1,146 research outputs found

    Several small Josephson junctions in a Resonant Cavity: Deviation from the Dicke Model

    Full text link
    We have studied quantum-mechanically a system of several small identical Josephson junctions in a lossless single-mode cavity for different initial states, under conditions such that the system is at resonance. This system is analogous to a collection of identical atoms in a cavity, which is described under appropriate conditions by the Dicke model. We find that our system can be well approximated by a reduced Hamiltonian consisting of two levels per junction. The reduced Hamiltonian is similar to the Dicke Hamiltonian, but contains an additional term resembling a dipole-dipole interaction between the junctions. This extra term arises when states outside the degenerate group are included via degenerate second-order (L\"{o}wdin) perturbation theory. As in the Dicke model, we find that, when N junctions are present in the cavity, the oscillation frequency due to the junction-cavity interaction is enhanced by N\sqrt{N}. The corresponding decrease in the Rabi oscillation period may cause it to be smaller than the decoherence time due to dissipation, making these oscillations observable. Finally, we find that the frequency enhancement survives even if the junctions differ slightly from one another, as expected in a realistic system.Comment: 11 pages. To be published in Phys. Rev.

    Swift detection of a third burst from SGR J1745-29

    Get PDF
    At 02:09:09 UT on August 5th, 2013, Swift/BAT triggered on a short SGR-like burst (GCN #15069) consistent with the location of SGR J1745-29, a recently discovered magnetar near Sgr A* (e.g. Kennea et al., 2013). This is the third burst detected from SGR J1745-29 after its first on April 25th, 2013 (ATEL #5009) and second on June 7th, 2013 (ATEL #5124)

    Variational Multiscale Stabilization and the Exponential Decay of Fine-scale Correctors

    Full text link
    This paper addresses the variational multiscale stabilization of standard finite element methods for linear partial differential equations that exhibit multiscale features. The stabilization is of Petrov-Galerkin type with a standard finite element trial space and a problem-dependent test space based on pre-computed fine-scale correctors. The exponential decay of these correctors and their localisation to local cell problems is rigorously justified. The stabilization eliminates scale-dependent pre-asymptotic effects as they appear for standard finite element discretizations of highly oscillatory problems, e.g., the poor L2L^2 approximation in homogenization problems or the pollution effect in high-frequency acoustic scattering

    Differential mobility and local variation in infection attack rate

    Get PDF
    Infectious disease transmission in animals is an inherently spatial process in which a host's home location and their social mixing patterns are important, with the mixing of infectious individuals often different to that of susceptible individuals. Although incidence data for humans have traditionally been aggregated into low-resolution data sets, modern representative surveillance systems such as electronic hospital records generate high volume case data with precise home locations. Here, we use a gridded spatial transmission model of arbitrary resolution to investigate the theoretical relationship between population density, differential population movement and local variability in incidence. We show analytically that a uniform local attack rate is only possible for individual pixels in the grid if susceptible and infectious individuals move in the same way. Using a population in Guangdong, China, for which a robust quantitative description of movement is available (a movement kernel), and a natural history consistent with pandemic influenza; we show that local cumulative incidence is positively correlated with population density when susceptible individuals are more connected in space than infectious individuals. Conversely, under the less intuitively likely scenario, when infectious individuals are more connected, local cumulative incidence is negatively correlated with population density. The strength and direction of correlation changes sign for other kernel parameter values. We show that simulation models in which it is assumed implicitly that only infectious individuals move are assuming a slightly unusual specific correlation between population density and attack rate. However, we also show that this potential structural bias can be corrected by using the appropriate non-isotropic kernel that maps infectious-only code onto the isotropic dual-mobility kernel. These results describe a precise relationship between the spatio-social mixing of infectious and susceptible individuals and local variability in attack rates. More generally, these results suggest a genuine risk that mechanistic models of high-resolution attack rate data may reach spurious conclusions if the precise implications of spatial force-of-infection assumptions are not first fully characterized, prior to models being fit to data

    Is the Sun Embedded in a Typical Interstellar Cloud?

    Full text link
    The physical properties and kinematics of the partially ionized interstellar material near the Sun are typical of warm diffuse clouds in the solar vicinity. The interstellar magnetic field at the heliosphere and the kinematics of nearby clouds are naturally explained in terms of the S1 superbubble shell. The interstellar radiation field at the Sun appears to be harder than the field ionizing ambient diffuse gas, which may be a consequence of the low opacity of the tiny cloud surrounding the heliosphere. The spatial context of the Local Bubble is consistent with our location in the Orion spur.Comment: "From the Outer Heliosphere to the Local Bubble", held at International Space Sciences Institute, October 200

    Confirmation of a pi_1^0 Exotic Meson in the \eta \pi^0 System

    Full text link
    The exclusive reaction π−p→ηπ0n\pi^- p \to \eta \pi^0 n, η→π+π−π0\eta \to \pi^+ \pi^- \pi^0 at 18 GeV/c/c has been studied with a partial wave analysis on a sample of 23~492 ηπ0n\eta \pi^0 n events from BNL experiment E852. A mass-dependent fit is consistent with a resonant hypothesis for the P+P_+ wave, thus providing evidence for a neutral exotic meson with JPC=1−+J^{PC} = 1^{-+}, a mass of 1257±20±251257 \pm 20 \pm 25 MeV/c2/c^2, and a width of 354±64±60354 \pm 64 \pm 60 MeV/c2/c^2. New interpretations of the meson exotics in neutral ηπ0\eta \pi^0 system observed in E852 and Crystal Barrel experiments are discussed.Comment: p3, rewording the paragraph (at the bottom) about the phase variations. p4, rewording paragrath "The second method ..." . p4, at the bottom of paragrath "The third method ..." added consistent with the results of methods 1 and 2

    Exotic Meson Production in the f1(1285)π−f_{1}(1285)\pi^{-} System observed in the Reaction π−p→ηπ+π−π−p\pi^{-} p \to \eta\pi^{+}\pi^{-}\pi^{-} p at 18 GeV/c

    Get PDF
    This letter reports results from the partial wave analysis of the π−π−π+η\pi^{-}\pi^{-}\pi^{+}\eta final state in π−p\pi^{-}p collisions at 18GeV/c. Strong evidence is observed for production of two mesons with exotic quantum numbers of spin, parity and charge conjugation, JPC=1−+J^{PC} = 1^{-+} in the decay channel f1(1285)π−f_{1}(1285)\pi^{-}. The mass M=1709±24±41M = 1709 \pm 24 \pm 41 MeV/c^2 and width Γ=403±80±115\Gamma = 403 \pm 80 \pm 115 MeV/c^2 of the first state are consistent with the parameters of the previously observed π1(1600)\pi_{1}(1600). The second resonance with mass M=2001±30±92M = 2001 \pm 30 \pm 92 MeV/c^2 and width Γ=333±52±49\Gamma = 333 \pm 52 \pm 49 MeV/c^2 agrees very well with predictions from theoretical models. In addition, the presence of π2(1900)\pi_{2}(1900) is confirmed with mass M=2003±88±148M = 2003 \pm 88 \pm 148 MeV/c^2 and width Γ=306±132±121\Gamma = 306 \pm 132 \pm 121 MeV/c^2 and a new state, a1(2096)a_{1}(2096), is observed with mass M=2096±17±121M = 2096 \pm 17 \pm 121 MeV/c^2 and width Γ=451±41±81\Gamma = 451 \pm 41 \pm 81 MeV/c^2. The decay properties of these last two states are consistent with flux tube model predictions for hybrid mesons with non-exotic quantum numbers

    Observation of Pseudoscalar and Axial Vector Resonances in pi- p -> K+ K- pi0 n at 18 GeV

    Get PDF
    A new measurement of the reaction pi- p -> K+ K- pi0 n has been made at a beam energy of 18 GeV. A partial wave analysis of the K+ K- pi0 system shows evidence for three pseudoscalar resonances, eta(1295), eta(1416), and eta(1485), as well as two axial vectors, f1(1285), and f1(1420). Their observed masses, widths and decay properties are reported. No signal was observed for C(1480), an IG J{PC} = 1+ 1{--} state previously reported in phi pi0 decay.Comment: 7 pages, 6 figs, to be submitted to Phys. Let

    Observation of a New J(PC)=1(+-) Isoscalar State in the Reaction Pi- Proton -> Omega Eta Neutron at 18 GeV/c

    Full text link
    Results are presented on a partial wave analysis of the Omega Eta final state produced in Pi- Proton interactions at 18 GeVc where Omega -> Pi+ Pi- Pi0, Pi0 -> 2 Gammas, and Eta -> 2 Gammas. We observe the previously unreported decay mode Omega(1650) -> Omega Eta and a new 1(+-) meson state h1(1595) with a mass M=1594(15)(+10)(-60) MeV/c^2 and a width Gamma=384(60)(+70)(-100) MeV/c^2. The h1(1595) state exhibits resonant-like phase motion relative to the Omega(1650).Comment: Submitted to Physics Letters B Eight total pages including 11 figures and 1 tabl
    • …
    corecore