy, September 2007.

9. J. Y. Chen, S. Olafsson and X. Gu, “Dynamic Channel Allocation in IEEE 

802.11,” Book Chapter in 4G Mobile & Wireless Communications Technolo­

gies, River Publishers, 2007.

10. J. Y. Chen, Y. Yang and H. Wu, “Network Coverage and Routing Schemes 

for Wireless Sensor Networks,” Book Chapter in Modeling and Simulation 

of Wireless Networks, Nova Science. 2006.

11. J. Y. Chen, X. Gu and Y. Yang, “Stable Distributed Power Control with 

High SIR Target for Cellular Wireless Communication Systems,” in the Pro­

ceedings of London Communications symposium, London, 8-9 September, 

2005.

12. J. Y. Chen, X. Gu and Y. Yang, “An Improved Distributed Power Control 

Algorithm for Wireless Systems with Reduced Constraint on SIR,” in the 

Proceedings of Postgraduate Research Conference in Electronics, Photon­

ics, Communications and Networks, and Computing Science, University of 

Lancaster, 30 March - 1 April, 2005.
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1.4 Thesis Structure

The thesis is organised as follows:

•  Chapter 2 outlines the essential background information for the research 

project conducted. The IEEE 802.11 standard is introduced in this section, 

including characteristics for each individual standard and their dedicated sys­

tems. The characteristics of HD-WLAN and its technical challenges during 

network deployment and operation are highlighted. Algorithmically, various 

classes of optimisation problems are briefly reviewed especially for the ap­

plication of wireless network planning. This chapter ends by an illustration 

of the network model and the adopted wireless signal propagation model.

• Chapter 3 describes the centralised schemes solving the DCA problem. A 

detailed overview of the state-of-the-art thinking relating to this problem 

will be addressed from cellular networks to WLANs. The channel allocation 

problem is then formulated in terms of a non-linear combinatorial optimisa­

tion problem, which is believed to be an AfV-haxd problem. Two centralised 

algorithms based on GA and SA are proposed to find sub-optimal solutions. 

For each algorithm, the analogy to apply the theory into this practical chan­

nel optimisation problem and the detailed implementation are discussed. 

After that, by revealing the limitations of each algorithm in this applica­

tion, a hybrid form of GA and SA is proposed to achieve a better trade-off 

between high achievable signal to interference plus noise ratio (SINR) and 

fast convergence speed. A statistical analysis is provided to compare the 

solutions delivered by each of the algorithms in different systems.

• Chapter 4 deals with a fully distributed algorithm namely Simulated An­

nealing channel allocation (SACA) algorithm. The simulation result reveals 

that it is a very efficient algorithm and offers near optimal solutions to the 

system with a wide range of network topologies. The proposed algorithm
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is compared with many other existing schemes, and demonstrates the su­

perior performance in terms of fast convergence, near optimality and good 

scalability.

• In Chapter 5, TPC is incorporated into DCA with the aim to further improve 

the user throughput. The joint optimisation is defined as a non-linear mixed 

continuous and discrete optimisation problem. We first theoretically prove 

that if performed separately, the optimal channel allocation can strengthen 

the stability condition of the TPC. By taking the dynamic environment of 

HD-WLANs into account, a family of distributed algorithms are proposed 

to interactively and continuously perform DCA and TPC on all APs. The 

proposed algorithms are all real time and open ended algorithms, which can 

instantaneously respond to the rapid changing environment.

•  Chapter 6 validates the proposed distributed algorithms by using measure­

ment data from a real WLAN deployed in SOHO area in London. Data 

inputs include APs’ locations, path-loss measurements between APs and 

clients and quality of service (QoS) requirements. It shows that by employ­

ing the proposed distributed SAC A algorithm, interference is minimised since 

channels are evenly distributed across the network. And by using the joint 

design of DCA and TPC, the user throughput is substantially improved.

•  Chapter 7 concludes our work and gives recommendations for future work.



Chapter 2

Technical Background

This chapter gives essential information for the performance optimization in WLANs. 

The designated networks for performance optimisation are IEEE 802.11 networks, 

which are expected to significantly grow their service volumes in the next 5-10 

years.

2.1 IEEE 802.11 W LAN System

2.1.1 Basic Architecture

Owing to the simplicity and cost efficiency, 802.11 WLANs have been widely used 

as a wireless extension for local area network. The basic element of a WLAN 

is basic service set (BSS). Each BSS is controlled by one AP. Most WLANs are 

formed by several BSSs where APs are connected through distribution systems 

(DS), typically Ethernet. A whole interconnected WLAN including different BSSs, 

their respective APs and the DS, is called extended service Set (ESS). A typical 

layout of a WLAN with two APs is illustrated in Figure 2.1.

A WLAN can be configured in two basic modes:

25
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Ethernet

BSS

BSS

ES:

F ig u r e  2.1: An 802.11 WLAN with two APs

• Peer-to-Peer (ad hoc) mode - This mode consists of two or more personal 

computers (PCs)/laptops equipped with wireless adapter cards, but with no 

connection to a wired backhaul, as shown in Figure 2.2. It is usually used to 

quickly and easily set up a WLAN where no infrastructure is available, such 

as in a convention center or off site meeting room. The channel allocation 

in this mode is similar to the edge colouring problem in graph theory [4], 

where channels are allocated on link basis. This channel allocation method 

requires two end nodes on a single link to use the same channel.

• Client/Server (infrastructure) mode - This mode consists of multiple stations 

(laptops, PDAs, PCs) linked to a central AP that acts as a bridge to the 

resources from the wired Ethernet, as shown in Figure 2.3, offering fully 

distributed data connectivity. The channel allocation in this mode is similar 

to the node colouring problem in graph theory [4]. It requires each AP to 

use different channels from their neighbours in order to avoid co-channel 

interference.
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F igure 2.2: Peer to peer WLAN configuration

F ig u r e  2.3: Client/Server WLAN configuration

2.1.2 C hannel Configuration

In 1985, the Federal Communication Commission (FCC) authorised the free public 

use of the Industrial, Scientific and Medical (ISM) frequency bands on 2.4 GHz 

and 5 GHz to encourage innovation and low-cost implementations. According to 

the IEEE 802.11 standard, 802.11b/g [5, 6] operate on 2.4 GHz, while 802.11a
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[7] operate on 5 GHz. 802.1 In [8] defines the enhancements of using multiple- 

input multiple-output (MIMO) system to increase the data throughput via spatial 

multiplexing, thus both frequency bands are allowed in this substandard. Table 

2.1 shows the operating frequency for some of the substandards.

T a b le  2.1: IEEE 802.11 operating frequency (partial), ant: antenna
Protocol Release

date
Operating frequency 

(GHz)
Throughput

(M bit/s)
Data rate 
(M bit/s)

Indoor range 
(ft)

Outdoor range 
(ft)

Legacy 1997 2.4-2.5 1 2 Depend on walls ~ 7 5
802.11a 1999 5.15-5.35/5.49-5.85 25 54 ~ 35 ~ 75
802.11b 1999 2.4-2.5 6.5 11 ~ 4 0 ~150
802. l l g 2003 2.4-2.5 20 54 ~ 4 0 ~150
802.1 In 2009 2.4 and/or 5 74 248 =  2x2 ant ~220 ~500

The total amount of bandwidth offered at 5 GHz is 550 MHz, which has as many 

as 19 non-overlapping channels compared to 3 in 802.11b/g at 2.4 GHz. Besides, 

802.11a uses 52 sub-carriers orthogonal frequency division multiplexing (OFDM) 

schemes and provides maximum 54 Mbps. The reason for OFDM scheme to be 

able to deliver higher data rate is that, first it splits a high speed serial signal into 

several low speed parallel signals, which eventually converts the underlying broad 

band channel into several parallel narrow band channels and can eliminate inter­

symbol interference in each sub-channel; and then these signals are modulated 

onto several orthogonal sub-carriers, therefore can be transmitted simultaneously 

without any mutual interference among these sub-channels. 802.l lg  combines the 

advantage of 802.11b (relatively large coverage) and 802.11a (higher throughput) 

by defining the application of multi-carrier OFDM transmission scheme in the 

2.4 GHz band. Therefore, 802.l lg  can also provide up to 54 Mbit/s at the air 

interface. In contrast, 802.11b operating in the same frequency band can only 

offer up to 11 M bit/s data rate. The scope of our work is to design a DCA and 

TPC scheme under 802.11b specification, where the spectrum restriction is severer 

than other type of networks.

Figure 2.4 shows the channel configuration for 802.11b. Channels are represented 

by their center frequency, starting from 2.412 GHz to 2.477 GHz, with up to 14 

channels in total (the first 13 channels are used in Europe). Each channel is 22 

MHz wide in order to accommodate a wireless signal. But since channels are
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5 MHz apart from each other, there are only up to 3 non-overlapping channels, 

channel 1, 6 and 11 are currently used to transmit signal.

Channel Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14
I i i i i I l i l i |  i i i

Frequency band 
(GHz)

FIGURE 2.4: IEEE802.11b channel configuration

From the research point of view, overlapping channels can also be used for trans­

missions as long as the interference is calculated with the channel overlapping 

coefficient, which imposes complicated management overhead. Nevertheless, since 

the off-the-shelf products only support three-channel configuration, our proposed 

schemes are mainly based on non-overlapping channels.

Current channel assignment for most 802.11b WLANs is carried out in a static 

manner, using the fixed channel allocation (FCA) scheme. FCA scheme is usually 

run in the initial installation when an AP is initialized. Based on a careful RF 

site survey, there will be an optimal number of APs and their locations to provide 

adequate coverage and performance for their users. After the deployment, APs 

scan for a channel to use with the least interference level and to separate neigh­

bouring APs that share the same channel [9]. This static scheme cannot adapt to 

local environment changes and traffic conditions afterwards. Therefore, it could 

not provide the best performance for WLANs, where traffic load in the network 

usually varies in time. There are some commercial vendors developing DCA tech­

niques for their products, but the key technology is proprietary, which imposes 

some difficulties for academic researchers to evaluate new ideas by comparisons 

with current state-of-the-art.
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Table 2.2: IEEE 802.11 standards and amendments
Protocol Description

Legacy (802.11) Up to 2 M bit/s 2.4 GHz and infrared standard
802.11 a Up to 54 M bit/s 5 GHz
802.11 b Enhancement to 802.11 to support 5.5 and 11 M bit/s
802.11 c Bridge operation procedure
802.11 d International roaming extensions
802.11 e Enhancement QoS including packet bursting
802.11 g Up to 54 M bits/s 2.4GHz
802.11 h Spectrum managed 802.11a for european compatibility
802.11 i Enhanced security
802.11 j Extensions for Japan
802.11 k Radio resource management enhancement
802.11 m Maintenance of the standard
802.11 n Higher throughput improvement using MIMO
802.11 r Fast roaming
802.11 s ESS mesh networking
802.11 t Wireless performance prediction
802.11 u Inter-working with non-802.11 networks
802.11 v Wireless network management
802.11 y 3.65 - 3.7 GHz operation in US

The IEEE 802.11 working group defined mechanisms for 802.11a devices to operate 

dynamic frequency selection (DFS) and TPC in 802. l lh  [10] in order to avoid 

interference from military radar or other WLANs. It regulates the operation of an 

AP or a client initiating the channel selection request or adjustment of transmission 

power. It also defines the standard method to exchange such information between 

each other. The decision of choosing which channel and power level depends on 

the measurements made by each device. However, as for what algorithms should 

be used to make such decision is beyond the scope of this substandard.

In addition, IEEE 802.11 working group also defined other amendments for various 

purposes. Table 2.2 gives a quick reference on the main tasks for each group, their 

corresponding standards and specifications.
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2.2 High-Density W LANs

As briefly mentioned previously, in the recent years, the density of 802.11 WLANs 

has been dramatically increased. On one hand, this phenomenon is due to the 

low cost and eases of deployment of WLANs. On the other hand, the capability 

of current 802.11 standards to support high data rate applications has allowed 

bandwidth-intensive applications to be tapped into the given network. From a 

commercial perspective, in May 2005, laptops outsold desktops in the United 

States for the first time in sales history1. The convenience and flexibility to work 

nearly anywhere and anytime offered by WLANs has led to the emergence of large 

scale WLANs in urban areas and enterprises. In such environments, densities 

of both users and APs are relatively high, which can be as close as only a few 

meters away from each other [11]. This multi-AP network to serve an even larger 

number of clients is defined as a high-density WLAN (HD-WLAN). With the rise 

of HD-WLANs, mobile users are rarely out of signal range [12], hence coverage is 

often less of a concern due to the ubiquitous deployment of APs. Instead, scalable 

network capacity becomes a primary design challenge.

In principle, HD-WLAN is a deliberate design choice for the enterprise or pub­

lic network scenarios. As distances from clients to APs have been shortened, 

lower transmit power is preferable to achieve high throughput. In [13], a picocell 

structure (a substantially small RF coverage area) is introduced to build high- 

throughput 802.11 networks. In the creation of picocell, TPC and receiver sensitiv­

ity control (RSC) is required to minimise cell overlap and avoid co-channel/adjacent- 

channel interference. However, surveys of typical deployments [14], such as in a 

sporting arena or the trading floor of a stock exchange, have shown that the de­

fault power level is often set to the maximum without consideration of the distance 

from clients to APs. Therefore, HD-WLANs deployments face significant chal­

lenges from the increased interference in close proximity among APs and clients. 

It is widely understood that 802.11 adopts a distributed, contention based carrier 

sense multiple access/colission avoidance (CSMA/CA) approach for access control

Michael Singer, “PC milestone-notebooks outsell desktops,” CNET News.com (June 3, 2005) 
http://news.com.com/PC-l-milestone-notebooks-l-outsell+desktops/2100-1047_3-5731417.html.

http://news.com.com/PC-l-milestone-notebooks-l-outsell+desktops/2100-1047_3-5731417.html
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and interference mitigation between devices [7]. It can achieve a peak capacity of 

about 50% efficiency with 3 or 4 contending stations (clients). However, as the 

number of contending stations increases, aggregated capacity drops dramatically. 

As more and more stations try to gain access to the medium and transmit packets, 

more and more collisions occur. Stations remain in “back off and wait” more than 

they actually transmit. Prom APs’ perspective, another challenge is due to the 

relative large number of APs in the system compared with relatively small number 

of channels available. In such an environment, an AP will have high probability 

to experience co-channel interference from neighbouring APs. Besides, in this 

large and growing system, many APs belong to different administrative domains. 

A single centralised processing unit may easily become a vulnerable performance 

bottleneck. Therefore, to improve the spatial and spectrum reuse in a distributed 

manner is the key issue to realise the proliferation of HD-WLAN in the future.

By exploiting the potential for increasing capacity in HD-WLANs, many compa­

nies have launched their own high density networks and high density compatible 

products. Foundry Networks [15] has launched various APs, switches and soft­

ware to help increase the capacity and security of enterprise wireless networks. 

The designated AP (IronPoint Mobility AP150) and switch (IronPoint Mobility 

Radio Switch 4000) provide multiple radio coverage in the entire WLAN, whilst 

location management software (IronPoint Wireless Location Manager 2.02 soft­

ware) let users perform rogue AP detection and asset tracking. This combination 

is aimed to help run services such as VoIP and location tracking on a single 802.11 

infrastructure. These products can support up to 256 WLAN connections for 

large public spaces or high traffic areas with 802.11 a /b /g  compatibility. In 2005, 

MERU helped build the world’s highest density WLANs in Northern Michigan 

University in order to enhance the learning experience for over 6000 students and 

faculty daily [16], [17]. Initially, this network suffers significant challenges from 

high density of mixed 802.11b and 802.l lg  clients. MERU uses a single controller, 

called the air traffic control (ATC), to determine a static channel access scheme 

and enables fair time-based access for both 802.11b and 802.l lg  clients to maintain 

high throughput performance.
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From an academic perspective, many research groups have focused their study 

in this area and proposed a range of different techniques, including DCA [18], 

adaptive TPC [19], cooperative communication between APs and users by utiliz­

ing directional antenna [20] and intelligent MAC protocol design [12]. Each of 

these has the potential to improve the system capacity in different ways. DCA 

algorithms can help each AP chooses appropriate channels to transmit on, and 

avoid co-channel interference from neighbouring cells as much as possible. TPC 

schemes can be used to minimise the overlapping coverage among APs. Along 

with user association, these techniques help traffic load to be evenly distributed 

within the network, which can consequently improve data throughput in hot spot 

area. Besides, a cross-layered approach with joint adaptive TPC and MAC can 

help enhance the efficiency of channel access without any compensation on the net­

work performance. Coverage redundancy in the HD-WLAN can also be utilised 

by cooperative communications.

2.3 Optimisation Theory

The DCA and TPC problems studies in this work can be viewed as optimisation 

problems with the aim of maximising some measure of the system performance by 

optimally allocating channel and power to each device.

2.3.1 Basic Terminology

An optimisation problem begins with a set of independent variables or parameters, 

and also includes conditions or restrictions that define acceptable values of the 

variables. We use the notation

minimise F(x)
x € R n

subject to x  6 SI (2.1)
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to describe the optimisation problem of finding a vector x that minimises F  over 

all possible vectors in fi. The vector x  is an n-dimensional vector of independent 

variables, which is often referred to as decision variable, x =  [x\ , £2, • • •, xn]T € Kn. 

The function F  : Rn —► R is called the objective function or cost function. It is a 

single measure of the “goodness” of the x. The set Q is a subset of Rn, called the 

constraint set or feasible set. It often takes the form Q =  {x : h(x) =  0, g(x) < 0}, 

where the equation h(x) =  0 is called the equality constraint and the g(x) < 0 

called the inequality constraint function. Problem (2.1) is said to be feasible if 

there exists at least one x that satisfies the conditions defined by the constraint 

functions, otherwise it is infeasible.

An optimal value P* of F(x) is defined as P* =  inf{F(x)|h(x) =  0, g(x) < 0}2. 

P* is allowed to take on the extended values ±oo. We define that x* is an optimal 

(or global optimal) solution in f t  such that F(x*) =  P*. The set of all x* is 

denoted by X opt- If there exists at least one x*, we say the optimal value P* is 

achievable and the problem (2.1) is solvable. If the Xopt is empty, the problem is 

then unsolvable. A feasible vector x  with F (x) < P* +  e where (e > 0)is called 

a sub-optimal solution. Strictly speaking, an optimisation problem is solved only 

when a global optimal solution is found. However, in practice, the global optimal 

solution in general is difficult to find. Therefore, we often have to be satisfied with 

finding sub-optimal solutions.

2.3.2 Classification of O ptim isation Problems

Although we can express the optimisation problem in a very general form, it does 

not imply that we should ignore the distinctions among problems. Indeed, it 

is always advantageous to determine special characteristics to allow the problem 

to be solved more efficiently. For example, the problem (2.1) can be viewed as a 

general form of a constrained optimisation problem, because the decision variables 

are constrained to be in the constraint set fi. If Cl =  Rn , the problem is referred 

as an unconstrained optimisation problem.

2 “inf’ refers to “infimum”, meaning greatest lower bound.
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One can classify the optimisation problem by the special characteristics of the 

objective and constraint function. The functions F ,h a n d g  may be very smooth 

in some cases, and discontinuous in others. If they are all linear functions, the 

problem (2.1) becomes a linear programming (LP) problem [21]. If some or all of 

the variables are constrained to integer values, the problem becomes mixed-integer 

or pure-integer linear programming (MILP/ILP) problem. Apart from linear func­

tions, the rest of the problems belong to non-linear programming problems [22], 

where the objective function and/or the constraints contain nonlinear parts. If 

the problem variables are restricted to take on finite discrete numbers, it is a com­

binatorial optimisation problem. Combinatorial optimisation [23] has its roots 

in operation research. The channel allocation problem studied in this work is a 

typical non-linear combinatorial optimisation problem, as channels can only been 

taken on integers and the objective function (total interference in the system) is 

non-linear with respect to the channel numbers.

Additionally, optimisation problems can also be distinguished as convex program­

ming or non-convex programming problems. Convex programming [24] studies the 

case when the objective function is convex and the constraints, if any, form a con­

vex set, which means the objective and constraints functions satisfy the following 

condition [25] (to use function F  as an example): F (ax  +  /3y) < aF(x)  4- f3F(y), 

for all x ,y  £ Rn and all a,/3 £ R with a  +  f3 =  1, a  > 0 and (3 > 0. It can 

be viewed as a particular case of non-linear programming or as generalization of 

linear programming when F(ax + /3y) =  aF (x)  +  (3F(y).

As an alternative way, we can also classify the optimisation problems in terms of 

the number of objective functions. A significant portion of research and applica­

tions considers a single objective, although many real world problems may involve 

more than one objective [26]. The presence of multiple conflicting objectives can 

make the optimisation problem hard to solve. Since no solution can be an opti­

mum solution to all multiple conflicting objectives, the resulting multi-objective 

optimisation problem resorts to a number of trade-off optimal solutions.
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Those above mentioned optimisation problems are formally defined problems with 

some specific structures. Apart from that, the rest of the problems have a more 

generic form, referred to as non-linear mixed continuous and discrete optimisation 

problem. In this class of problem, both discrete and continuous variables and 

constraint functions are included in the problem definition, and no restrictions 

are imposed on the functional form of the objective function and constraints. 

The channel allocation problem incorporating with power control with continuous 

power level can be categorized into this problem. Since there are no effective 

methods to tackle this class of problems, usually heuristics is a sensible candidate 

to find sub-optimal solutions.

2.3.3 Applications and M odeling of Optim isation in W ire­

less Networks

The optimisation problem is an abstraction of the situation of making the best 

possible choice from a set of candidates. The variable x  represents the choice 

made; the constraints represent the requirements or specifications that limit the 

possible choices. The objective function represents the value or cost of choosing 

x. Therefore, from this point of view, problems in all areas of mathematics, 

applied science, engineering, economics and statistics can be posed in terms of 

optimisation.

For wireless systems, optimisation techniques [27] are quite useful to solve the 

network design and operation problem, such as network planning (including base 

stations’ location and assignment problems), routing and clustering in large-scale 

multi-hop networks, load balancing and reliability issues in distributed networks, 

minimum cost optimisations and other stochastic issues in wireless communica­

tions.

In networking planning, for example, one of the major tasks is to find the best 

location of each AP such that the network can be fully covered. Here the variables 

represent the coordination for each AP. The constraints represent a variety of
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engineering requirements, such as a limit on the total area of the network, all 

the obstacles which affects the propagation of the wireless signal and propagation 

characteristics of specific spectrum.

In the channel allocation problem, we seek the best channel assignment for the 

APs to operate in the system. The variable X{ represents the channel selection by 

the *-th AP. Therefore, the vector x  describes the channel assignment for all the 

APs across the network. The constraint is that there are only 3 non-overlapping 

channels available to choose in 802.11b case, and each AP can only operate in 

one channel at a time. The objective function of the channel allocation problem 

could be a minimisation of the total interference in the system, a minimisation of 

the maximal interference among all the APs or maximisation of the SINR value 

for each user. This problem is a typical example of a non-linear combinatorial 

optimisation problem, which will be discussed in detail later.

When combining the channel allocation and power control techniques together, we 

start to have multiple variables, such as channel assignment for each AP and the 

transmit power level on each device. The constraints of the problems, except for 

the limited channel number, are also to guarantee the SINR level to be above a pre­

defined target during the whole process of the communication. Power level is also 

limited by a maximum value and can be continuous values. The objective function 

can also be set in a number of different ways, such as to find a proper channel 

and power setting to maximise the average system throughput, or to maximise the 

fraction of users reaching high SINR targets.

2.3.4 Solving Optimisation Problem s

When faced with solving an optimisation problem, one would like to know how 

difficult it is to solve the problem. Usually, the difficulties are determined by the 

objective function or the constraints. In optimisation theory, the “difficulty” is 

termed as the “complexity” of a problem [28], which is used formally to classify a 

problem as easy or hard. The complexity of an algorithm is defined as the amount
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of resources required to find the optimal solution. The most common resources are 

time (how many steps it needs to solve a problem) and space (how much memory 

it needs to solve a problem).

A problem is considered to be easy if there exists an algorithm that solves the 

problem in time bounded by a polynomial function against the size of the input. 

Usually being able to solve an optimisation problem implies being able to answer 

the associated decision problem. The decision problem can only be answered yes 

or no. Take the channel allocation problem as an example, the decision problem 

will be “can we find an optimal channel assignment for APs such that the system 

interference is minimised?” To answer this question, one would give the steps to 

determine whether this optimal channel assignment could be found. If an opti­

misation problem is easy, then clearly the decision version of this problem is also 

easy. In the complexity theory, V  is used to denote the class of decision problems 

that can be solved in polynomial time. The simplex method [29] was developed 

in 1947 by Dantzig to solve the LP problems. Generally, the simplex method is 

efficient and elegant. However, it has the undesirable property that, in the worst 

case, the number of the steps required to find a solution grows exponentially with 

the number of variables. Obviously, polynomial complexity is more desirable then 

exponential complexity. Therefore, from 1979, researchers started to devise algo­

rithms to solve the LP problem in lower complexity. These algorithms are referred 

to interior-point methods [30], [31]. From a complexity point of view, these algo­

rithms are superior to the simplex algorithm. But they have their own problem: 

the time required to solve a given LP problem increases with the required accu­

racy of the computations. Therefore, to solve the LP problem with a polynomial 

complexity bound remains a difficult open problem [32].

The notation M V  stands for “nondeterministic polynomial time” . It means that 

this class of problems is solvable in polynomial time by a non-deterministic Tur­

ing machine [33]. The class of AfV  contains an enormous number of problems, 

including all problems in V. Many problems in M V  are not known to be solv­

able in polynomial time. It is not known whether V  equals N V ,  but it is widely 

conjectured that this is not the case.
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The optimisation problems discussed in this thesis are AfV-hard problems. This 

is a class of problems known informally “at least as hard as the hardest problems 

in N V ” It is impractical to solve these NV-\\axd  problems, i.e. to find the exact 

optimal solution, due to the nature of the problems or to their size, even with 

the advent of the new computer technologies and parallel processing. Besides, 

reaching optimal solutions is meaningless in many practical situations, since we 

are often dealing with rough simplifications of reality and the available data is not 

precise. Therefore, this leads to an interest in adopting heuristics for searching 

good approximation solutions, without necessarily providing any guarantee of the 

solution quality.

Simulated Annealing (SA) [34, 35], Genetic Algorithm (GA) [36] and Tabu Search 

(TS) [37] etc. are some of the well known heuristics. They are based on distinct 

paradigms and offer different mechanisms to escape from locally optimal solutions, 

contrarily to greedy algorithms or local search methods. Different from classical 

optimisation problems, heuristics can be formulated based on one or several op­

timality conditions which not only can provide a termination criterion, but also 

give helpful suggestions to direct system converge to the optimal or near-optimal 

solutions. More precisely, when a tentative solution does not satisfy the optimality 

conditions, the conditions often suggest how to improve it in order to get another 

tentative solution, closer to the optimum. The principles of some of the heuristics 

will be discussed in detail in the following chapter when they are applied to solve 

the DCA and TPC problem.

2.4 Network Model and Propagation Model

As shown in Figure 2.5, we consider a network of n  APs and a large number of user- 

devices randomly deployed in an area. Each AP serves a group of user-devices in 

its coverage. The network size is determined by the number of APs. The number 

of user-devices may vary. The distance between these users-devices and APs are on 

average much shorter than their communication range, to represent a high-density
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basis. According to the standard, only 3 non-overlapping channels are available 

for use by all the pairs of AP and user links. Transmit power can be adjusted 

continuously within a predefined range to satisfy users’ SINR requirements. Each 

user is associated with its closest AP with the strongest received signal. As the 

distributed coordination function (DCF) in WLANs is a contention-based MAC 

protocol, each AP can communicate with only one user at a time through its 

selected frequency channel.

F ig u re  2.5: Network model

The model shows in Figure 2.5 represents a system with outdoor and indoor prop­

agation environment, where both areas are equipped with APs. The coverage area 

of an AP is determined by the transmission power and its attenuation due to sur­

rounding obstacles. In defining the propagation loss, we adopt the Motley and 

Keenan model [38] which can be used in both indoor and outdoor environment. 

In the Motley and Keenan model, the line of sight (LOS) model assumes a linear 

dependence between path loss and the logarithm of the distance dij between AP
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T a b le  2.3: Penetration loss for different material types at 5GHz
Material type Thickness Average loss per wall

Plywood 0.4cm 0.9dB
Gypsum wall 13.5cm 3.0dB

Rough chipboard 1.5cm l.OdB
Double glassed window 2.0cm 12dB

concrete block wall 30.2cm lOdB

i and AP j .

gij =  L0 +  10 x a  x log(d^) (2.2)

where g^ is the path loss between j- th  AP and «-th AP. Lq is the reference loss at 

1 meter, defined as 40.2dB. a  is the path loss exponent, which is set to 2.86. The 

LOS model is simple to use but it doesn’t adequately account for the propagation 

characteristics of the real environment. Therefore, to take into account the signal 

attenuation caused by penetrating walls and floors in path between two APs, a 

non-LOS model is defined as follow:

gij =  Lo + 1 0 x a x  log(dfj) +  Lw (2.3)

where Lw is cumulated non-linear penetration loss due to multiple obstacles, i.e., 

walls and floors.If there are a number of obstacles of the same type on the way of 

propagation, the loss can be calculated by using following equation:

na+5 — h

Lw = Lan ss+3 (2.4)

where Ls is path loss per obstacle in dB, depending on their thickness and material. 

Table 2.3 summarises the penetration loss for different material types measured 

at 5 GHz. ns is the number of traversed obstacles, b is an empirical constant and 

estimated to be 0.5.
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Centralised Channel A llocation  

Schemes

3.1 Introduction

Channel allocation problems in general can be classified into two categories: fixed 

channel allocation (FCA) and dynamic channel allocation (DCA). In FCA, the 

set of channels are permanently allocated based on a pre-estimated traffic design 

[39, 40]. While in DCA, channels are allocated dynamically depending on current 

network conditions. Compared with FCA, DCA yields a better performance in 

terms of interference, throughput and delay at the expense of an added complexity 

in the control mechanism. The objective of DCA is to effectively allocate the 

available radio channels to the APs such that the overall network performance 

can be maximized and the co-channel interference can be minimized. We focus on 

DCA in this dissertation.

In this chapter, we apply heuristic based algorithms to solve the centralised DCA 

problem. This problem is first formulated in terms of a non-linear combinatorial 

optimisation problem, which is believed to be AfP-hard. A detailed overview of the 

related work is summarised in Section 3.3. In Section 3.4 and 3.5, two centralised

42
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algorithms based on GA and SA are proposed to find sub-optimal channel assign­

ment. After a performance comparison between SA and GA, a hybrid algorithm is 

proposed in Section 3.6 to achieve a better trade-off between high achievable SINR 

and fast convergence speed. Section 3.7 provides the performance evaluation and 

statistical analysis.

3.2 Channel Allocation Problem Formulation

The channel allocation problem is formulated in the following. The set of all 

APs is denoted by A, (The total number of APs is represented by n). The total 

number of traffic channels in 802.11b is 3 (it can be easily extended to any number 

of channels for other systems). Channel utilization vector p is defined as p =

where p{ G {1,2,3}, i G {1,2, . . . ,n} .  The geographic 

interference matrix Qnxn = [<̂ij] indicates instantaneous interference relationship 

among all the APs based on current channel allocation, ujij = g^, if AP i and j  

are using the same channel and within each other’s communication range, where 

captures the power loss on the path between two APs. Otherwise cUij = 0. 

Therefore, the interference experienced by AP z, operating on channel pi} from its 

neighbouring APs j  with transmit power pj (which is set to lOOmW for all APs) 

is given by

!i(Pi) = ^ 2  u a + ri t3-1)
j e n ( i )

where n(z) defines a local environment (neighbouring APs) around the AP i but 

not including i itself, rj is the power of additive white Gaussian noise (AWGN). The

objective is to find a proper channel allocation, p*, such that the total interference

/  is minimised:

p* =  a.rg min /  (p) (3.2)
p = { l,2 ,3 }

where I(p) = J ]  U(pi) =  ^2 ]C (Hz' +  Tl)- everY AP only uses one channel 
i€ .A  t€^4i7'6n(i)

at a time.
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3.3 Related Work

In cellular networks, DCA schemes have been extensively studied in the past few 

years. Many researchers have proposed to formulate a cost function which evalu­

ates a number of interference constraints violated by a given frequency assignment 

and then try to minimise this cost function. Different from WLANs, channels in 

cellular networks are kept in a central controller called channel pool. Each base 

station request channels from this global channel pool based on the traffic load it 

has. As the total number of channels is limited, it requires that the same channel 

should be reused as much as possible. While, at the same time, to avoid possible 

interference is also important between nearby mobile users. Therefore, DCA in 

cellular networks can be formulated with extra constraints as follows [41]:

minimise 2

z

subject to ( l ) y 2  f ik = di i G [1,2,..., n]; k G [1,2, ...z]
k=i (3-3)

( 2 ) | p - g |  > Cij P, q e  [1,2 G [l,2,...,n]

(3)fik =  Oorl  i e  [1,2, ...n]; k G [1,2, ...2]

where 2 is the total number of channels required by the system, f a  is a binary 

matrix shows the possible channel assignment. If A;-th channel is assigned to i-th 

cell,/** =  1, otherwise it equals to zero. Vector D =  [di\ corresponds to the number 

of channels each cell requires. Matrix C =  [cij] is so-called compatibility matrix, 

it describes the minimum channel separation between cells i and j .  p,q are the 

channel labels for those channels used in cell i and j .  So the objective of DCA 

in cellular networks is to minimise the total number of channels required by the 

system, and at the same time, meet the channel demand for each cell expressed 

by condition (1) and ensure that the resulted channel assignment does not lead 

to any interference between different calls in any cells defined by condition (2). 

Other alternative objective functions can be set as to minimise the call dropping 

or call blocking probability.
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By investigating the already published approaches, DCA schemes can be imple­

mented as centralised or distributed. In the centralised algorithms, a central con­

troller is adopted to assign channels and assure that required signal quality is 

maintained. While in distributed algorithms, any decisions are made regardless of 

the global status of the network. So the distributed algorithms are more difficult 

to predict as to whether or not they can achieve optimal channel assignment. The 

distributed algorithms will be discussed in detail in Chapter 4. In this chapter, 

we will focus on centralised algorithms first.

The above channel optimisation problem formulated by Eq. (3.3) is known to 

be AfP-hard [42]. This means the time needed to compute an optimal solution 

increases exponentially with the size of the problem. Therefore, some heuris­

tic assignment strategies and combinational optimisation tools such as Genetic 

Algorithm (GA), Simulation Annealing (SA), multi-colouring scheme and neural 

networks have emerged to deliver a near optimal solution. From these tools, GA 

[39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53] is categorized as an evo­

lutionary strategy, which can be used to find a sub-optimal channel assignment 

from a search space with relatively fast convergence speed. The SA based ap­

proach [54, 55] achieves the global optimum asymptotically but with a slow rate of 

convergence, and requires a carefully designed cooling schedule. Multi-colouring 

techniques [56, 57, 58, 59, 60] are usually used to find the minimal number of 

channels needed to satisfy a certain traffic load, while neural network heuristics 

[61, 62, 63] provide suboptimal solutions because they easily converge to local 

optima. Among these algorithms, some of the research works laid the foundation 

for using heuristics to solve channel allocation problems, thus are worth discussing 

with more details.

[52] is one of the first several works trying to use GA to solve the channel allocation 

problem. The general principles involved in the design of the algorithm were 

discussed in detail, such as the genetic representation of the channel assignment 

and fitness function design etc. It reveals two major advantages with GA. One 

is its simplicity and the other is the large speed-up through implicit parallelism.
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Most of the following work on applying GA to DCA problems are based on this 

work.

An evolutionary strategy (ES) approach to the optimisation of DCA, hybrid chan­

nel assignment (HCA) and borrowing channel assignment (BCA) are proposed in 

[47]. Sandalidis et al. formulated channel assignment as a combinatorial optimi­

sation problem with solutions represented as vectors of binary digits. The size of 

a solution is always equal to the total number of channels available. The scheme 

allows the simultaneous reassignment of the calls that are being served in the cel­

lular networks, which takes place together with the allocation of new calls. This 

process improves the blocking performance of incoming calls, but also has been 

found to have large complexity both in terms of time and computation. Vidyarthi 

et al. [53] then provided a detailed comparison study in [47]. More importantly 

they proposed a better genetic representation of the solution (using integers rather 

than binary digits) and also designed a different fitness functions and a mutation 

scheme. The simulation shows that the newly designed algorithm outperforms 

Sandalidis’s scheme in terms of less computation complexity.

Different from the previous solely cost-function based heuristics, Beckmann et al. 

uses GA to decide an optimal call list which will not violate any of the interference 

constraints first and then assign them with a “frequency exhaustive assignment” 

scheme [41]. The simulation shows that the resulting channel assignment is very 

close to the optimum, and can easily cope with the local optimality issue which is 

very common to GA based schemes.

Kunz’s method is based on neural networks [62]. It shows that neural network 

algorithms are also feasible to solve DCA problem. It uses Hopfield and Tank’s 

method to create one neuron for each channel at each base station. A cost function 

representing frequency-separation constraints and channel demand is formulated 

and is then minimised by the neural network algorithm. It demonstrated that for 

some specific examples, neural networks algorithms can achieve optimal solutions, 

but for larger and more complex networks, it may easily converge to sub-optimal 

solutions. Another disadvantage with neural networks is its long calculation time
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with respect to graph coloring schemes and the difficulties to find appropriate 

parameters.

By using SA, a cost function with the frequency-separation constraints and the 

channel demand is formulated in [55]. The cost function reaches its minimum 

of zero if all constraints are satisfied. While in [54] the optimisation criterion is 

blocking probability. Although these two independent approaches use different 

models and different neighbourhood structures, both of them pointed out the 

same conclusion that SA appears to be a quite valuable approach for practical 

radio networks design.

In [64], the authors discuss the implementation of IEEE 802.11 based WLANs 

for enterprise customers with limitations such as performance under heavy load, 

deployment issues and the network management. They suggest using dynamic 

resource management instead of static radio resource management to improve 

performance of large scale WLANs. The centralised DCA problem in WLANs 

is very briefly addressed in [65]. APs are recommended to select an orthogonal 

channel that none of their neighbours has used if possible. But it was found to 

become unstable and with limited performance gain in large networks. A DCA 

strategy is proposed in [66] based on a real-time estimation of the number of the 

active stations (users) in the network. Then authors developed a DCA scheme 

in the MAC layer to minimise the throughput of the heavily loaded APs and 

maximize the channel utilizations considering the co-channel interference from 

other neighbouring APs. This work is closely related to the well known Bianchi 

model [67], but too complicated to implement.

All these works have provided a useful insight for investigating the DCA problems. 

We extend these works with specific focus on HD-WLANs. Below we describe 

our own work in DCA with a centralised control mechanism. Novel distributed 

channel allocation algorithms have also been developed from this work and will be 

described in Chapter 4.
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3.4 Channel Allocation Based on Genetic Algo­

rithm

The DCA problem is an instance of non-linear combinatorial optimisation prob­

lem, which is computationally hard to solve. Therefore, instead of using algorithms 

to find the exact optimal solution, considerable interest has been shown in using 

heuristic methods. The previous research work reveals that GA and SA have the 

potential to achieve good performance in DCA problems in terms of fast conver­

gence speed and close approximation. In this chapter, we will focus on these two 

techniques in a HD-WLAN environment and provide indepth analysis.

3.4.1 Introduction of G enetic Algorithm

Genetic Algorithm (GA) [36] is a heuristic derived from biological evolution. Dif­

ferent from other heuristics, it is a population-based method and can deal with 

many solutions simultaneously. To use GA, we have to first define the genetic rep­

resentation of the solution domain and the fitness function to evaluate the solution 

quality, which is usually referred to as encoding. Figure 3.1 shows the typical flow 

chart of a Genetic Algorithm. The procedure starts by generating an initial pop­

ulation of solutions. Then a loop is performed until some termination criterion 

is met. Most applications use the number of iterations or the stabilization of the 

population as the terminate condition. Each iteration in this loop handles one 

generation of the population. In one iteration, new solutions are generated by 

recombination operators such as Crossover and Mutation. After being generated, 

these solutions will be further evaluated in terms of their fitness, which in most 

cases corresponds to the value of the objective function itself. In some imple­

mentations, the fitness value of a solution may also account for penalties due to 

infeasibilities. Finally, the best results among the solutions are selected to form a 

new generation of solutions and a new iteration starts.
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No
Terminate?

Yes

Selection

Mutation

Terminate

EvaluationCrossover

Initialization

F ig u r e  3.1: Flow chart of original Genetic Algorithm

Solutions (also called individuals or chromosomes) in GA are usually represented 

by string entities with fixed length. Previous research observed that the encoding 

is relevant to the performance of the algorithm, and a good encoding can result 

in high-fitness solutions that have small length and orders [25]. Figure 3.2(a) 

shows an example of representation of individuals used in our work. Assume there 

are 7 APs in the system, the second string shows a possible channel assignment 

for each AP when only orthogonal channels 1, 6 and 11 can be chosen. The fit­

ness value associated with each solution has been set as total interference in the 

system. During the evolution, new solutions are introduced into the population 

by using the genetic operators Crossover (Figure 3.2(b)) and Mutation (Figure 

3.2(c)). Crossover happens between a pair of previous solutions, called Parents, 

by exchanging a part of their solutions with each other to form two new solutions, 

called Children. Mutation usually happens to one parent. As for the analogy of GA 

in channel allocation, mutation means one of the APs randomly selects another 

channel for communications. Following that, new generations are formed based on 

their fitness value by the Selection operator. Among these three operators, Selec­

tion and Crossover effectively search the problem space and keep the offspring with
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high fitness values, while Mutation can prevent the loss of important information 

in the generation. By applying GA, the notion of “survival of the fittest” plays a 

central role, which is to ensure that the fittest solutions of the population survive 

and their information content is preserved and combined to produce even better 

offspring.

AP No. 

Channel A ssignm ent

(a)Solution representation

Child 1 

Child 2

Original

Mutated

1 2 3 4 5 6 7

1 6 11 6 11 1 11

Parent 1 1 6 1 11 6 1 11

Parent 2 6 11 1 1 11 6 1

1 6 1 1 11 6 11

6 6 1 11 6 1 11

(b)C rossover

1 6 11 11 1 6 11

1 6 11 11 6 6 11

(c)Mutation

FIGURE 3.2: Solution representation, crossover and mutation operator in GA

3.4.2 A lgorithm  Im plem entation

In this section, we provide a detailed algorithm implementation for applying GA 

in DCA problem. The steps of the proposed GA are similar to the original version 

except we have enhanced the Evaluation process. Our algorithm adopts the dy­

namic characteristics of a WLAN and intends to find a way to quickly adjusting 

the channel selections in order to converge to an equilibrium state that can provide 

high per-user SINR. Figure 3.3 shows the flow chart of the proposed algorithm.

The steps for implementing the proposed GA are as follows:
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No
Terminate?
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Confirm
C hange Stand still

Selection

Mutation

Terminate

C rossover

Initialization

Y es

Good?

No

F ig u r e  3.3: Flow chart of modified Genetic Algorithm

1. The system starts with a population of M  channel assignments (possible 

solutions). Each solution starts with the worst condition that all APs are 

assigned to the same channel.

2. Randomly combine the M  solutions into M /2 pairs for Crossover and gen­

erate 2A/ possible channel assignments.

3. Carry out Mutation for all the 2M solutions, that is, selected APs randomly 

pick channels to switch to. In each solution, only one AP is allowed to switch 

to another channel at one time.

4. Examine all potential switches according to local interference level. If the 

switch is beneficial to all its associated users, i.e. it reduces the current
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interference level and increase its users’ SINR, then the AP confirms the 

switch. Otherwise, it will stay at the previous channel.

5. Evaluate every solution based on the defined fitness function, that is, the 

network’s total interference, by adding the local interference from individual 

APs together.

6. Select half of the population that have highest fitness value to survive and 

contribute to the next generation.

7. Repeat Steps 2 to 6, until the termination condition is met, that is, the 

generation number reaches the maximum number of generations.

According to the above steps, we can see that the main difference between the pro­

posed GA and the original GA is that we have introduced more efficient evaluation 

strategy. In the original algorithm, following Crossover, the Mutation operation 

makes one of the APs randomly switch to another channel, no matter what im­

pact that has on itself and the whole system. Afterwards the Evaluation operation 

places the best half of the population into the next generation. Therefore, it is not 

sure that by passing one iteration, the quality of the solutions can be improved, 

or maybe even worse.

Instead, by adopting the improved GA, the improvement of the solution through 

one generation can be guaranteed and made in earlier generations. This is due to 

the fact that in the improved GA, each AP will examine the interference level for 

itself before switching to any new channels. It will confirm the switch as long as the 

local interference is reduced. Otherwise, it will stay in the previous channel. On 

one hand, this makes fewer mutations actually take place, thus prevents the APs 

switching too frequently between different channels. The system will then become 

more stable. On the other hand, only good mutation is allowed to go through to 

the next generation due to the new Evaluation, which enables the system to find 

an improved condition more quickly.

In Figure 3.4, we compare the performance of these two types of GA in a network 

with 10 APs. The location of these 10 APs is randomly generated within 1 k m 2
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area. The total interference in the system is the performance measurement. We 

can see that the modified GA reaches the same final interference level as the 

original GA’s, but with faster convergence speed.

x 10 8
4.5

 Orginal GA
 Modified GA

3.5

<1>ucs 2.5

c
ro
OI-

0.5

40
Generation number

F ig u r e  3.4: Comparison of total interference by running the original GA and
modified GA

However, the well known limitation of GA is its sub-optimality (GA usually con­

verges to a sub-optimal solution). Therefore, we continue our investigation in the 

next section for another heuristics, Simulated Annealing.
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3.5 Channel Allocation Based on Simulated An­

nealing

3.5.1 Introduction of Simulated Annealing

Simulated Annealing (SA) is a generic, probabilistic, meta-algorithm for global 

optimisation problem, namely locating a good approximation to the global opti­

mum of a given function in a large search space. It was independently invented 

by S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi in 1983 [34], and by V. Cerny 

in 1985 [35]. Computer simulation methods based on Monte Carlo techniques 

are used to model this process. Based on previous researches in many different 

areas, SA has shown its superior performance by delivering good approximation 

on most instances of the problems and reducing the exponential complexity to a 

polynomial dependence on the problem size. The basic idea of SA comes from 

the physical process of annealing in metallurgy. In an annealing process, a solid 

is heated to a high temperature and gradually cooled in order for it to crystallize. 

At high temperatures the atoms move randomly and at high kinetic energy but as 

they are slowly cooled they tend to align themselves in order to reach a minimum 

energy state.

In order to apply SA to solve a discrete optimisation problem - the channel alloca­

tion problem - here in this case, one has to express the problem as a cost function 

based optimisation problem by defining the configuration set, p, the cost func­

tion, I(p) and the neighbourhood, p'. More specifically, the problem formulation 

of channel allocation can be transferred to an SA problem by defining following 

mappings:

1. The state of the solid =  feasible channel allocation, p.

2. The energy of each state =  total interference of each channel allocation, I{p).

3. The state with minimum energy =  the optimal channel allocation, p*.

4. Temperature in annealing process =  a network parameter, T.
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SA uses a stochastic approach to direct the search. It allows the system to explore 

and occupy new states even if the perturbation causes the value of the objective 

function to increase temporarily. More precisely, it guides the original local search 

method in the following way: if p is the present channel assignment in the system 

and /(p) is the corresponding interference level, then a move to a new neighbouring 

state, i.e. to a new set of channel assignment p' is always accepted if it is of benefit 

to the system, i.e. A I  =  I(p') — I(p) < 0. In this case the interference in the 

system is reduced. If on the other hand the new channel assignment increases 

the interference level, it will be accepted with probability which depends on the 

change in interference and the present “temperature” level,

where the “temperature” T  is an externally controlled parameter. To implement 

this selection process in MATLAB, we generate a uniformly distributed variable. If 

the variable is smaller than the probability, the AP will accept the worse channel, 

otherwise it will stay in the previous channel. This stochastic selection scheme 

helps SA avoid being stuck at a local optimum. The pseudo-code of an SA is 

described as follows.

(3.4)
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Pseudo code of Simulated Annealing

Set p <— po (Initialization).

Set T  <— To (Initial “temperature”)

While (stopping criterion is not satisfied) Do 

Generate a new solution (p') by perturbing p 

Evaluate objective function I(p)

Compute A / = /(/?') -  I ( p )

If (A/ < 0), then

p<- p'

Else

Generate a uniformly distributed random variable a, 0 < a < 1 

If a  <

P < -  P'

End 

End

Update T  (decrement)

End

The value of T  varies from a relatively large value to a small value close to zero. 

These values are controlled by a cooling schedule which specifies the initial and 

present “temperature” values at each stage of the algorithm. When the “temper­

ature” is high, stochastic influence is strong, but as the “temperature” goes down 

the stochastic factor becomes less important. Therefore, the process gradually 

turns from a stochastic behavior to a more deterministic one. Finding the right 

cooling schedule is generally the most critical issue when using SA for optimisation. 

Even though there is some theory indicating how to decrease the “temperature” 

for some physical systems, it is not the case for the system here under considera­

tion. For this reason, we compared several cooling schedules in the simulation and 

used fast cooling in this work.
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3.5.2 Algorithm Im plem entation

As a rule of thumb, SA is quite slow in solving practically large problems, therefore 

in many applications SA has a variety of speedy versions which are strictly problem 

specific. By applying it to the DCA problem, we introduce several neighbouring 

state transition methods. A neighbouring state is defined as a new channel assign­

ment produced from its previous assignment with one or a few APs selecting new 

channels. During the transition, the target AP could switch to a channel randomly 

or to a channel that has not been used by its neighbouring APs if possible. In 

order to complete this transition, we assume the APs can sense the surrounding 

area and choose any channels available for communication.

We design three transition methods and compare them in terms of total inter­

ference. In Algorithm a, we adopted the original version, where only one AP is 

allowed to switch to a random channel at one time. In Algorithm b, AP is more 

“intelligent” . It can sense the interference in the channel before swapping, and 

choose the one with the least interference. While in Algorithm c, we adopted a 

pure random scheme, where several APs can simultaneously switch to any other 

channels in a random way. The objective of the proposed algorithm is to minimise 

the total interference. The details of the algorithms implementations are described 

as follows:

1. Initially, each AP randomly selects one of the available channels and mea­

sures the experienced interference under current condition.

2. neighbouring state transition:

•  Algorithm a: Randomly select an AP, say AP i , with current total 

interference level, I(p). Then AP i randomly chooses another channel, 

with perceived new total interference, I{p'), assuming that all the other 

APs stay in previous channels.

• Algorithm b: Randomly select an AP, say AP j , with current total 

interference level, I(p). AP j  then scans all three channels, and pick up
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one with the least interference, which results a new total interference,

Hjt)•

• Algorithm c: Randomly select several APs, say AP k\, /C2, . . . ,  ki, with 

current interference, I(p). And then they simultaneously and randomly 

switch to several other channels and results a new channel assignment 

with total interference, I(p').

3. Calculate the total interference level after transition, if the new total inter­

ference is less than that of the previous generation, i.e. I(p') < /(p), then 

keep the new assignment for further evolution, otherwise accept it with a 

probability of exp(—A //T ), where A I  = I(p') — /(p), is the difference of 

total interference between current and previous channel assignment.

4. Update “temperature” T  with fast cooling schedule, T  = To/(I +  £), where 

t is the generation number, To is the initial “temperature”

5. Repeat Step 2 - Step 4, until the system converges.

It is obvious that the probability of channel switching is determined by two pa­

rameters, A /  and T. In each generation, the larger the A I  (large increment in 

the interference), the less likely the new channel assignment will be selected. And 

running the algorithm at very high and constant “temperature” will therefore not 

lead to any systematic improvements in interference levels.

3.5.3 Comparison of Neighbouring State Transition Schemes

In this section, we will first run a simulation to identify the most appropriate 

neighbouring state transition scheme for the DC A problem. We test the algorithms 

in a medium-sized network with randomly allocated 20 APs. 1000 different AP 

layouts have been tested, and the final channel assignment of one of the layouts 

has been extracted for comparison. Total interference figure shows an average 

value based on these 1000 different layouts.
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T able 3.1: Comparison between Genetic Algorithm and Simulated Annealing
Genetic Algorithm Simulated Annealing

Processing method Parallel Sequential
Centralised/Distributed Centralised Distributed
Convergence property Fast Slow

Sub-optimality/optimality Sub-optimality Global optimality

Figure 3.5-3.8 show that all the schemes can finally converge to a steady state. 

However, the final channel assignments are quite different for one specific layout. 

In this example, Algorithm a and c provide better channel assignments than that 

of Algorithm b, as each AP trying to use different channels from their neighbours. 

This helps system converge to a lower interference level. The reason why Algorithm 

b ends up with poor channel assignment is because each AP is always selfish to 

try to use channel with the least interference. This may reduce the diversity of SA 

and make the system easily stuck into a suboptimal solution. Although, it has the 

fastest convergence rate compared with two other schemes. Compare Algorithm a 

with Algorithm c, Algorithm a is more computation efficient, as in each iteration, 

only one AP is allowed to change channel. Therefore, in the following chapters, 

Algorithm a will be adopted as the main method to apply SA in DCA problem.

3.6 Channel Allocation Based on Hybrid Algo­

rithm

3.6.1 Comparison Between G enetic Algorithm  and Simu­

lated Annealing

Based on previous analysis, the characteristics of GA and SA are summarized in 

Table 3.1.

In GA, its parallelized processing scheme makes the system evaluate several solu­

tions at the same time, which consequently speeds up the algorithm. While in SA,



Chapter 3. Centralised Channel Allocation Schemes 62

the intelligent selection scheme provides a higher probability of finding an optimal 

solution. It worth to notice that, since both GA and SA are heuristics, the last 

feature of the algorithms stated in Table 3.1 is not always guaranteed. It only 

means GA has a high probability to converge to sub-optimal solutions, while SA 

is more likely to achieve global optimum. Besides, the “Distributed” characteristic 

for SA means it can be implemented in a distributed way. But in this chapter, 

we will first propose a centralised algorithm for SA. Therefore, we combine them 

together to design a hybrid algorithm that can provide a good trade-off between 

large computational time and local optimality.

3.6.2 Hybrid Algorithm

In this section, we propose a hybrid algorithm for DCA. In the proposed hybrid 

algorithm, some useful features from both GA and SA are combined: the global 

optimality from the SA and explicit parallelism from the GA. The hybrid algorithm 

starts with a very high “temperature” T, and generates a large number of random 

channel assignments (initial population). Then Crossover and Mutation operators 

are applied to generate a new solution (channel assignment). This is conducted as 

follows:

1. In one generation, new solutions can be generated by Crossover on every 

pair of channel assignments.

2. Mutation is applied to each of the solution, which is to randomly select a 

channel for an AP.

3. Channel assignments in current generation are selected by evaluating the 

integrated interference. If the current channel assignment is better than that 

of the last generation by eliminating interference, keep it for next generation. 

Otherwise, accept it with a probability of exp(—A I /T ) .

4. Slightly decrease the “temperature” T according to the fast cooling schedule 

(Ti = Tq/(1 +  £)) and then check if the termination condition is met, such as
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reaching the maximum generation number. If it is, end the process, otherwise 

repeat Steps 1 to 3.

3.7 Performance Evaluation

In order to thoroughly assess the features of the proposed algorithms, we have 

implemented networks with different scales. The simulation scenario is based on 

Figure 2.5, wherein a number of APs and users are randomly deployed in a 1 

km 2 area. The scenario is simulated 1000 times to ensure accurate performance 

comparison.

3.7.1 Small Network Topology - 10 APs

We start the simulation with a small-sized system to verify the proposed algorithm. 

In this experiment, there are 10 APs randomly deployed in the area.

Figure 3.9 shows that by running all these three algorithms, their resultant in­

terference converges to a low lever in this small system. Compare these three 

algorithms, SA converges to the lowest interference level with with slowest speed, 

while GA converges to the highest interference with the fastest speed. The hybrid 

algorithm presents a trade-off between these two performance metrics. This is 

consistent with our analysis in previous sections. The reason why the hybrid algo­

rithm converges to a higher interference level than SA is that, in hybrid algorithm, 

when performing Crossover, it might change the current good channel selection 

into a worse choice. Therefore, it might lead to a final channel assignment with 

higher interference.

3.7.2 Large Network Topology - 50A Ps

In order to evaluate the algorithm’s capability to handle a large network, we 

increase the number of APs to 50.
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Figure 3.10 shows that all the algorithms take considerably more time to converge 

to the final state compared with the smaller system. The hybrid algorithm can 

handle large networks well in terms of the lowest resultant interference within 

limited evolution time. Although the convergence speed is still slower than that 

of GA. Due to the sequential process mode, SA fails to converge to the lowest 

interference level compared with other two algorithms, it only shows its tendency 

to converge to the lowest interference, but requires more time due to the large 

search space.

3.7.3 Statistical Analysis

In order to assess the accuracy and suitability of each algorithm, we provide further 

statistical analysis to give more accurate evaluation in order to find out how each 

algorithm suits a particular network topology with different number of APs.

Since we run the algorithms for thousands of times and the results (in Figure 3.9 

and 3.10) present average values, we choose the standard deviation measurement 

to indicate the accuracy of each algorithm in delivering the results in one time 

shot.

Small System  - 10 A P s

From Figure 3.11, we can see that each of the algorithm starts with a random 

channel assignment, the standard deviation is hence quite large at the beginning. 

Compare these three algorithms, SA has the highest standard deviation before 

system converges. This is because, in SA, only one solution is evaluated in each 

generation, the difference (randomness) between each simulation run is relatively 

large. But for GA and hybrid algorithm, several channel assignments are pro­

cessed at the same time and each of them has similar features inherited from 

last generation, therefore, the standard deviation is relatively small. However, as 

the algorithms evolving, the system starts to follow the similar way of choosing
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F igure 3.11: Standard deviation for different algorithms in small networks

channels, which means the standard deviation is decreasing gradually. When the 

system converges, all these three algorithms reach their lowest standard deviations.

Large System  - 50 A Ps

When the system becomes larger, the hybrid algorithm shows its superiority in 

handling a large system in terms of achieving steadier and lower standard deviation 

when the system converges as shown in Figure 3.12.

3.8 Sum m ary

In this chapter, we have investigated DCA problems using biologically inspired 

approaches in 802.11 WLANs with multiple APs. We have developed a framework 

of using GA, SA and a hybrid form to solve the problem. Extensive simulations 

have been carried out in order to evaluate the performance of each algorithm with 

statistical analysis. We have found that in general the proposed hybrid algorithm
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provides a good trade-off between the fast convergence speed and lowest achievable 

interference.



Chapter 4

D istributed Dynam ic Channel 

Allocation

4.1 Introduction

In the majority of the HD-WLAN deployments, APs are managed by different 

network administrators. In order to provide guaranteed service to their own 

customers, un-authorized access will not be allowed from the external networks. 

Therefore, the degree of cooperation between different APs is limited in the net­

work. However, all these APs are essentially accessing the common unlicensed 

frequency band. It is inevitable that interference cannot be easily controlled. For 

a large and growing system, by taking all these factors into account, the problem 

of low interference DCA among all the APs is A/*'P-hard. Therefore, a centralised 

control unit is simply not feasible to cope with this problem. This challenging issue 

motivates us to fully investigate a feasible sub-optimal approach for sharing the 

common spectrum among all the APs to minimise interference across the whole 

network.

In this chapter we propose a distributed algorithm called Simulated Annealing 

channel allocation (SACA) to solve the channel optimisation problem in an HD- 

WLAN. Our approach still concerns the channel selection by APs, where channels

68
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can be selected among orthogonal frequencies. The proposed SACA algorithm is 

based on a local implementation of the SA technique. The network model and 

problem formulation is the same as in Chapter 3 for the centralised algorithms. 

We will summarize several existing distributed DCA methods relevant to this work 

in Section 4.2. Section 4.3 introduces the implementation details of distributed 

SACA. Section 4.4 analyses the interference performance and complexity of the 

algorithm.

4.2 Related Work

Distributed DCA in cellular networks has a flavor of distributed mutual exclusion 

but not exactly a mutual exclusion problem [68]. In distributed DCA, the decision 

regarding the channel acquisition and release is taken by the associated base station 

according to the information from its own and several possible surrounding cells. 

As the decision is not based on the global status of the network, it can achieve 

suboptimal allocation as compared to the centralised DCA and may cause forced 

termination of ongoing calls. Authors in [69, 70, 71, 72] realized the importance 

of preventing interference among nearby cells, thus adopted models and principles 

from the mutual exclusion problem, established the relationship between these two 

problems, and more importantly emphasized the differences in between. One of 

the main differences is that in standard mutual exclusion, two processes are not 

allowed under any circumstances to use the resource at the same time, but in DCA 

the same channel can in fact be used simultaneously by several cells, what is not 

allowed is two (or more) cells within the minimum reuse distance of each other 

doing so [72]. Based on their analysis, many researchers proposed token-based 

[73, 74, 75] and non-token based [76, 77, 78] algorithms to solve the distributed 

DCA based on mutual exclusion.

Other works on distributed DCA in cellular networks [79, 80, 81] are on maximizing 

channel reuse in various cells, which ensures that neighbouring cells do not make
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conflicting decisions that may lead to interference between on-going calls. Other 

works are well documented in a survey paper by Narayanan [82].

The state-of-the-art channel assignment using non-overlapping channels in WLAN 

is described as follows: Each AP periodically checks other data transmissions in 

the channel it is using. If the volume of traffic in that channel (from other APs 

or clients of that APs) is greater than a threshold, then the first AP tries to move 

over to a less congested channel. This scheme is called least congested channel 

search (LCCS). In [83], Mishra et al. pointed out that the LCCS is not effi­

cient with continued growth of WLANs. They formulated the channel assignment 

problem as a weighted vertex coloring problem and proposed two distributed algo­

rithms that outperform the LCCS in terms of interference reduction. In [84, 85], 

authors introduced a number of techniques based on graph colouring algorithms, 

and demonstrated their effectiveness using simulations. They also suggested a pre­

liminary message format the APs could employ to exchange information regarding 

the wireless channel, and elaborated on the possible protocol architectures that 

could be used in the actual channel allocation process.

A generalised, distributed DCA algorithm that can be used in different systems 

is proposed in [86] by Leith and Clifford, with the aim of minimising system in­

terference by offering unlimited non-overlapping channels. The whole network is 

modeled as a graph with links representing potential interference between neigh­

bouring APs. This distributed algorithm can converge quickly when the number of 

required channels is no less than the chromatic number of the graph. However, for 

a high density network with a large number of APs, the difficulty for calculating 

the chromatic number is that the complexity of the algorithm can be extremely 

high. We will compare it with our proposed algorithm, to show that even the 

number of channels is not adequate, we can still find an acceptable solution with 

fast convergence rate.

Kauffmann’s et al developed a distributed algorithm based on Gibbs sampler for 

channel selection and user association in WLANs [14]. They constructed a distri­

bution function which dictates the channel selection made by each AP at any given
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time is from all available channels. It is more complicated and computationally 

expensive than the binary selection made in our algorithm. Since they consider 

the user association along with channel selection, their algorithm implicitly relies 

on a time parameter to control an AP’s channel selection probabilities.

Luo and shankaranarayanan [87] proposed a distributed DCA algorithm with the 

aim to maximise per-user throughput in dense WLANs, particularly for non- 

uniform traffic condition. In this algorithm, every AP determines the best channel 

it should use in the next time slot solely based on the traffic load of its neighbour­

ing APs and the channels used by them in the current time slot, and switches to 

that channel with some fixed probability. Therefore, they assume that each AP 

knows and periodically broadcasts the number of active stations associated with 

it and let APs simultaneously change their channels. However, this assumption is 

too strong for practical networks.

Paper [88] studied the fairness problem for uncoordinated WLAN deployments 

from the channel assignment perspective by using the channel hopping technique. 

The design considerations include distributed algorithm design, minimum of coor­

dination (to zero) among APs belonging to different hotspots, ease of implemen­

tation and interoperability with existing standards. The motivation of the work is 

based on a situation when in a crowded unlicensed spectrum with large number of 

APs, it is not possible to compute a perfect fair channel assignment for each AP. 

Therefore, the objective is to use channel hopping technique allowing the network 

as a whole to timeshare between different static channel assignments, such that the 

long-term throughput obtained at an AP becomes an average of the throughput 

achieved over individual channel assignments used by the network as a whole.

Authors in [89] designed a DCA algorithm to minimizing channel interference 

among APs. They developed a mathematical model to evaluate the amount of 

interference between overlapping channels for IEEE 802.11 WLAN systems. In 

this algorithm, APs periodically run the algorithm and each AP in turn picks it 

own channel that minimize the interference, where “in turn” is a strong assump­

tion. This work used overlapping channels, but the interference calculation with
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overlapping channels is not accurate. And the network size (4, 6, 9, and 25 APs) 

for simulation is relatively small.

Authors in [90] proposed graph colouring based distributed algorithms for channel 

assignment among interfering APs, in order to improve the utilization of wireless 

spectrum - when considering user distribution. In this work, overlapping channels 

are employed. They considered hidden node problem caused by clients and applied 

weighted colouring techniques to take traffic load (in terms of number of clients) 

into account and allocate non-overlapping channels to heavily loaded APs, and 

overlapping channels to APs with light load.

4.3 Simulated Annealing Channel Allocation (SACA) 

Algorithm

The objective of the proposed SACA algorithm is to minimise the total interfer­

ence. Each AP can choose, with a probability, any available channel at any time 

according to the interference level at the current channel and a randomly selected 

alternative. The details of the algorithm are described as follows:
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Pseudo code of SACA algorithm

Set p  <— po (Initial channel allocation).

Set T  <— To (Initial “temperature”)

While (stopping criterion is not satisfied) Do 

randomly select one AP: AP i

Evaluate Ii{pi) (interference for AP i in channel pi with current channel 

assignment p)

AP i then randomly selects a new channel p\

Evaluate /i(pj) (perceived interference for AP i in channel p\ with new 

channel assignment p')

Compute AI  =  A(p-) -  h { p i )

If (AI  < 0), then

p *-p '

Else

Generate a uniformly distributed random variable a , 0 <  a  <  1

If a  < e-A//T

p ^  p'

End

End

Update T  =  To /{ t  +  1), t  =  t  +  1 

End

In this procedure, the system starts with an initial random channel allocation. 

Before the systems converges, a randomly selected AP i senses its interference in 

the current channel Ii(pi). After that, AP i randomly selects another channel p', 

and estimates the new interference /i(p'). If a move to the new selected channel is 

of benefit to AP i itself, i.e. A I  = A(pJ) — h(Pi) < 0, in this case the interference 

experienced by AP i is reduced. AP i will switch to the new channel. On the 

other hand, if the new channel increases the interference level, the new channel 

will be accepted with a probability which depends on the change in interference 

and the present network parameter T, i.e. P r[A /,T ] =  exp(—A I /T ) .  After AP 

i makes its decision, it will update its parameter T  based on a predefined cooling
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schedule, which is studied in the following section. This process will be repeated 

at all APs in a random way until system converges to a steady state. This can 

be realised by installing a timer in each of the APs. Individual timer countdown 

from a randomly set time interval. Once it gets time out, the AP will be triggered 

to sense the channels and starting channel selection process.

4.4 Performance Evaluation

In this section, we evaluate the convergence, feasibility and scalability properties 

of the proposed SACA algorithm. We compare our algorithm with three other 

algorithms. The base line is a pure random channel selection scheme. In this 

scheme, any APs can choose any channels they want to transmit, regardless the 

interference to itself. The upper-bound is the global optimal solution, which is 

found by the Branch and Bound method [91]. The last algorithm for comparison 

is a distributed algorithm based on multi-colouring approach proposed in [86]. For 

simplifying the notation, we use pure random, Branch and Bound and Leith and 

Clifford algorithm to represent these schemes respectively.

The simulation scenario is based on Figure 2.5, wherein a number of APs and 

users are randomly deployed in a 1 km 2 area. Network size ranges from 10 to 

100 APs. The transmission power at all the APs is set to 100 mW. Both final 

channel assignment and total interference performance will be examined. The 

performance metric is total interference in the system. It is calculated by adding 

local interference from each of APs in the network. It is worth to notice that, the 

quantity of total interference in the system cannot be executed in reality without 

a central controller. Therefore, in this performance evaluation we would rather 

consider it as a virtual external monitor to measure the algorithm performance.
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4.4.1 The Im pact of Different C ooling Schedules

As briefly mentioned in Section 4.3, the parameter T  has a major impact on con­

vergence rate and solution quality. When T  is large, the stochastic influence is 

strong, but as it goes down the stochastic factor becomes less important. There­

fore, the process gradually turns from a stochastic behavior to more a deterministic 

one. Cooling schedule is a strategy to control the way of decreasing T. Hence, 

finding the right cooling schedule is a very important issue when using SA for 

optimisation. Here wTe compare the performance of 10 different cooling schedules 

(shown in Figure 4.1) under different network sizes. Cooling 3 is considered as 

the fastest cooling schedule. For the detailed definition of these cooling schedules, 

please refer to Appendix A.
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significant. This is because when we increase the number of APs in the system, the 

objective function of the DCA problem, which is a discrete function, varies signifi­

cantly in different simulations. Take a network of 50 APs and 3 available channels 

as an example, it has 350 possible channel assignments and each assignment is as­

sociated with a total interference level. Therefore, slow cooling can provide more 

opportunities to hit good channel assignments compared with the fast cooling, 

which will then have higher possibilities to find better solutions compared with 

fast cooling. However, for a small system, since the fast and slow cooling can both 

provide the same result, fast cooling is preferable due to its fast convergence rate. 

For consistence, we will select fast cooling to be used in following simulations.

4.4.2 Feasibility

We present the feasibility of the proposed SACA algorithm in a medium (20 APs) 

and a large (100 APs) sized network with APs randomly located in a 1 km 2 area.

From Figure 4.4-4.7, we can see that the proposed distributed algorithm can solve 

the channel allocation problem, even in an extremely dense deployed network (100 

APs in 1 km 2 area). Within the network, all three channels have been fully used 

and spread evenly across the network. By running the SACA algorithm, total 

interference in the system quickly converges to a steady state.

4.4.3 Comparisons with Leith and Clifford Algorithm

In this subsection, we compare the channel assignment and interference perfor­

mance of the proposed SACA algorithm with Leith and Clifford algorithm. In 

[86], Leith and Clifford proposed a fully distributed learning algorithm to solve 

the traditional N V -hard graph colouring problem. In their algorithm, each AP 

maintains a vector that indicates the probability of using each channel. The algo­

rithm details are as follows [86]:



Chapter 4. Distributed Dynamic Channel Allocation 78

1

0.9

0.8

0.7

'e
2L 0.6
0 
00
1  0.5

B 0.4 
>-

0.3

0.2

0.1

0

□
1 i

A
i i

O □ A

- A A
□

-

-
o D O

O

- A -

-
□

□

A

c
A

o

—i _ ---.---- ..--'..llj- i i

i

.
0 0.2 0.4 0.6

X-coordinate [km]
0.8

F i g u r e  4.4: Channel assignment generated by SACA algorithm in a 20 APs
network

x 10-8

1.2

F  
1  0.8

8c
i|  0.6
Bc
I  0.4 h-

0.2

100
Generation number

F i g u r e  4 .5 :  Total interference for SACA algorithm in a 20 APs network as
channel allocation evolves



Chapter 4. Distributed Dynamic Channel Allocation 79

0.4 0.6
X-coordinate [km]

F i g u r e  4.6: Channel assignment generated by SACA algorithm in a 100 APs
network

x 10“®

E
<1)
g 0.8

li 
£ 0.6

%
0.4

0.2

800200 400 600 1000
Generation number

F i g u r e  4.7: Total interference for SACA algorithm in a 100 APs network as
channel allocation evolves



Chapter 4. Distributed Dynamic Channel Allocation 80

1. Initially the probability of using each channel is normalised to

prob = [1/C , 1/ C , . . . ,  1/C], where C is the total number of available chan­

nels.

2. Then toss a weighted coin to select a channel, with the probability of se­

lecting channel u as probu. Measure the quality of using this channel u: 

any interference measurement can be used that yields a “success” when in­

terference is within acceptable level and “failure” otherwise. In [86], the 

acceptable level is pre-defined according to different network conditions and 

not adaptive during algorithm evaluation.

3. On success on channel w, update prob as

probu =  1 (4.1)

probv = 0 Vu ^  v (4.2)

This creates a degree of “stickiness” for AP to use channel u in next step, v 

represents the other channels that have not selected by this AP.

4. On failure on channel w, update prob as

probu = (1 -  b)probu (4.3)

probv =  (1 — b)probv 4- b/{C — 1) Vu ^  v (4.4)

Thus on the failed channel, we decrease the probability of using it in next 

step and redistributing the probability evenly across other channels, b is also 

a static design parameter, 0 < b < 1, which affects the convergence rate of 

the algorithm.

Since the Leith and Clifford algorithm is designed to solve the J\fV-hard graph 

colouring problem, it is only feasible provided that the number of channels is 

no less than the chromatic number of the graph. We compare the final channel 

assignment of our proposed algorithm with the Leith and Clifford algorithm un­

der two conditions, one in chromatic-number-of-channel scenario and the other in
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three-channel scenario. As it is difficult to compute chromatic number of a graph 

with more than 30 nodes, we choose a network with 30 APs as an example for 

comparison.
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FIGURE 4.8: Channel assignment generated by Leith and Clifford algorithm 
in a 30 APs network with 10 channels (different symbols representing different 

channels being selected by APs)

In this experiment, we test two algorithms in the same network configuration. We 

define the APs as neighbouring APs, if the distance in between each other is less 

than 0.5 km. Chromatic number is computed before performing DCA algorithms. 

Figures 4.8-4.11 show that both algorithms converge to a steady state offered by 

10 channels, with similar total interference level in the system.

Figures 4.12-4.15 show the results with the same configuration when only three 

channels are available. Both algorithms are simulated.

We can see that the Leith and Clifford algorithm could not find a sensible solution 

to converge to. This is because the Leith and Clifford algorithm is only feasible 

provided that the number of channels is no less than the chromatic number. Once 

the number of channels is insufficient, APs will become clustered and use the
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F i g u r e  4.15: Total interference for SACA algorithm in a 30 APs network with
only 3 channels

same channels as their neighbours, which result in severe co-channel interference 

in the system (Figure 4.12-4.13). However, the proposed SACA is feasible to 

solve the channel allocation problem and mitigate interference in the system with 

a rapid convergence speed. By investigating the final channel assignment found 

by the SACA, all 3 channels have been fully used and spread evenly across the 

network, and each AP selects a different channel from its nearest neighbours. This 

demonstrates that proposed SACA algorithm is more generalized than the Leith 

and Clifford algorithm, SACA has no restrictions on the number of channels, thus 

can be applied to any systems.

4.4.4 C om parisons w ith  Branch and Bound M ethod

To gain some insights into the quality of the solutions delivered by SACA algorithm 

we compare it with the optimum solution found by Branch and Bound method. 

We use a network configuration with 20 APs randomly deployed in the 1 km 2 area.
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T a b le  4.1: Comparison between SACA and Branch and Bound method (opti­
mal solution)

Number 
of APs

Optimal solution 
(exact value) [mW]

SACA 
(mean value) [mW]

Difference off 
optimum [mW]

Difference in [%] 
off optimum

20 1.4930 x 10~8 1.5652 x KT8 0.072 x 10"8 4.8

The optimum solution is given and compared with the first solution we found by 

using SACA algorithm.
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F ig u r e  4.16: Channel assignment generated by SACA algorithm in a 20 APs
network

Figures 4.16-4.17 show the comparison of channel assignment found by these two 

algorithms. The channel assignment found by SACA algorithm seems not as good 

as the Branch and Bound method, since one pair of neighbouring APs (indicated 

in the Figure 4.16) is using the same channel. Figure 4.18 shows the distribution 

of final total interference with all possible channel assignments found by SACA by 

running the algorithm for a specific network configuration over 1000 times. The 

relative numbers are summarized in Table 4.1.
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From the results in Table 4.1, we can see that repeated 1000 times, the mean total 

interference obtained by SACA algorithm is 1.5652, which is only 4.8% off the 

optimal solution. To provide a more systematic evaluation, we compare these two 

algorithms over 1000 different network configurations. For SACA, each network 

configuration is run for 1000 times and the mean value is extracted to compare 

with the optimal solution found by Branch and Bound methed. The result is 

shown in Figure 4.19:
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—  Optimal
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3.5
x 10 -8

F i g u r e  
by both

4.19: Distribution of interference for channel assignments generated 
the SACA and Branch and Bound method (optimal solution) with 20 

APs networks over 1000 different layouts

It shows that the channel assignments found by SACA are very close to the optimal 

solutions.

4.4.5 Scalability

For relatively small problems of the order of 10 APs, it is easy to find a global 

optimum for the three-channel scenario. The resulting channel assignment leads
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to the lowest possible total interference. The problem however is that the opti­

misation problem is AfV-haxd and the time it takes to find the optimal solution 

grows exponentially with the size of the problem. Optimum solutions for network 

sizes up to 30 APs are feasible. However, finding the global optimum for three 

channels and more than 40 APs within a reasonable time scale does not seem to 

be possible.

In this section, we investigate the scalability of our proposed SACA algorithm 

with different network sizes. The simulation will be compared with Branch and 

Bound method, pure random channel selection and Leith and Clifford algorithm 

(in three-channel case). The maximal network size that is used for comparison is 

50 APs, but for Branch and Bound method we can only implement it up to 30 

APs. For each size, 1000 different AP layouts will be tested. Except for Branch 

and Bound method, each algorithm will repeat 1000 times for every configuration 

to get a mean value for comparison. The final total interference level is divided 

by the number of APs to get a measurement as mean minimum interference per 

node.

From Figure 4.20, we can see that the proposed algorithm has a very good scal­

ability compared with other algorithms. The total interference achieved in each 

network size is very close to that of the optimal solution. By investigating the sim­

ulation results, it shows that 98% of the channel assignment delivered by SACA 

are less than 5% away from the optimal solution. For pure random and Leith and 

Clifford algorithm (with three channels), interference level is increased significantly 

against the network size.

4.4.6 Interference Distribution

Since the number of APs is rapidly increasing in the public areas, from the opera­

tor’s perspective, it is very important to know where are the most suitable places 

to deploy additional APs and which APs are offering the worst service quality that 

can be switched off to reduce cost. Using this measurement, not only it can show
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F i g u r e  4.20: Scalability

the current channel usage and interference distribution in the network, but also 

can indicate which area is the best place to deploy new APs with what channel. 

We demonstrate this feature under an already densely deployed network, with 

100 APs, and find out further possibilities to add more APs to the places that 

experience low interference.

Figures 4.21-4.24 show a clear image of channel usage and interference level in 

this area. Using this metric, APs deployed near high interference spot could 

be removed or switched to other channels in order to provide better services. 

Moreover, according to the service quality defined by operators, one can make a 

decision whether it is profitable to add new APs or not. If it is, what location and 

with what channel could be the best choice? This metric also raises an interesting 

issue that, DC A method is not only restricted to the optimisation problem to 

minimise the total interference or maximize user throughput, but can also be 

designed to maximize the percentage of area with low level interference (better 

service).
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F i g u r e  4.21: Channel assignment generated b y  SACA algorithm for a 100 APs
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Channel 6

Y coordinate [mk] X-coordinate [km]

F ig u r e  4.23: Interference distribution for channel 6

Channel 11
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F ig u r e  4.24: Interference distribution for channel 11
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4.4.7 Complexity Analysis

Since the SACA algorithm is a heuristic based algorithm, it does not really “solve” 

the AfV-haid DCA problem, but try to find a close approximation. To define the 

complexity of the SACA algorithm, we design a self-stop version of this algorithm, 

which will automatically terminate when the system converges to a steady state. 

We run extensive simulations, each time we record the number of steps it needs 

to reach this stage, and obtain a measurement as the average running time (time 

complexity) of this algorithm. The two major criteria to stop the SACA algorithm 

are stability and convergence, and those values will be checked in every k steps. 

Stability refers to the small variations on the curve of total interference, which is 

defined as follows:

<? ( d ^
S  = W )  {4-5)

where 6 is the standard deviation of the total interference in the current n steps, 

li(k) is the mean total interference value in this time period. While for the con­

vergence criterion, we measure the difference of the average total interference for 

every k steps and define it as follow:

=  2 (Mfci+1) -  K b ) )  ,4

H(ki+1) + n(ki) K °>

Based on experiments, we set both parameters S  and C  equal to 5 x 10-4, which 

we believe is accurate enough to decide whether the channel allocation process 

is ready to stop. We also define the interval to check those values as k =  2 x n

where n  is the number of APs in the network. By selecting this value, it helps

the algorithm to self-adapt to the size of the input and gives the algorithm higher 

probability to visit all the APs, but without causing too much computational 

overhead to the algorithm.

Figure 4.25 shows the average time complexity of the SACA and the Branch 

and Bound method against the network size. The running time is presented in 

the log-scale. As the convergence moment varies depending on many network 

configuration parameters, especially on network layout. For each network size,
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F i g u r e  4.25: Algorithm complexity of SACA algorithm and Branch and Bound
method

1000 different network layouts have been tested. By investigating the simulation 

results, we find that for smaller networks, the distribution of the running time is 

long tailed. This is because, for smaller networks, the SACA can easily and quickly 

converge to the optimal or suboptimal solutions. While for larger networks, as the 

solution space is expanded, the algorithm takes longer time to converge which 

ends up with symmetric distribution. By comparing the two algorithms, we can 

see that, as the network size increases, the time complexity of the SACA is much 

lower than that of Branch and Bound. Even for the worst-case scenarios, the 

difference in running time between the two algorithms is dramatically increased. 

Moreover, it is about 95% confident that by doing more simulations, the average 

running time will be caught inside the intervals representing by the green bars.
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4.5 Summary

In this chapter, we have presented a new, fully distributed optimisation algorithm 

based on Simulated Annealing for channel allocation in HD-WLANs. The algo­

rithm of SACA is of low complexity, fast convergence speed, low resultant interfer­

ence and requires no knowledge about the wireless channel. It only requires that 

each AP can estimate the interference it would experience in any of the selectable 

channels. This leads to a minimum computational overhead and a very simple im­

plementation strategy. We compare the algorithm performance with several other 

schemes. We find that the minimum interference found by SACA is very close to 

the optimal solution and has the best scalability compared with others. The time 

complexity analysis shows that the average running time of the SACA reduces the 

exponential complexity to a very low level provided that 98% of the solutions are 

less than 5% away from the known optima.



Chapter 5

Joint Design of D istributed  

Transmit Power Control and 

Dynamic Channel A llocation

5.1 Introduction

DCA techniques have been increasingly used to improve the network capacity, 

because of its ability to reuse wireless channels more flexibly by taking into account 

local propagation environment. However, when an AP decides to change to a new 

channel, it has to suspend the ongoing service connection and establish another one 

with the corresponding user-devices via the new channel. Therefore, in practice, 

all channel allocation schemes are susceptible to service disconnection, or at least 

degrade QoS over the network. TPC can be incorporated into DCA with the 

potential to compensate this deficiency. It can adjust the transmit power to reduce 

the overlapping coverage areas and hence enhance the channel access efficiency. In 

addition, by always using the minimum required power, the battery life for mobile 

devices can be greatly extended. In this chapter we analyse the problem of joint 

channel allocation and power control and develop three practical algorithms to 

interactively perform DCA and TPC on each AP in a distributed way.

96
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The rest of this chapter is organized as follows. System model and problem for­

mulation are described in Section 5.3. Some existing DCA algorithms and TPC 

methods relevant to this work are summarized in Section 5.2. Section 5.4 analy­

ses convergence of the joint design and specifies the design criterion. Section 5.5

results. Conclusions are given in Section 5.7.

5.2 Problem Formulation

The system model we consider for joint design is similar to the one described 

in Chapter 2, with an additional assumption that, transmission power can be 

adjusted continuously within a predefined range. The joint design objective of 

TPC and DCA algorithms is to maximize the average user throughput, given 

the number of wireless users and APs in the system. This goal is achieved by 

fully utilizing the three non-overlapping frequency channels with lowest possible 

interference across the network, and at the same time, maintaining the required 

SINR target for each user at minimum transmit power. Mathematically, this 

problem is formulated as follows:

presents the algorithm development. Section 5.6 shows the performance evaluation

maximize

subject to (1)0 < pi < Pmax V«

(2)rf( t ) > 7 i  Vi, t

(3)Each AP can only use one channel at a time

' m a x (5.1)

where qi is the throughput for the «-th A P’s current active user. The SINR level 

for i-th user, rj(£), is defined as follow:

9iiPi (f) 
w )  =  v-' „ „  .T, +V

(5.2)
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where gij is the path-loss between j- th  AP and z-th user. The link path prop­

agation matrix between all users and APs are defined as G =  [g^]. Pi(t) is the 

transmission power of z-th AP at t-th iteration. The power vector for all the APs 

in the system is defined as P  =  [p<]. The power level is limited by a predefined 

maximum level, pmax • ^  =  [<̂ij] is an interference coefficient matrix showing the 

instantaneous interference relationship among all APs. Uij = 1 if z-th AP and 

j- th  AP use the same channel and they are within each other’s communication 

range, otherwise Uij = 0. It is required that the SINR level for each user should 

be always above the target 7*. 77 is the power of Additive White Gaussian Noise, 

which is assumed to be the same for all user-devices.

Since the transmit power can be adjusted continuously1, a decision on channel 

selection is a discrete variable and the objective function has a non-linear rela­

tionship with respect to the number of channels, this problem can be classified 

as a non-linear mixed discrete and continuous optimization problem. This is one 

of the most generic optimization problems [92]. This class of problems does not 

have a formally defined structure. Both continuous and discrete variables and 

constraints are included in the problem definition. No restrictions are imposed 

on the functional form of the objectives. Therefore, no effective methods have 

been developed to tackle this problem, which means the optimal solution can not 

be found by using conventional optimization solvers. Therefore, we propose three 

heuristic algorithms which perform recursively and can find sub-optimal solutions.

5.3 Related Work

Traditionally, DCA algorithms and TPC schemes [14] are considered as the most 

efficient techniques to manage limited resource available to the system. They were 

separately proposed to improve spectrum utilisation using DCA algorithms to 

avoid strong co-channel interference while using TPC to minimize transmit power

1This assumption is made for research purpose in order to find the minimum required power 
to satisfy SINR requirements. In real networks, transmit power can only be adjusted through 
finite discrete power level.
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and suppress the co-channel interference. Some of the research works have demon­

strated that additional improvement of the network capacity can be achieved by 

combining these two techniques together. Major work in joint design was car­

ried out in cellular networks [93, 94, 95, 96, 97], with the aim to minimize call 

dropping/blocking probability and thus increase the system capacity.

Work in [93] is the earliest attempt to try to combine DCA and TPC in an in­

teractive manner. In this work, DCA determines paired radio channels for both 

downlink and uplink directions that experience the least interference on a call- 

by-call basis and then TPC algorithm periodically updates the transmit power 

to adjust users SINR by ldB in each step. This work has demonstrated a low 

level of interactive design between channel and transmit power. Foschini and Mil- 

janic [94] extended the work in [93] by proposing a distributed algorithm with a 

tighter integration. They consider initial channel access and monitor SINR perfor­

mance throughout the lifetime of a call by using TPC, once the maximum transmit 

power can not provide the required service level, DCA is applied to search for a 

better frequency band with the potential to have better service quality. A family 

of integrated algorithms were proposed in [97] considering pedestrian mobility of 

the devices with a low update rate of power. As there are different groups of 

calls simultaneously processed in the system, the algorithm assigns different SINR 

threshold to different groups to protect ongoing calls from dropping due to the 

new incoming calls.

Despite those early works, due to the new concept of opportunistic spectrum ac­

cess raised in the cognitive radio, the joint design is also considered in [98] with the 

aim to maximize the spectrum utilization by allowing secondary cognitive network 

to opportunistically exploit the unused spectrum without causing excessive inter­

ference to primary users. Li and Wu addressed the problem of optimum TPC and 

DCA for delay sensitive applications over a multi-channel, multi-user system in 

[99]. They proposed a joint Knopp and Humblet/round robin (K&H/RR) sched­

uler to allocate both power and channel among users with the aim to minimize 

the resource usage while explicitly satisfy the QoS requirements of users. In [100], 

authors formulated the channel assignment and load balancing problem as ILP
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optimization problem. It adjusted the power transmitted by the most congested 

AP as long as all users can be accommodated by the APs. Then the final trans­

mitted power level on each APs is applied to allocate channels efficiently to the 

APs.

Yu et al formulated a min-max optimization problem regarding channel utilization 

with constraints of data rate, channel quality and transmit power [101]. They de­

rived an expression to evaluate the channel utilization when incorporating channel 

conditions, SINR and transmit power. In this algorithm, channels are assigned to 

minimize the channel usage of the most heavily loaded APs, on the condition that 

traffic demand for an AP and all its users should be less than the maximum data 

rate it can support. The constraints include 1) QoS should be maintained, 2) 

transmit power is limited by a maximum level and, 3) all traffic has to be sent out 

eventually.

5.4 Joint Design of Transmit Power Control and 

Dynamic Channel Allocation

A distributed power control algorithm with single channel was first conceived by 

Foschini and Miljanic [94] in 1993, where all the users are sharing the same channel. 

We will extend their work to a multi-channel scenario and use the DCA algorithm 

to maximize the spectrum utilization with the lowest possible interference between 

neighbouring APs. For power control in a multi-channel scenario, the formulation 

is based on a set of differential equations describing a closed-loop performance for 

each user as follow:

fi(t) = -f3[ri(t) -  7i] i =  1 , 2 , . . . , n (5.3)

where r*(£) =  denotes the derivative of i-th user’s SINR level, f3 is a constant

determining the convergence rate of ri(t) towards the target 7*. Eventually as r*(£) 

goes to 0, ri(t) approaches 7* as required. Under the assumption that interference
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will not change at the moment of i-th AP updating its power [94], we substitute 

Eq. 5.2 into 5.3 and yield the following differential equation for the dynamics of 

the power behavior:

SiiPiW
=  - P

9uPi(t)
l i (5-4)

By manipulating Eq. 5.4, we have the expression in terms of transmit power,

CJ1 ,pi(t) = - P p m + p - f - + p ' Y ^ — iiUijPjit) 
9ii n "

(5.5)

Expand Eq. 5.5 into a matrix form, we explicitly characterize the dynamic behav­

ior of the complete set of transmit power:
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ft

where I is an n x n  identity matrix. The operation between matrix B ' and Q is 

element-wise multiplication. Matrix Q shows the instantaneous interference re­

lationship between APs, it changes accordingly as the APs are reselecting their 

channels. This relationship is updated by the DCA algorithm. One of the design 

criteria for DCA is to generate an appropriate channel assignment with mini­

mal interference, such that TPC can operate in an interference free environment.
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Combining the first and the third term of the right hand side of Eq. 5.6, yields:
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In a compact form, it can be written as

P =  0T  4- (3BP (5.8)

To solve the differential equation Eq. 5.8, we have [39]

P(t) =  e~^Bt/3T [  e0Brdr +  e '^ P (O )  =  (P(O) +  B r -1) em  -  B r 1 (5.9) 
Jo

Here we encounter the convergence property of the TPC algorithm, since

lim P(t) = lim [(P(0) +  B r -1) e0m -  B r ' 1] (5.10)
t — > o c  t — * oo

In order to find a power level for each AP such that they can simultaneously 

transmit on these channels, we have to ensure the following condition is satisfied:

lim e^Bt = 0
t — * oo

Therefore, the sufficient condition for power convergence is

(5.11)

1. B is a diagonalizable matrix.

2. B is a diagonally dominant matrix, i.e. \ba\ > IM  for al> *•

Proof: As matrix B contains off-diagonal elements from link gain matrix G, they 

are all random components, thus in most of the cases, B will have n  distinct



Chapter 5. Joint Design of Distributed TPC and DCA 103

eigenvalues and their corresponding eigenvectors are linearly independent. There­

fore, we assume B is a diagonalizable matrix (although in very rare case it can be 

non-diagonalizable). Matrix B can be factored as follow:

B =  Q A Q  (5.12)

A i  0  • • • 0

0 A2 ••• 0

0 0 • •• An

is a diagonal n  x n matrix with the eigenvalues of B as its entries.

•E ll *^21 ' ’ " *Enl

X12 #22 ' ' - %n2
H =

•El n  % 2 n  ’ ’ '  % n n

is a matrix whose columns are the eigenvectors corresponding to the eigenvalues 

in A. According to the matrix exponential function, we have

where

A =
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As again A is a diagonal matrix, we have
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Thus

lim e^Bt =  lim
t — * o o t—►oo

0

2 t

0

0

0

n t

(5.15)

Therefore, as long as the real part of the eigenvalues of matrix B are negative, 

lim^oo e^Bt =  0. In the case of this particular problem, instead of tracking the 

eigenvalues with large amount of computational effort, the condition can be in­

terpreted alternatively and more intuitively by using Gershgorin Circle theorem 

[102]. As stated in the theorem, the sum of the magnitude of the off-diagonal 

elements of 2-th row in B is defined as follow:
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Each eigenvalue of B is at least in one of the disks {A : |A — <  i?*}, as shown

in Figure 5.1. All the n  disks have the same center, bn = —1. The radius of the 

circles, which is Ri could be larger or smaller than  “1” . In the case of smaller 

than “1” , the real part of all the eigenvalues are negative; while in the case of 

larger than “1” , the real part of the eigenvalues can be positive, which violates 

the previous condition. Therefore, the sufficient condition for power convergence 

is, B is a diagonally dominant matrix, where \bn\ >  YTj^i-j=\ By satisfying

these conditions the power will converge to P* =  —BT_1.

Since the off-diagonal elements in B are all non-negative numbers, to minimize 

the radius, the key is to force those Uij with large weight qUQijlQu to become zero, 

such that the m atrix B will then have higher probability to become a diagonally 

dominant matrix. In the context of DCA in WLANs, that means close APs have 

to use different channels if possible to avoid strong co-channel interference. If users 

are assigned to channels experiencing low interference, they will be more likely to 

encounter good quality of service and as a result, more likely to maintain suffi­

cient quality with reduced transm it powers [97]. Therefore, in the case of optimal 

channel assignment, the stability condition of the TPC can be strengthened. The

Im(A)

Real part of 
eigenvalue > 0

F i g u r e  5.1: Convergence property analysis



Chapter 5. Joint Design of Distributed TPC and DCA 106

criterion of joint design requires the DCA algorithm to provide an optimal chan­

nel assignment, such that TPC can avoid strong interference from close neighbors, 

while TPC has to adjust the power level carefully to minimize the coverage overlap 

between neighbouring APs.

5.5 Algorithm Development

Based on the joint design criteria derived in Section 5.4, three distributed algo­

rithms are proposed in this section to perform DCA and TPC recursively at each 

AP. Comparing to the traditional DCA and TPC algorithms that are separately 

developed, this joint design and recursive operation strategy enables an AP to 

effectively respond to time-varying wireless channel conditions and network dy­

namics, e.g. new APs are added into the system. In these algorithms, each AP 

independently and periodically checks its channel and power configuration, as long 

as it could discover better channel or lower power to fulfill the SINR requirements, 

the AP will activate the joint algorithm for reconfiguration. This can be realized 

by implementing a countdown timer at each AP, which expires at an arbitrary 

time interval.

During the procedure, an AP’s transmit power (continuous variable) and com­

munication channel (discrete variable) evolves simultaneously, which subsequently 

affects its neighboring A P’s configurations. As it is not possible to derive the ex­

act close-form solution for this non-linear joint optimization problem, the following 

sections describe three heuristics based joint DCA and TPC algorithms, which are 

performed in a distributed and real time manner. These proposed algorithms are 

flexible and scalable, and can adaptively achieve better throughput performance 

and energy efficiency. The flow chart in Figure 5.2 shows the general idea of these 

joint algorithms.

Based on the flow chart, we propose three algorithms to implement the joint design 

of DCA and TPC.
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F i g u r e  5.2: Flow chart of interactive design of the DCA and TPC

5.5 .1  S im u lated  A nn ealing  C hannel A lloca tion  w ith  Trans­

m it Pow er C ontrol (S A C A -T P C )

SACA-TPC integrates a SA-based channel allocation algorithm with a SINR-based 

TPC  scheme. Under SACA-TPC, each AP can choose and switch to another 

available channel at any time. The channel selection decision is made according to 

the interference experienced in the current channel and the selected alternative. In 

this way, SACA-TPC enables every AP to probabilistically choose a new channel 

with less interference for communication. After tha t, the AP assesses the SINR 

for its current active user in the newly-selected channel and updates the transm it 

power accordingly to satisfy the SINR target. The algorithm of SACA-TPC is 

detailed as follows.
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Pseudo code of SACA-TPC algorithm

Set p *— po (Initial channel allocation).

Set T  <— Tq (Initial “temperature”)

Set P  <— Pq (Initial transmit power)

While (stopping criterion is not satisfied) Do 

randomly select on AP: AP i

Evaluate Ii{pi) (interference for AP i in channel pi with current channel 

assignment p)

AP i selects a new channel p\

Evaluate IJp'f) (perceived interference for AP % in channel p\ with new 

channel assignment p')

Compute AI  =  -  I i ( p i )

If (AI  <  0), then

P*-p '
Else

Generate a uniformly distributed random variable a, 0 < a < 1

If a  <  e ~ ^ l l T

P*~ P'
End

End

Compute r i ( t )

Update p i ( t) = pi(t )  • 7 i / n { t ) ,  T  =  T0/ ( t  +  1), t  =  t  + 1 

End

5.5.2 G reedy Channel A llocation w ith Transmit Power Con­

trol (G C A -TPC )

GCA-TPC combines a greedy channel allocation algorithm with a SINR-based 

TPC scheme. Under GCA-TPC, between the current channel and a randomly se­

lected alternative, each AP always greedily selects the one with the less interference 

for communication. The transmit power is then adjusted to meet the SINR target
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for the current active user in that selected channel. The algorithm of GCA-TPC 

is given as follows.

Pseudo code of GCA-TPC algorithm

Set p *— p0 (Initial channel allocation).

Set P  <— Pq (Initial transmit power)

W hile (stopping criterion is not satisfied) Do 

randomly select on AP: AP i

Evaluate h{pi) (interference for AP i in channel pi with current channel 

assignment p)

AP i selects a new channel p[

Evaluate Iiip'f) (perceived interference for AP i in channel p\ with new 

channel assignment p')

Com pute AI  = I^p'J -  Ii{pi)

If (AI  < 0), then

p<-pf

End

Com pute ri(t)

U pdate pi(t) = pi(t) • 7i/n (t), t = t + 1 

End

5.5.3 Transmit Power Control w ith Minimum Channel Switch­

ing (TPC-M inCS)

Since DCA algorithms are usually susceptible to service disconnections, TPC- 

MinCS aims to minimize the number of channel switches in the joint DCA and 

TPC procedure, and meanwhile try to use the minimum required power to satisfy 

users’ SINR targets. Specifically, under TPC-MinCS, an AP first checks that, in 

the current channel, whether it is possible to decrease the power while still keeping 

users’ SINR level. If it is possible, decrease the power. If it is not, a new channel 

will be selected. And then, the AP adjusts the transmit power to meet the user’s 

SINR target in the new channel.
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The AP won’t attempt to increase the power without knowing if there is a better 

channel available, because this will cause un-necessary interference to the neigh­

boring APs and users. Therefore, in TPC-MinCS, the AP will only increase the 

power if it is already in the best channel and the current power is still not high 

enough for users’ SINR target. The algorithm of TPC-MinCS is described as 

follows.

Pseudo code of TPC-MinCS algorithm

Set p <— po (Initial channel allocation).

Set P  <— Po (Initial transmit power)

While (stopping criterion is not satisfied) Do 

randomly select on AP: AP i 

Evaluate ri(t )  and Ii{pi)

If Ti { t )  < 7 i

AP i selects a new channel p\

Evaluate l i {p'f)

Compute AI  — Ii(pi) -  h{pi )

If (A / <  0), then

p ^  pf

End 

Else

Update p i ( t )  = p i ( t )  • 7 t/rj(t)), t  =  t  +  1 

End 

End

5.6 Performance Evaluation

In the following, we demonstrate the throughput performance and energy saving 

of the proposed algorithms. We concern the benefit of conducting joint design and 

the impact of the network density. Several network scales are simulated ranging 

from 50 to 200 APs. In each case, 1000 instances of the network are randomly 

generated in order to obtain the average performance.
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Table 5.1: SINR target and data rates (throughput) for 802.l l g
Data rates (throughput) [Mbps] SINR level [dB]

6 16
9 18
12 19
18 21

24 24
36 28
48 33
54 36

5.6.1 Throughput Performance

We compare the throughput performance of the three proposed algorithms. The 

throughput performance is defined as the maximum fraction of users which have 

reached the pre-defined targets. Based on engineering experiments [103], the 

throughput specifications are listed in Table 5.1. It provides a one to one mapping 

between SINR target and user throughput. We define that as long as the user can 

achieve a certain SINR target, it can reach the corresponding throughput level.

Figure 5.3 compares the throughput performance of three proposed algorithms in 

different network sizes. In all cases, the fractions of users achieving predefined 

throughput targets are decreasing as the throughput targets and network den­

sities increase. Algorithm TPC-MinCS consistently outperforms the other two 

algorithms by allowing more users to reach their throughput targets. This is be­

cause by using TPC-MinCS, each AP always first seeks the possibility to reduce 

the power while still keeping the required SINR level, only when it is not possible 

of doing so, channel switching will be triggered. Therefore, there are two optimiza­

tion occurred at the same time: 1) minimize the power level as much as possible, 

and 2) minimize the frequency of channel switching. While for the other two 

algorithms, they are triggered by channel switch, which sometimes might cause 

APs choose worse channels with higher interference. This will consequently cause 

power boosting and eventually bring more interference in the system. Compar­

ing algorithm SACA-TPC with GCA-TPC in dense networks, they are using the 

same power updating scheme but different channel allocation policies, the impact
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of DCA on the throughput performance is smaller than tha t in sparse network. 

This is because in a dense network, as the distances between APs are shortened, 

it is almost impossible to avoid co-channel interference by providing only 3 non­

overlapping channels.

In order to demonstrate the benefit of conducting joint design, we compare the 

performance of proposed algorithms with two benchmark schemes. Since the al­

gorithm GCA-TPC has the medium level performance, the improvement will be 

bounded by only running algorithm SACA-TPC and TPC-MinCS. The two bench­

mark schemes for comparisons are: (i) fixed transm it power with random channel 

allocation and (ii) fixed transm it power with optimised channel allocation. The
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throughput profile is presented in Figure 5.4.
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F igure 5.4: Fraction of users (y-axis) that achieve the throughputs indicated 
on the x  - axis by using joint design compared with two other benchmark

schemes

The throughput benefits from channel optimisation and power control presented 

in Figure 5.4 are obvious. In conventional deployment, the default transmission 

power is often set to the maximum (100 mW) without consideration of the dis­

tance between APs and clients. Such a default configuration causes increased 

interference among co-channel APs.
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In the following, we use the SACA-TPC algorithm as an example to quantify the 

throughput benefits achieved by implementing joint design in percent terms and 

separate the contributions from channel optimisation and power control respec­

tively. We denote the throughput performance from joint design, benchmarking 

scheme (i) and (ii) as qjd, q î and ^ 2  respectively. Thus the improvement from 

joint design, channel optimisation only and power control only can be derived by 

(<ljd ~  Qbi)/qbi, (qb2 ~ qbi)/qbi and (qjd -  qb2)/qb2 respectively.

10%- -

50%

45%

40%

35%

30%'

B  -  D C A - 5 0  A P s
-A  D C A  -  1 0 0  A P s

O  D C A  -  2 0 0  A P s
B  -  T P C  -  5 0  A P s

-A  T P C -  1 0 0  A P s
O  T P C  -  2 0 0  A P s

B  —  J o in t  -  5 0  A P s  
A — J o i n t - 1 0 0  A P s  

O  J o in t  - 2 0 0  A P s

25'',

20%

18 24
Throughput [Mbps]

F i g u r e  5.5: The percent throughput benefits by joint design and by TPC only

The green curves in Figure 5.5 represent the percent throughput improvement by 

applying joint design. As we can see, the improvements from joint design can be 

up to 48%. More throughput benefits are achieved for higher range throughputs, 

which means the joint design helps more clients to achieve higher throughput. 

There is also a noticeable dependence on the network density, where the benefits 

are more obvious in denser networks. This is because when the number of APs is 

relatively small while the number of channels is relatively large, there is not much 

gain of using optimisation schemes to reuse the spectrum, as there are enough 

channels to compensate the sub-optimality effect of random scheme. However,
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with more APs and less channels, there is real necessity in reducing the interference 

by reusing the channel, which can be achieved by our joint design scheme.

The blue and red curves in Figure 5.5 show the benefits achieved from TPC only 

and DCA only. We can see that if other things being equal, the throughput im­

provements from DCA tend to be somewhat higher than those achieved by TPC. 

Furthermore, DCA appears more beneficial to higher level throughput. It can 

bring more user from low throughput range to high throughput range. Whilst 

TPC, on the other hand, is more sensitive to the network density and tends to 

provide less benefit for denser networks and average out the throughput perfor­

mance for all the users. This is due to the fact that TPC passively updates power 

in order to satisfy SINR requirements, while channel switching in DCA might 

help APs choose better channel, hence could allow users to have service quality 

higher than the pre-defined level. This observation helps network operators to ad­

just the network settings based on their own objectives. If the network operators 

want to put more effort to improve the service quality for high throughput users, 

DCA should be performed more frequently than TPC, whilst TPC is preferable 

to average out the service across the network.

5.6.2 Power Consum ption

The power consumption is defined as the average final power level for all APs. 

Figure 5.6 shows the power consumption for three proposed algorithms. In con­

junction with Figure 5.3, it can be seen from Figure 5.6 that algorithm TPC-MinCS 

uses least power to achieve the best performance compared with other two algo­

rithms. As more and more users are added into the network, each AP boosts its 

power level to improve (or keep) users’ service quality, which forces others to do 

the same and creates a chain effect throughout the entire network.

In the following, we quantify the power saving by using joint design. In the 

conventional scheme, transmit power is fixed at their maximum level, i.e. 100 mW
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F i g u r e  5.6: Average power consumption by using different algorithms under
different network densities

(20 dBm). We define the percentage of power saving as (pmax — Pi)/Pmax, where 

Pi is the final power level for i-th  AP by using joint design.

We can see from Figure 5.7 tha t for both algorithms SACA-TPC and TPC-MinCS, 

large power saving can be achieved when the throughput target is low and the 

network is relatively sparse. In dense network, each AP is trying to increase its 

transmit power to overcome the surrounding interference and guarantee the user’s 

SINR target. Therefore, to have further power saving, the better solution is to 

allow more channels to be available to the system.
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5.6.3 C onvergence

Recall to our finding in Section 5.4, in the case of optimal channel assignment, 

the convergence property of the TPC  algorithm will be strengthened. In practice, 

this means with the optimal channel assignment, the power level for each AP will 

converge quickly to  a low level and meanwhile satisfy the SINR requirements. Here 

we use a simulation case to exemplify this finding.

In this simulation case, 15 APs are randomly deployed in an area along with 15 

users. We will first find out the optimal channel assignment for these 15 APs to 

minimize the total interference across the network, and then perform the TPC 

algorithm based on the channel assignment in a synchronized way for each AP 

and user link. The other random scheme used here for comparison performs TPC 

upon a randomly selected channel assignment. The SINR target for each user in 

both schemes is the same and set to 16dB.
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F ig u r e  5.8: Power behavior for all 15 APs under the case of randomized and
optimised channel assignment

Table 5.2: Final power level in the case of optimal and random channel as- 
___________________________signment__________________________

Optimal channel (mW) Random channel(mW)
AP-1 0.2204 0.2204
AP-2 0.7312 5.3048
AP-3 4.2075 4.2075
AP-4 0.0159 0.0159
AP-5 0.0362 0.0362
AP-6 0.0159 0.0163
AP-7 4.5608 9.6258
AP-8 4.9545 4.9616
AP-9 3.9085 3.9085

AP-10 0.0176 0.0176
AP-11 0.1445 0.1447
AP-12 0.1469 0.1469
AP-13 3.8371 3.8371
AP-14 0.0288 0.0288
AP-15 0.9977 0.9977
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Figure 5.8 shows the power behavior when the channels are randomly and opti­

mally allocated. It can be seen th a t with the optimised channel, the power level 

for all APs quickly converges to a steady state  while the one with random channel 

takes more time to converge. This is because by performing a DCA scheme, the 

neighbouring APs are using different channels, and thus it is easier for TPC to find 

proper power level to satisfy the SINR requirement by avoiding strong interference. 

Table 5.2 shows the final power level for each AP using these two algorithms. It 

shows th a t for some AP and user links, higher transm it power is needed in the 

case of the random channel than th a t of optimised one.

5.6.4 Interference Distribution

In this section, we use the concept of “interference distribution” defined in Chapter 

4 to demonstrate the benefit of using joint design in terms of interference mitiga­

tion. In Figure 5.9, we compare the interference distribution of the SACA-TPC 

algorithm with a random scheme, where channels are allocated in a random way 

and power has been set to a fixed level. The network size for comparison is 100 

APs.

Figure 5.9 shows a clear image of the interference level in each channel across the 

whole network by using different algorithms. Generally, for both algorithms, APs 

deployed near a high interference spot could be removed or switched to another 

channel in order to  provide better services. Moreover, according to the service 

quality defined by operators, one can make decision on whether it is profitable to 

add new APs or not. If it is, which area with what channel and power level could 

then be the best choice?

Comparing these two cases, we can see th a t by conducting a joint design, all the 

APs are trying to  use the minimum required power level to reduce the impact 

to neighbouring APs, and channel allocation is also optimised to minimise co­

channel interference. It actually can reduce the interference up to the order of 102 

in this simulation case. Figure 5.9 shows the results in the same magnitude to
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demonstrate the difference. Therefore, we can conclude that the network running 

SACA-TPC algorithm has more room to accommodate new APs than the one 

without optimisation, which consequently increases the potential capacity of the 

system.

5.7 Sum m ary

In this chapter we present three real time and open ended distributed algorithms 

through joint design of DCA and distributed TPC. In these three algorithms, all 

APs are capable to choose any available channels for communication to respond 

to the current radio propagation environment, and can independently adjust their 

transmission powers to explicitly guarantee users’ SINR requirements. We also 

show that in the case of optimal channel allocation, the convergence probability can
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be strengthened further. The simulation results show tha t the proposed algorithms 

can substantially improve the system performance in terms of users’ achievable 

throughput.



Chapter 6

Algorithm  Validation with Real 

D ata

6.1 Introduction

In this chapter, we validate our proposed channel allocation and power control al­

gorithms by using measurement da ta  from a real WLAN deployed by BT in SOHO 

area of London. The objective is to explore the nature of evolving interference and 

its impact on the network performance and also demonstrate the improvement re­

sulting from conducting the proposed algorithms. It is well known that, with the 

existing channel assignment and power settings, current 802.11b/g is confronted 

with severe interference problems. This study offers a valuable insight on how to 

improve the service quality of Wi-Fi clients via interference management. Since 

centralised algorithms are generally believed impractical for implementation in 

large scale networks, only distributed algorithms will be validated in our system, 

including the distributed DCA algorithm, i.e., SACA, and joint design algorithms 

of DCA and T P C , i.e., SACA-TPC, GCA-TPC and TPC-MinCS.

122
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6.2 Experim ent Environm ent

The algorithm validation is carried out by running performance evaluation sim­

ulations in a roughly 1 km 2 residential (SOHO) area, which comprises 200 APs. 

Figure 6.1 provides a top view of this residential area.

W est End

F i g u r e  6.1: Residential area for algorithm validation (source: Google map)

In this area, 200 houses are selected and each of them is deployed with a customer 

home hub (AP), with which a home network is set up. Each home network is 

associated with a number of home clients. The maximum distance from a client 

to its corresponding AP is set to 8 meters. This empirical value is chosen in such 

a way that it gives a coverage area within which almost all residential property 

boundaries are fully covered. The location of APs and clients are determined by 

a stochastic process. Channels are distributed to home networks based on a par­

ticular channel distribution scheme, which will be discussed in detail later. For 

802.11b/g technology, each AP is allocated with one of the three non-overlapping 

channels, i.e., channel 1, 6 and 11. Only downlink performance is considered in 

our validation. MAC layer overheads are not taken into account at a detailed level 

in this phase of validation. Instead, a rough approximation of 30% degradation of 

raw data rate is assumed. Antenna radiation pattern is assumed to be isotropic. 

No specific assumption is made on the type of clients, since our interest mainly lies
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on Wi-Fi da ta  rate rather than a particular device to device scenario. Backhaul 

capacity is assumed to be large enough, such th a t we do not need to worry about 

the performance bottleneck stemming from backhauling. All APs and clients con­

form to the 802.l lg  standard. The maximum power level for APs and clients are 

20 dBm at the current regulatory Effective Isotropic Regulated Power (EIRP).

6.3 Validation Results

In the following, the proposed distributed DCA algorithm, i.e. SACA, and other 

joint design algorithms, i.e. SACA-TPC, GCA-TPC and TPC-MinCS, will be 

validated in the above mentioned system. Final channel assignment, throughput 

performance and transmission power level are among the key performance metrics 

to be evaluated for the proposed algorithms.

6.3.1 D istributed DCA-SACA

We first validate the DCA algorithm, SACA. The user throughput is taken as the 

performance metric and measured in our system. System performance by running 

SACA algorithm  is compared with two other cases, namely the baseline and ran­

dom cases. A baseline performance represents the best achievable throughput in 

an ideal situation. It is assumed tha t the channel number in this case is unlimited. 

Therefore, there is no interference existing among APs. Path  loss is the only fac­

tor for signal degradation and is influenced by factors such as distance, number of 

walls/floors between them. While in the random case, the channels are distributed 

to APs in a random  manner regardless of the contention between neighboring APs. 

That is, no interference management/avoidance scheme is adopted during channel 

allocation. These two cases stand for two extremes - no interference and random 

interference.

In our validation, we examine the performance degradation induced by interference 

for every home network. As the modeled scenario focuses on the video delivery,
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capacity sharing will commonly occur at the APs whereas the interference will 

primarily affect the clients. This is due to the contention caused by the 802.11 

CSMA/CA protocol. It occurs when a home hub is able to perceive signals coming 

from neighboring home hubs tha t operate on the same channel. Furthermore, 

the clients will also be affected by the interference from neighboring home hubs 

operating on the same or overlapping channels.

The modeling assumes saturated downlink traffic in a peak hour scenario, but can 

be extended to other traffic mixes for a given traffic-demand correlation matrix. 

This simulation method is generic in nature and can be mapped to any service or 

scenario.

F i g u r e  6.2: An instance of channel assignment generated by SACA algorithm

Figure 6.2 shows the channel assignment obtained by running SACA algorithm. 

APs with different colors represent different channels assigned to them. It is not 

straightforward to conclude whether this is an optimal channel assignment or 

not. But it can be seen that the algorithm takes into account of the interference 

restriction when allocating channels to APs. Take APs No. 161, 48, 122, 30
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81, 29, 82 and 44 for example (framed region). APs along the same street are 

using different channels to avoid co-channel interference. Signal degradation in 

this residential area is mainly caused by propagation through walls and floors. 

Therefore, even if two APs are closely located (in term of distance) to each other, 

they can still use the same channel so long as they are separated by walls or floors. 

Propagation loss profile is one of the key measurements provided by BT, which is 

used as an input of the validation for the proposed algorithms.
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F igure 6.3: Histogram of throughput performance for various algorithms using
802. l l g

Figure 6.3 shows the histogram of user throughput achieved by employing various 

channel allocation algorithms. The x-axis values denote the average throughput 

rates that can be achieved by the clients and is referred to as link-rate. The x-axis 

offsets are based on the standard 802.l lg  rate which is a function of adaptive 

coding and modulation (or ultimate SINR). The values quoted in the parenthesis 

are obtained by considering 30% degradation due to MAC layer overheads. The 

y-axis denotes the percentage of clients that are expected to meet their throughput 

targets corresponding to the x-axis values. The “No connectivity” region on the 

x-axis represents the percentage of clients that are unable to achieve the minimum 

802.l lg  da ta  rate of 6 Mbps due to interference.
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The baseline bar-plots show the average throughput performance of the clients 

with the absence of any interference and represent the best performance with 

maximum throughput using the 802.l lg  technology. The baseline throughput 

distribution is purely a reflection of the client location statistics, as it is assumed 

that the channel number is unlimited to the system. Other bar-plots represent the 

throughput performance with random and SACA channel allocation respectively 

with the presence of interference. One trend which can be observed is that, by 

using the SACA algorithm with the aim to minimize interference, a number of 

clients are shifting from lower data rates to higher data rates compared with the 

random channel allocation algorithm.
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F igure 6.4: Complementary cumulative distribution plot showing percentage 
of clients exceeding pre-defined average throughput requirements

Figure 6.4 depicts the same results as Figure 6.3 in the form of complementary 

cumulative distribution plot. This representation helps to readily understand what 

percentage of the clients can meet the specific criteria. For the three different 

approaches, the y-axis values show the percentage of clients that can achieve or 

exceed throughputs corresponding to x-axis values. It can be seen that by applying 

SACA algorithm, the throughput performance can be improved by around 15% 

compared with random channel allocation scheme.



Chapter 6. Algorithm Validation with Real Data 128

6.3.2 Joint Design of D C A  and T P C

The objective of combining the DCA and TPC together is to further improve the 

user throughput. In this subsection, we validate the algorithms with joint design, 

i.e. SACA-TPC, GCA-TPC and TPC-MinCS. The performance criterion is the 

maximum achievable user ratio to the pre-defined user throughput target. In the 

following validation, each throughput target will be tested for all the algorithms 

and the maximum percentage of clients that can achieve their targets will be mea­

sured. Figure 6.5 presents the performance comparison among these algorithms.
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F igure 6.5: Maximum percentage of clients achieving pre-defined average
throughput requirements

It can be seen that, compared with the throughput performance achieved by SACA 

algorithm, the throughput performance is further improved by applying the joint 

design algorithms and apparently brought closer to the baseline by around 10%.

As introduced in Chapter 5, in the joint design algorithms, in order to improve 

the channel access efficiency and reduce coverage overlap, power level for each AP 

can be adaptively adjusted by using TPC algorithm. This technique significantly 

reduces power consumption in the system. In what follows, we demonstrate the
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power consumption for all APs in each algorithm running under different through­

put requirements.

Figure 6.6 shows the average power consumption for three proposed algorithms. In 

conjunction with Figure 6.5, it can be seen from Figure 6.6 that algorithm TPC- 

MinCS uses least power but achieves the best performance compared with the 

other two algorithms. As more and more users are added into the network, each 

AP boosts its power level to improve (or maintain) its users’ service quality, which 

consequently forces others to do the same and creates a chain effect throughout 

the entire network.
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F igure 6.6: Average power consumption for different algorithms under differ­
ent throughput requirements

Figures 6 .7-6.9 show the final power distribution for all the APs running each 

algorithm under different throughput requirements. The power level for three 

algorithms is similar. They all have a trend that when the throughput target is 

low, the majority of APs tend to transmit using low power, but as the target 

increases, APs are starting to use high transmit power. This is because, when the 

throughput target is low, all the APs are using minimal required transmit power 

just to satisfy their own transmission requirements. But as the target goes up,
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APs have to increase the power not only to fulfill the throughput requirement, but 

also endeavor to compensate for the evolving interference.
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F igure 6.7: Final power level for all APs running TPC-MinCS algorithm under 
different throughput requirements
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F igure 6.8: Final power level for all APs running SACA-TPC algorithm under 
different throughput requirements
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In the following, we quantify and assess the power saving after adopting joint 

design approaches. In the conventional scheme, transmit power is fixed at their
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F igure 6.9: Final power level for all APs running GCA-TPC algorithm under 
different throughput requirements

maximum level, i.e. 100 mW (20 dBm). We define the percentage of power saving 

as > where pi is the final power level for i-th AP by using joint design.

80%
-B—  SACA-TPC  
-©—  TPC-MinCS 
-A— GCA-TPC70%

o> 60%

S? 1 
c  30%

20%

10%

18 24
Throughput [Mbps]

F igure 6.10: Power saving for different algorithms

We can see from Figure 6.10 that for all algorithms SACA-TPC, GCA-TPC and 

TPC-MinCS, substantial power saving can be achieved when the throughput target
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is low. This result is well consistent with our previous findings.

6.4 Summary

In this chapter, the proposed distributed algorithms are validated by using a real 

WLAN data measurement. It shows that the SACA algorithm is feasible to find 

a proper channel assignment with low interference in a real system. By using this 

SACA algorithm, there is no need to make assumption of the channel propagation 

model, it will automatically take the interference restrictions into account when 

allocating channels to APs. For the joint design algorithms, a substantial improve­

ment in terms of user throughput and power saving is presented and compared 

with traditional schemes, in which channels are allocated in a random way and 

the power is set to the maximum level.



Chapter 7

Conclusions and Future Work

This research project has aimed the investigations on the resource allocation 

and optimisation problems and techniques for multiple access wireless networks. 

Whilst it is not possible to present the full research framework and all of the re­

sults in the current form of the thesis, this chapter concludes and highlights the 

major results from the project, and provides a summary of the simulation and 

analysis results we have obtained. Based on the achieved results and findings, we 

also point out some possible and useful directions for future works.

7.1 Conclusions

In this thesis, we have presented a concrete framework of using heuristic based 

algorithms to solve DCA and TPC problems in 802.11 HD-WLANs. To the best 

of our knowledge, this work has original contributions to the optimisation problems 

in licence-exempt wireless systems.

To solve the DCA problems with a low complexity condition, we have applied the 

heuristic based Genetic Algorithm and Simulated Annealing into the AfV-haxd 

channel optimisation problem, and then proposed an algorithm with the hybrid 

form to combine the advantage of individual algorithms. Extensive simulations 

and statistical analysis have been carried out in order to evaluate the performance

133
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of each algorithm. We have found that, in general, the proposed hybrid algorithm 

provides a good trade-off between the convergence speed and near optimality. We 

also find that, Simulated Annealing appears to be the best choice to dynamically 

allocate channels in small networks, while for large networks, the proposed hybrid 

algorithm appears to be a better solution.

In the second step, the poor scalability of the centralised algorithm has been 

taken into consideration, and a fully distributed channel allocation scheme has 

been proposed to accommodate the situation that each AP in the network belongs 

to different service providers. The proposed algorithm is based on the distributed 

Simulated Annealing technique, namely Simulated Annealing channel allocation 

(SACA). The implementation of SACA is effective and requires no knowledge 

about the wireless channels. It only requires that each AP can estimate the in­

terference it would experience in any of the selectable channels. This leads to 

minimum computational overheads and a simple implementation strategy. We 

compare the final interference values obtained by SACA with the optimal solutions 

using the Branch and Bound method. As the SACA delivers stochastic results, we 

evaluate the distribution of the results over thousands of network topologies with 

optimal solutions and other schemes. We have found that the minimum interfer­

ence simulated by SACA is very close to the optimum solution and has the best 

scalability compared with other algorithms. The time complexity analysis shows 

that the average running time of the SACA reduces the exponential complexity 

to a very low level provided that 98% of the solutions are less than 5% away from 

the known optima.

By learning the potential to further improve the system capacity by incorporating 

TPC into DCA, we then investigate the joint design problem of these two tech­

niques. We analyze the convergence property of TPC in multi-channel scenario 

and highlight the design criterion when considering joint design. We have fol­

lowed the design criterion and develop three practical algorithms to interactively 

perform DCA and TPC on each AP in a distributed way. In the proposed algo­

rithms, all APs are capable of choosing any available channels for communication 

to respond to the current radio propagation environment and then independently
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adjust their transmit power to explicitly satisfy user-devices’ SINR requirements. 

The simulation results show that the joint design can lead to substantial through­

put improvement and power saving compared to the benchmark schemes. By 

analyzing the simulation results, we provided key insights to the deployment of 

HD-WLANs, including the selection of new added APs location, operating chan­

nel and proper power level. We also have demonstrated the impact of different 

techniques in the network operation. We found that DCA can be used to improve 

the service quality of higher throughput users, while TPC is preferable to provide 

mid range throughput to the majority of the clients.

In the end, we have successfully validated all the distributed algorithms by using 

measurement data from a real WLAN in the SOHO area of London, UK. The 

algorithm validation confirmed the feasibility of proposed algorithms and showed 

the performance improvement by conducting DCA and TPC algorithms.

7.2 Future Work

Up to the results presented so far, the subject of interference mitigation is inves­

tigated by jointly implementing DCA and TPC. The user throughput instead of 

total interference is the objective function, with the pre-defined user SINR target 

and power minimization being added to the problem formulation. The joint design 

contains two dynamics: one is the discrete channel and the other is the continu­

ous transmit power. Any of the APs changing the power or channel settings will 

affect the interference distribution in the network and cause other APs to adjust 

their own previous configurations accordingly to maintain the QoS. Therefore, the 

investigation of searching the optimal channel and power setting becomes more 

complex. Whether this joint design problem can be solved with low complex­

ity remains a challenging question. Therefore, one of the possible extensions of 

this research is to precisely define and more importantly find the optimal channel 

and power configuration, such that the quality of sub-optimal solutions found by 

heuristics can be measured.
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When analyzing the convergence property of TPC in the multi-channel scenario, 

we obtain the sufficient condition in terms of the feature of the propagation matrix. 

During the algorithm evolution, the sufficient condition is being examined to see 

if the algorithm will build convergence condition to the system. However, even 

though sometimes the sufficient condition is not satisfied, the system still can 

converge. Therefore, for the next step, it would be highly desirable to derive the 

necessary and sufficient condition for the system to converge in the multi-channel 

scenario. With the necessary condition, it would be helpful to adjust the algorithm 

parameter to ensure that the convergence property is satisfied.

In this thesis, the impact of MAC protocol on system performance has not been 

considered in a detailed level. The throughput degradation due to contention is 

counted for 30% less of the original level. If we consider the impact from MAC 

protocol, a statistical model has to be built to mimic the access activities from 

all APs and user-devices. By using this MAC model, the percentage of time that 

actually used for transmitting, sensing or even setting back and waiting, has to be 

recorded to accurately compute the system throughput.

We assume that the traffic model in the system is saturated, which means the 

APs always have data to be transmitted to the user-devices1. In addition, we 

also assume that the user-devices are all of the same type. However, a realistic 

HD-WLAN is envisaged to provide multi-media service, including data, video and 

voice traffic, and each service has unique traffic model. In order to guarantee the 

QoS of all the traffic flows running in the system, the traffic models have to be 

taken into consideration.

The resource allocation scheme proposed in this thesis is not limited to HD-WLAN 

only. All the algorithms can be extended to other systems by giving the specific 

channel configuration. However, for a more complicated system, such as wireless 

mesh networks, the management of channel allocation and power control is quite 

different. In mesh networks, the devices can be equipped with multiple anten­

nas, simultaneous transmission is allowed on a single device. Therefore, channel

1This is a worst-case downlink interference scenario for a peak hour traffic condition, but our 
work can be extended to other traffic mixes for a given traffic-demand correlation matrix.
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separation for a single device is one of the constraints for channel allocation and 

different power on each antenna should also be carefully adjusted to avoid interfer­

ence. Another issue in the mesh network is the connectivity, since the transmission 

scheme in mesh network is multi-hop based, neighbouring devices are required to 

use the same channel to set up a connection. This is different compared with 

HD-WLANs, where communication is mainly in single hop mode. Channels tend 

to be different for neighbouring APs to avoid co-channel interference. Therefore, 

to operate DCA and TPC in wireless mesh networks is another potential research 

direction in the future.



Appendix A

Simulated Annealing Cooling 

Schedules

Below are 10 cooling schedules that have been frequently used in Simulated An­

nealing optimization. T* is the temperature for iteration i, where i increases from 

0 to A, A  is the maximum iteration number. To and Tn  are initial temperature 

and final temperature respectively.

• cooling 1

•  cooling 2

(A.2)

• cooling 3

(A.3)

• cooling 4

(A.4)
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• cooling 5

cooling 6

•  cooling 7

•  cooling 8

cooling 9

Ti =  T m + To —  T jN

Ti — T/v +

1 +  exp (0.3 (i ~  jf)) 

T o  — T /v x 1 +  cos

T, =  TN +  T° „ Tn x

Ti =  T/v +

, f iOz r 
1 — tanh I ——  5 

N

To — Tn

cosh ( ^ )

Ti = To exp ( - i  x ^  x In

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

• cooling 10

1 . /T r
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