72 research outputs found
75th Anniversary of âExistence of Electromagnetic-Hydrodynamic Wavesâ
We have recently passed the 75th anniversary of one of the most important
results in solar and space physics: Hannes Alfv\'en's discovery of Alfv\'en
waves and the Alfv\'en speed. To celebrate the anniversary, this article
recounts some major episodes in the history of MHD waves. Following an
initially cool reception, Alfv\'en's ideas were propelled into the spotlight by
Fermi's work on cosmic rays, the new mystery of coronal heating and, as
scientific perception of interplanetary space shifted dramatically and the
space race started, detection of Alfv\'en waves in the solar wind. From then
on, interest in MHD waves boomed, laying the foundations for modern remote
observations of MHD waves in the Sun, coronal seismology and some of today's
leading theories of coronal heating and solar wind acceleration. In 1970,
Alfv\'en received the Nobel Prize for his work in MHD, including these
discoveries. The article concludes with some reflection about what the history
implies about the way we do science, especially the advantages and pitfalls of
idealised mathematical models.Comment: 10 pages, accepted by Solar Physic
The Number Of Magnetic Null Points In The Quiet Sun Corona
The coronal magnetic field above a particular photospheric region will vanish
at a certain number of points, called null points. These points can be found
directly in a potential field extrapolation or their density can be estimated
from Fourier spectrum of the magnetogram. The spectral estimate, which assumes
that the extrapolated field is random, homogeneous and has Gaussian statistics,
is found here to be relatively accurate for quiet Sun magnetograms from SOHO's
MDI. The majority of null points occur at low altitudes, and their distribution
is dictated by high wavenumbers in the Fourier spectrum. This portion of the
spectrum is affected by Poisson noise, and as many as five-sixths of null
points identified from a direct extrapolation can be attributed to noise. The
null distribution above 1500 km is found to depend on wavelengths that are
reliably measured by MDI in either its low-resolution or high-resolution mode.
After correcting the spectrum to remove white noise and compensate for the
modulation transfer function we find that a potential field extrapolation
contains, on average, one magnetic null point, with altitude greater than 1.5
Mm, above every 322 square Mm patch of quiet Sun. Analysis of 562 quiet Sun
magnetograms spanning the two latest solar minimum shows that the null point
density is relatively constant with roughly 10% day-to-day variation. At
heights above 1.5 Mm, the null point density decreases approximately as the
inverse cube of height. The photospheric field in the quiet Sun is well
approximated as that from discrete elements with mean flux 1.0e19 Mx
distributed randomly with density n=0.007 per square Mm
Review article: MHD wave propagation near coronal null points of magnetic fields
We present a comprehensive review of MHD wave behaviour in the neighbourhood
of coronal null points: locations where the magnetic field, and hence the local
Alfven speed, is zero. The behaviour of all three MHD wave modes, i.e. the
Alfven wave and the fast and slow magnetoacoustic waves, has been investigated
in the neighbourhood of 2D, 2.5D and (to a certain extent) 3D magnetic null
points, for a variety of assumptions, configurations and geometries. In
general, it is found that the fast magnetoacoustic wave behaviour is dictated
by the Alfven-speed profile. In a plasma, the fast wave is focused
towards the null point by a refraction effect and all the wave energy, and thus
current density, accumulates close to the null point. Thus, null points will be
locations for preferential heating by fast waves. Independently, the Alfven
wave is found to propagate along magnetic fieldlines and is confined to the
fieldlines it is generated on. As the wave approaches the null point, it
spreads out due to the diverging fieldlines. Eventually, the Alfven wave
accumulates along the separatrices (in 2D) or along the spine or fan-plane (in
3D). Hence, Alfven wave energy will be preferentially dissipated at these
locations. It is clear that the magnetic field plays a fundamental role in the
propagation and properties of MHD waves in the neighbourhood of coronal null
points. This topic is a fundamental plasma process and results so far have also
lead to critical insights into reconnection, mode-coupling, quasi-periodic
pulsations and phase-mixing.Comment: 34 pages, 5 figures, invited review in Space Science Reviews => Note
this is a 2011 paper, not a 2010 pape
Recommended from our members
Probabilistic solar wind and geomagnetic forecasting using an analogue ensemble or "Similar Day" approach
Effective space-weather prediction and mitigation requires accurate forecasting of near-Earth solar-wind conditions. Numerical magnetohydrodynamic models of the solar wind, driven by remote solar observations, are gaining skill at forecasting the large-scale solar-wind features that give rise to near-Earth variations over days and weeks. There remains a need for accurate short-term (hours to days) solar-wind forecasts, however. In this study we investigate the analogue ensemble (AnEn), or âsimilar dayâ, approach that was developed for atmospheric weather forecasting. The central premise of the AnEn is that past variations that are analogous or similar to current conditions can be used to provide a good estimate of future variations. By considering an ensemble of past analogues, the AnEn forecast is inherently probabilistic and provides a measure of the forecast uncertainty. We show that forecasts of solar-wind speed can be improved by considering both speed and density when determining past analogues, whereas forecasts of the out-of-ecliptic magnetic field [ BNBN ] are improved by also considering the in-ecliptic magnetic-field components. In general, the best forecasts are found by considering only the previous 6âââ12 hours of observations. Using these parameters, the AnEn provides a valuable probabilistic forecast for solar-wind speed, density, and in-ecliptic magnetic field over lead times from a few hours to around four days. For BNBN , which is central to space-weather disturbance, the AnEn only provides a valuable forecast out to around six to seven hours. As the inherent predictability of this parameter is low, this is still likely a marked improvement over other forecast methods. We also investigate the use of the AnEn in forecasting geomagnetic indices Dst and Kp. The AnEn provides a valuable probabilistic forecast of both indices out to around four days. We outline a number of future improvements to AnEn forecasts of near-Earth solar-wind and geomagnetic conditions
Recommended from our members
The variation of geomagnetic storm duration with intensity
Variability in the near-Earth solar wind conditions can adversely affect a number of ground- and space-based technologies. Such space-weather impacts on ground infrastructure are expected to increase primarily with geomagnetic storm intensity, but also storm duration, through time-integrated effects. Forecasting storm duration is also necessary for scheduling the resumption of safe operating of affected infrastructure. It is therefore important to understand the degree to which storm intensity and duration are correlated. The long-running, global geomagnetic disturbance index, aa , has recently been recalibrated to account for the geographic distribution of the component stations. We use this aaH index to analyse the relationship between geomagnetic storm intensity and storm duration over the past 150 years, further adding to our understanding of the climatology of geomagnetic activity. Defining storms using a peak-above-threshold approach, we find that more intense storms have longer durations, as expected, though the relationship is nonlinear. The distribution of durations for a given intensity is found to be approximately log-normal. On this basis, we provide a method to probabilistically predict storm duration given peak intensity, and test this against the aaH dataset. By considering the average profile of storms with a superposed-epoch analysis, we show that activity becomes less recurrent on the 27-day timescale with increasing intensity. This change in the dominant physical driver, and hence average profile, of geomagnetic activity with increasing threshold is likely the reason for the nonlinear behaviour of storm duration
Observation of a Complex Solar Wind Reconnection Exhaust from Spacecraft Separated by over 1800 R E
We analyze Wind, ACE, and STEREO (ST-A and ST-B) plasma and magnetic field data in the vicinity of the heliospheric current sheet (HCS) crossed by all spacecraft between 22:15 UT on 31 March and 01:25 UT on 1 April 2007 corresponding to its observation at ST-A and ST-B, which were separated by over 1800 R E (or over 1200 R E across the Sun â Earth line). Although only Wind and ACE provided good ion flow data in accord with a solar wind magnetic reconnection exhaust at the HCS, the magnetic field bifurcation typical of such exhausts was clearly observed at all spacecraft. They also all observed unambiguous strahl mixing within the exhaust, consistent with the sunward flow deflection observed at Wind and ACE and thus with the formation of closed magnetic field lines within the exhaust with both ends attached to the Sun. The strong dawnward flow deflection in the exhaust is consistent with the exhaust and X-line orientations obtained from minimum variance analysis at each spacecraft so that the X-line is almost along the GSE Z-axis and duskward of all the spacecraft. The observation of strahl mixing in extended and intermittent layers outside the exhaust by ST-A and ST-B is consistent with the formation of electron separatrix layers surrounding the exhaust. This event also provides further evidence that balanced parallel and antiparallel suprathermal electron fluxes are not a necessary condition for identification of closed field lines in the solar wind. In the present case the origin of the imbalance simply is the mixing of strahls of substantially different strengths from a different solar source each side of the HCS. The inferred exhaust orientations and distances of each spacecraft relative to the X-line show that the exhaust was likely nonplanar, following the Parker spiral orientation. Finally, the separatrix layers and exhausts properties at each spacecraft suggest that the magnetic reconnection X-line location and/or reconnection rate were variable in both space and time at such large scales
Achievements and Challenges in the Science of Space Weather
In June 2016 a group of 40 space weather scientists attended the workshop on Scientific Foundations of Space Weather at the International Space Science Institute in Bern. In this lead article to the volume based on the talks and discussions during the workshop we review some of main past achievements in the field and outline some of the challenges that the science of space weather is facing today and in the future.Peer reviewe
Relativistic Laser-Matter Interaction and Relativistic Laboratory Astrophysics
The paper is devoted to the prospects of using the laser radiation
interaction with plasmas in the laboratory relativistic astrophysics context.
We discuss the dimensionless parameters characterizing the processes in the
laser and astrophysical plasmas and emphasize a similarity between the laser
and astrophysical plasmas in the ultrarelativistic energy limit. In particular,
we address basic mechanisms of the charged particle acceleration, the
collisionless shock wave and magnetic reconnection and vortex dynamics
properties relevant to the problem of ultrarelativistic particle acceleration.Comment: 58 pages, 19 figure
- âŠ