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Abstract

Infectious disease transmission is an inherently spatial process in which a host’s home

location and their social mixing patterns are important, with the mixing of infectious individ-

uals often different to that of susceptible individuals. Although incidence data for humans

have traditionally been aggregated into low-resolution data sets, modern representative

surveillance systems such as electronic hospital records generate high volume case data

with precise home locations. Here, we use a gridded spatial transmission model of arbi-

trary resolution to investigate the theoretical relationship between population density, dif-

ferential population movement and local variability in incidence. We show analytically that

a uniform local attack rate is typically only possible for individual pixels in the grid if sus-

ceptible and infectious individuals move in the same way. Using a population in Guang-

dong, China, for which a robust quantitative description of movement is available (a travel

kernel), and a natural history consistent with pandemic influenza; we show that local

cumulative incidence is positively correlated with population density when susceptible

individuals are more connected in space than infectious individuals. Conversely, under

the less intuitively likely scenario, when infectious individuals are more connected, local

cumulative incidence is negatively correlated with population density. The strength and

direction of correlation changes sign for other kernel parameter values. We show that sim-

ulation models in which it is assumed implicitly that only infectious individuals move are

assuming a slightly unusual specific correlation between population density and attack

rate. However, we also show that this potential structural bias can be corrected by using

the appropriate non-isotropic kernel that maps infectious-only code onto the isotropic

dual-mobility kernel. These results describe a precise relationship between the spatio-

social mixing of infectious and susceptible individuals and local variability in attack rates.

More generally, these results suggest a genuine risk that mechanistic models of high-

resolution attack rate data may reach spurious conclusions if the precise implications of
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spatial force-of-infection assumptions are not first fully characterized, prior to models

being fit to data.

Author summary

We know that some places have higher rates of infectious disease than others. At the

moment, we usually only measure these differences for large towns and cities, though

modern data allows us to track movement at much higher resolution. In this paper, we

used a computer simulation of an epidemic to propose ways that rates of incidence in

small local areas might be related to population density. We found that if infectious people

are better connected than non-infectious people, perhaps because they receive visitors,

then, on average, higher density areas would have lower rates of infection. If infectious

people were less connected than non-infectious people then higher density areas would

have higher rates of infection. As data get more accurate, this type of analysis will allow us

to propose and test ways to optimize interventions such as the delivery of vaccines and

antivirals during a pandemic.

Introduction

The spatial heterogeneity of infectious disease incidence at large scales presents numerous

intervention opportunities and challenges. Maps of malaria prevalence [1] have been used to

target additional surveillance and to prioritize countries and geographical regions for addi-

tional intervention investment, resulting in substantial decreases in numbers of infections [2].

Over shorter timescales, spatial asynchrony in the northern hemisphere during the 2009 influ-

enza pandemic likely led to variable effectiveness of vaccination when eventually deployed

because of prior infections [3]. The epidemiological implications of substantial spatial hetero-

geneity in both incidence and transmission are topics of active research for most human path-

ogens [4].

These spatial heterogeneities must be influenced by two key human behaviours: where peo-

ple choose to live and how they move. Because the home location of an individual is primarily

used as the geographic location when cases are recorded, absolute spatial incidence is driven

by population density: where more people live in a given unit area, there is greater potential

for cases. Accurate high resolution estimates of population density [5, 6] and travel [7] have

helped refine global absolute estimates of disease incidence and prevalence [8–11]. In order for

a directly transmitted human pathogen to move through space, at least one person must travel

away from home and meet another person. Even for vector borne pathogens such as malaria

and Zika virus, typical distances traveled by the vector are much shorter than those traveled by

human hosts. Human movement is captured by survey data on journeys to work [12], ques-

tionnaire-based surveys [13] and location logging of mobile devices [14–16].

Although spatial heterogeneity has been measured at larger scales (e.g. serological attack

rates for influenza [17]), modern pathogen surveillance enables more finely resolved incidence

data sets, with details such as precise geographical location captured with increasing frequency

by modern digital and biological technology. For example, the full genome of a pathogen can

be made available in almost real time directly from clinical samples taken in the community

[18], and the home location of everyone attending a health care facility can be extracted

from clinical episode data [19]. Because this level of geographical precision for high quality
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incidence data has not previously been available, both epidemiological and disease-dynamic

studies of infectious disease have focused on predicting and explaining incidence patterns

measured at larger spatial scales, often with all cases within an administrative unit reported

together. Additional insights are likely being lost during this aggregation process.

Available evidence and intuition suggests that infectious and non-infectious individuals

have different social interactions during an outbreak [20], with plausible scenarios in which

either one or the other may be more connected in space. For example, susceptible individuals

are more likely to travel more than are infectious individuals with mild symptoms [21]. How-

ever, family members and friends providing care for infectious individuals may often not

behave in the same way as an average susceptible individual. Also, infectious individuals them-

selves may travel long distances away from transmission hotspots to seek medical care during

outbreaks of highly pathogenic infections [22].

Disease dynamic models are often used to study infection incidence and are defined pri-

marily by their force-of-infection (FOI) term: a precise mathematical specification of how the

risk of infection experienced by a susceptible individual is driven by the number of currently

infectious individuals and by their characteristics. For example, the ages of infectious and sus-

ceptible individuals must sometimes affect the risk of infection, as must the distance between

their home addresses. Disease dynamic models that represent space [23] are now used rou-

tinely to understand large-scale spatial heterogeneity in incidence: to estimate the relative

effectiveness of spatially heterogeneous interventions (given the observed incidence); to reveal

underlying social mechanisms of transmissions; and, with increasing frequency, to forecast

future spatial incidence patterns [24]. All transmission models that represent space include

some kind of spatial kernel—a formal definition of the way in which individuals from different

locations distribute their influence over the whole of geographical space.

However, there is substantial variability in the underlying FOI assumptions made in these

models, which are often not discussed explicitly and have likely only rarely made material dif-

ferences to model-based results aggregated at larger spatial scales. Nonetheless, we hypothesise

that these different FOI assumptions represent important alternate hypotheses for the mecha-

nisms of transmission and may lead to substantial structural biases in the predictions of attack

rates at smaller spatial scales. Here, we propose a general theoretical framework for the study

of infectious disease incidence at arbitrarily small spatial scales and, in particular, we look at

the relative mobility of infectious individuals relative to susceptible individuals as a potential

driver of heterogeneity in incidence.

Results

Algebraic analyses show that differential spatial connectivity of susceptible and infectious indi-

viduals can lead to variability in local attack rates (S1 Protocol). Firstly, we showed that if sus-

ceptible and infectious individuals are assumed to be connected in the same way across all

points in space, then local attack rates are uniform for any population density distribution or

grid resolution. For lower resolution grids with large individual spatial elements, where the

amplitude of connectivity of individuals outside their home pixel is small, the impact of differ-

ential connectivity between susceptible and infectious individuals is still negligible, even to the

point that it is reasonable to assume that infectious individuals have no connectivity at all out-

side their home location. However, as the resolution of the grid increases and pixels become

smaller, individuals have a substantial number of connections outside their home pixel.

Under this scenario, it was no longer possible to prove analytically that differences in the con-

nectedness of susceptible and infectious individuals would not lead to local variation in attack

rates. These analytical results were not affected by the presence of age stratification in the
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transmission process, so long as the behavior and distribution of age groups was assumed to

be uniform across space.

We established a baseline numerical scenario consistent with a 1918-like influenza pan-

demic by implementing the underlying transmission model (see Methods) as ordinary differ-

ential equations (ODEs). Using: a 1km by 1km gridded population density (55km by 33km to

the east and north of Guangzhou, China); a spatial contact kernel estimated in the same popu-

lation [25]; a basic reproductive number R0 = 1.8 [26] and recovery rate 1/2.6 days−1 [27]; we

recovered a global uniform attack rate of z = 0.73, consistent with the homogeneous mixing

model SIR model [28]. We also introduced age-stratified populations and transmission using

parameters estimated in this population [13]. For this population, accurate high-resolution

data on local age distributions were not available, therefore, we assumed that all pixels had

populations with the same age distribution, even though the total number of individuals in a

single pixel varied substantially. This addition of age effects in the transmission process did

not introduce spatial variation but did reduced the uniform global attack rate to z = 0.43, con-

sistent with analysis of the 2009 influenza pandemic [29]. We validated the precision of attack

rates obtained from the ODEs using age- and space-stratified refinements [23] of the standard

implicit equation relating attack rate (final size) z to R0: z = 1 − e−R0z [28].

We hypothesized that both population density and the gradient of population density may

influence small-scale attack rates in these models. Fig 1A and 1B show the uniform attack rate

when mobility is independent of infection status (henceforth referred to as “dual mobility”)

with four age classes, plotted against log of population density and gradient of log population

density respectively (with log gradient defined as the average difference between the log of a

location’s resident population and that of its 8 immediate neighbors).

When only non-infectious individuals were assumed to be mobile (S-mobility), location-

specific attack rates were positively correlated with log population density, correlation coeffi-

cient c = 0.75 (Fig 1C). Attack rates varied between a minimum of 33.72% to a maximum of

45.76%, an absolute range of 12.04%. Location-specific attack rates were slightly less correlated

with the log gradient of population density (correlation coefficient c = 0.73, Fig 1D). Locations

with higher attack rates tended to be densely populated relative to neighboring locations (Fig

2A and 2B). Note that the term “S-mobility” includes mobility in the recovered population.

Conversely, when only infectious individuals were assumed to be mobile (I-mobility), pixel

attack rates were negatively correlated with log population density (c = -0.7707, Fig 1E) and

even more strongly negatively correlated with log density gradient (c = -0.8816, Fig 1F). Attack

rates varied over a greater range than for susceptible-only mobility: from a minimum of

32.61% to a maximum of 90.73%, with an absolute range of 58.12%. High attack rate pixels

tended to be sparsely populated relative to neighboring locations (Fig 2A and 2C). The reader

is referred to the discussion for an evaluation of the applicability of this assumption to epi-

demic models.

Measures of spatial variation are inherently dependent on the resolution of the model grid

and even the strong variability outlined above would be missed by most surveillance systems.

The absolute range of attack rates for the susceptible-only movement was reduced to 1.67%

when aggregated to 8km by 8km pixels. Even though the effect of infectious-only movement

was stronger than for susceptible-only mobility, it was rapidly hidden by the aggregation of

pixels, with the absolute range dropping to 3.78% when aggregated to 8km by 8km pixels.

Results of aggregation using S-mobility is shown in Fig 3, and the corresponding result using

I-mobility is shown in S1 Fig.

The direction of association between FOI assumptions and local attack rate was preserved

and the amplitude remained substantial for intermediate scenarios in which both susceptible

and infectious individuals were mobile but to differing degrees. If infectious individuals had
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any more contacts than susceptible individuals then attack rates were negatively correlated

with population density, and vice versa (Fig 4). When infectious individuals reduced their

travel by a factor of 0.5, the absolute range of attack rates was 5.38% and when susceptible indi-

viduals reduced their mixing by the same degree (with infectious agents fully mobile), the

absolute range was 12.89%.

Fig 1. The relationship between force-of-infection (FOI) assumptions, local attack rates, population density and

population density gradient, for a pandemic-influenza-like epidemic. The LHS shows the relationship between

population density N (people/km2) and attack rate for (A) mobility independent of infection status (dual mobility), (C)

mobility in non-infectious population only (S-mobility) and (E) mobility in infectious population only (I-mobility). The

RHS shows the relationship between the gradient of log10N and attack rate for (B) dual mobility, (D) S-mobility and (F) I-

mobility. We used a 33km by 55km grid of 1km by 1km pixels to the North-East of Guangzhou, with kernel parameters α =

0.52, a = 0.58, p = 2.72 and influenza natural history parameters R0 = 1.8, γ = 1/2.6. Population gradient was defined as the

difference between the log population density of a pixel and the average log population density of the 8 surrounding pixels.

https://doi.org/10.1371/journal.pcbi.1006600.g001
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Fig 2. Spatial illustration of population density and non-uniform attack rates generated using different mobility

assumptions. (A) Log10 population density (people/km2). (B) Difference between location-specific attack rates and

global attack rate for S-mobility and (C) difference between location-specific attack rates and global attack rate for I-

mobility. We change color scale between plots to better illustrate the emergent patterns. A total of 4 pixels are

unpopulated and so attack rates are necessarily always zero in these locations.

https://doi.org/10.1371/journal.pcbi.1006600.g002
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The underlying mobility choice kernel K was defined by the relative probability of making a

contact in a population at a distance r and of population size N. It was parameterized by an off-

set distance a, a distance power p and destination population power α; K = Nα(1 + r/a)−p, with

values obtained by fitting to data from this population [25]. Qualitatively, our conclusions

about the impact of differential contact rates by susceptible individuals were not sensitive to

values for the offset distance a nor the distance power p (Fig 5A–5D). However, they were sen-

sitive to values of the destination power α for which we have used the best fit value of 0.53 (for

results up to this point) (Fig 5E&5F). Intriguingly, with the often-assumed default value α = 1,

the correlation between local attack rates and population density or gradient have the opposite

sign (S2 and S3 Figs). Moreover, α = 1 induces weaker correlations with local population gra-

dient. It is therefore essential to provide an accurate estimate for α, which does not require

infection-related data, before attempting to infer infection-dependent mobility.

Stochastic solutions to the meta-population models suggest that attack rate variation driven

by asymmetric mobility would not be dominated by demographic stochasticity (Fig 6). Varia-

tion in attack rate for the extreme cases of S- and I-mobility was dominated by stochastic

effects only in sparsely populated areas. For pixels with the smallest population, the amplitude

of variation expected to arise from asymmetric mobility is similar to that which may arise by

chance due to stochastic effects. However, the expected amplitude of stochastic variation

diminishes as population density increases, and variation in attack rate due to mobility

assumption becomes apparent (S4 Fig). For example, using susceptible-only mobility for 1km

by 1km pixels with populations between 1 and 85,163, the standard deviation in attack rate

due to stochasticity is 9.45% while the standard deviation of expected attack rates due to asym-

metric mobility is 2.61%.

Fig 3. Aggregation of result using S-mobility. Plots show (A) initial result, aggregated into (B) 2km by 2km, (C) 4km

by 4km, and (D) 8km by 8km pixels.

https://doi.org/10.1371/journal.pcbi.1006600.g003
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These results are robust to our choice of illustrative population density and to alternate

natural history parameters. The same effects are observed when using population density of

Puerto Rico with influenza natural history parameters (S5 Fig) and with parameters that

approximate vector-borne transmission, such as those of Zika or Chikungunya (S6 Fig). Sum-

mary statistics for these and all other deterministic model variants we have presented in this

study are shown in S1 Table.

Discussion

We have shown that, under the assumption that an individual’s total contact is independent

of home location and where they travel, substantial heterogeneity in local attack rates could

arise if mobility is dependent on infection status. Moreover, the direction of the relationship

between attack rate and population density is dependent on the contribution of population

density to the relative attractiveness of a location. For the estimate of that scaling for our sam-

ple population (α = 0.52), and when susceptible individuals are more mobile than infectious

individuals, attack rates are positively correlated with population density. Conversely, when

Fig 4. Limiting mobility of susceptible/recovered and immune agents according to parameters δ and �. Mobility of the non-

infective population is described by δ such that δ = 0 yields no mobility, δ = 1 yields mobility described by the kernel K, and

transformation between these 2 extremes in linear. Similarly, � describes the mobility of the infective population. Any values of

δ = � thus yield (reduced) dual mobility, and so attack rates are uniform in space. Plots show (A) infectious population

immobile, non-infectious mobility ranging from δ = 0 to δ = 1, moving from dual mobility to S-mobility, (B) constant reduced

mobility in the infectious population (� = 0.2), possibly accounting for mobility in asymptomatic cases only, (C) full mobility in

the infectious population, moving from I-mobility to dual mobility, and (D) � = 1 − δ, illustrating the transition from I-mobility

to S-mobility. Dashed lines show the global attack rate, and solid blue lines show correlation coefficient with log population

density.

https://doi.org/10.1371/journal.pcbi.1006600.g004
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using the often implicit assumption that the kernel is directly proportional to population den-

sity (α = 1), this correlation is negative.

Though increased mobility in infectious agents may seem less likely than reduced mobility,

there do exist potential scenarios where this may be the case in both human and animal sys-

tems. For example, humans may travel to access health care in the case of severe symptom

onset as has been the case anecdotally during the 2003/4 SARS outbreak and the 2013/14 Ebola

outbreak. Also infectious opiate users in the USA may be more mobile than less infectious

Fig 5. Sensitivity analysis. Distribution of local attack rates with respect to (A) offset a using S-mobility. (B) offset a using

I-mobility, (C) distance power p using S-mobility, (D) distance power p using I-mobility, (E) population power α using S-

mobility, and (F) population power α using I-mobility. Box plots show standard percentiles and outliers, solid lines show

global attack rate, and dashed lines show parameter values used in the main result. When fixed, all parameters are as in

main result, i.e. a = 0.58, p = 2.72, α = 0.52. Dual mobility are omitted as they are flat with variance σ2 = 0. Empty pixels

yield attack rate zero and are omitted from calculations.

https://doi.org/10.1371/journal.pcbi.1006600.g005
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opiate users [30]. I-mobility may in fact be more relevant in the epidemiology of non-human

infections, for example increased mobility in rabid dogs [31] and Gypsy moth caterpillars

infected with baculovirus forfeit [32].

Our study has a number of limitations. We have not considered spatial variation in the age

distribution of people, because these data were not available for our study population. Variabil-

ity in local attack rates will very likely also be driven in non-trivial ways by spatial correlation

in the proportion of the population in different age classes. This may be of particular signifi-

cance in larger Chinese cities such as Guangzhou, in which urban areas are home to relatively

few children and many rural locations have few working-age adults. There is also scope for the

inclusion of an urban/rural distinction in the parametrization of the travel kernel [25], and the

simulation of multiple years of transmission, which would extend the applicability of our

results beyond pandemic scenarios for influenza and other emergent pathogens. The refine-

ment of this framework to include the above phenomena is a priority for future work and we

would expect differential movement patterns with age and population to impact our findings.

Though this study was limited to a standard SIR model, we would not expect the inclusion

of a latent period, waning, or natural births and deaths to show make substantial differences to

these findings. The primary results can be obtained using renewal equations which are only

dependent on the probability of one individual escaping infection.

Our sensitivity analysis with respect to kernel population power α provides some insight

into the underlying mechanisms that give rise to the observed correlations between attack rate

and population density under different mobility assumptions. For example, consider the spe-

cial case where only infectious people are mobile and α tends to large values, making mobility

dependent only on population density of location, and not on geographical distance. Under

this scenario, high density pixels will draw in more and more infectious people and therefore

generate higher attack rates. Conversely, if α = 0, then mobility is dependent only on distance.

Under this scenario, we can think of the infectious populations spilling out of their home loca-

tions into neighboring ones. Thus, any sparsely populated location that is adjacent to a densely

populated location will see an influx of infectious individuals resulting in a greater proportion
infectious in that location, and therefore a stronger FOI and subsequent attack rate. A sche-

matic for the latter case is given in S7 Fig.

These results illustrate the potential knock-on effects of little or no dependence between

transmissibility and population density: that infectious people from more densely populated

areas go to nearby sparsely populated areas and in some sense “seek out” people in those areas

to infect so they can reach their quota (I-mobility). Within the realm of parameters that are

Fig 6. Mean attack rate over 100 iterations of stochastic equivalent of main result. We use (A) S-mobility and (B) I-

mobility. 25-, 50- and 75-percentiles are shown for a sample of 100 locations.

https://doi.org/10.1371/journal.pcbi.1006600.g006
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supported by studies of human movement and infectious processes, the behaviors implied by

the models we presented here seem valid.

Individual-based models have a number of advantages over other approaches. They can

be coded in a generic way and adapted rapidly to different pathogen systems and specific sci-

entific or policy questions. Even though they are often more substantially computationally

burdensome than comparable meta-population approaches, they will likely be used with

increasing frequency to address questions related to local attack rates. We have shown that

mobility assumptions have implications for the interpretation of attack-rates derived from

individual-based models, some of which assume implicitly that the spread of infection is

driven by the movement of individuals. We have shown that, whichever mobility assumption

is made in a given model, it is possible to modify this assumption by replacing isotropic K by a

convoluted kernel L that accounts for the change in mobility assumption (and so L may not be

a stochastic matrix and hence functions as a non-isotropic kernel). In particular, the low-prev-

alence assumption makes this transformation achievable with minimal modification to exist-

ing computer programs. Therefore, developers of individual-based models may wish to

consider alternate connectivity matrices for their simulations so as to explicitly reflect different

spatial assumptions about the force of infection.

We have also shown that the implications of typical assumptions that are made in spa-

tially explicit FOI terms, including approximations to this crucial normalization, are non-

trivial at small spatial scales. Such assumptions are, however, often not addressed explicitly

and so may contribute unknowingly to results. We hope to offer clarity in the interpretation

of FOI in spatial models, and to have provided a comprehensive framework from which

we can gain a deeper understanding of the role of spatial mobility in disease transmission

dynamics as infectious disease incidence data become available at higher and higher spatial

resolution.

Methods

Spatial kernels

Data taken from populations we study here show that total contacts made per day, and contact

durations, do correlate with population density (p< 0.001, [13]), but that the strength of the

relationship is weak. This is in part due to working-age adults dominating the population of

urban areas, but also to the phenomenon of urban isolation [33]. When investigating only the

effect of mobility assumption in force of infection, our main results made the baseline assump-

tion that total contact and duration of contact is independent of home location.

The way in which these contacts are distributed in space does, however, depend on distance

and population density, and is described via a spatial kernel K. In matrix notation, Kij is

defined as the proportion of time spent by an agent from location i in location j. The assump-

tion of uniformity of total contact therefore means that the rows of K sum to unity. Our model

employs the offset gravity kernel, defined as follows:

Kij /
NiNa

j

1þ ðrij=aÞ
p ð1Þ

with baseline parameters of a = 0.58, p = 2.72, α = 0.52, where rij denotes the geodesic distance

between the center-points of pixels i and j. Of the kernel structures studied in [25], offset grav-

ity is shown to best represent contact data. Imposing the constraint that K is stochastic renders

redundant the factor Ni in the numerator (owing to row-normalization).
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Population density map

We used rectangular excerpts from the Landscan dataset [34] with the lower left corner of the

rectangle located on the center of the city of Guangzhou, China. The rectangle is 55km from

east to west and 33km from north to south, and a 4km boundary area was excluded after

simulation.

The boundary area was chosen according to the following rationale: when population den-

sity data for large suburban areas is truncated for the purpose of simulation, it is equivalent to

imposing empty space outside of the boundary, and this modification may effect the attack

rates calculated in pixels close to that boundary. We ran simulations on a large area of 1km by

1km pixels, and on smaller areas contained within this larger area. We found that attack rates

agree on all pixels on the interior of the smaller area once a 4km perimeter is removed.

Force-of-infection

Let A denote the S-mobility kernel and B the I-mobility kernel. Then the age-independent gen-

eralized FOI equation is given by:

li ¼ b
X

j

Aij

P
kB

T
jkIk

P
l

h
AT

jl ðNl � IlÞ þ BT
jl Il
i : ð2Þ

For reduced mobility, movement of the non-infectious population is governed by a parameter

δ such that A = (1 − δ)E + δK, where E is an identity matrix representing absence of spatial

mobility. Similarly, we describe mobility of infective individuals by � such that B = (1 − �)E +

�K. S-mobility thus corresponds to δ = 1, � = 0 and I-mobility to δ = 0, � = 1.

If K is the n × n spatial kernel, indexed by i, j, k, l, and C the 4 × 4 age-mixing matrix,

indexed by a, b, c, d, then the age-explicit dual-mobility equation is given by:

l
D
ða;iÞ ¼ b

X

b;j

Kijdab

P
c;kK

T
jkCbcIðc;kÞ

P
d;lKT

jl Nðd;lÞ
ð3Þ

This can be combined with Eq (2) to give the age-dependent system with reduced mobility.

In all simulations presented in this study, we use the pointwise product of the matrices

defining number of contacts and duration of contact between age groups 0–4, 5–19, 20–64

and 65+ derived in [13]. These age-mixing matrices were constructed from contact surveys

conducted in the region of Guangzhou used in our results.

Model solutions

We define the gridded transmission model as ordinary differential equations. However, we

also implement a stochastic compartmental version of the model and we calculate attack rates

using recursive equations.

We used a standard SIR model with _Si ¼ � Sili;
_I i ¼ Sili � gIi; _Ri ¼ gIi. ODE models

were seeded proportional to population density (σ = 10−8 × N/∑iNi), and agreed with final size

calculations (which assume infinitesimal seeding). Integration of ODEs with full FOI in the S-

and I-mobility case, i.e. with Il(t) in denominators, showed low-prevalence approximations to

be good. For example, in the main S-mobility result, the mean difference in pixel attack rates

between the full FOI and low prevalence approximation was 6.22 × 10−4 with maximum differ-

ence 3.3 × 10−3 occurring in a pixel with population 726. Therefore, numerical solutions for all

figures were obtained using the low prevalence approximation (c.f. S1 Protocol). A selection of

smaller examples agreed when checked using the full FOI.
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The stochastic compartmental variant of our model selected the number of agents to infect

from binomial distribution with parameters S(a,i) and 1 − exp(−λ(a,i)). This method requires

specification of a time-step, and we found Δt = 1/6 days to be sufficiently small (results did not

change when Δt was doubled, and results were consistent with the corresponding determin-

istic model).

Supporting information

S1 Table. Summary statistics for different model parameters, populations and mobility

assumptions. Results for different grid sizes involve aggregation of result obtained at 1km by

1km resolution. In all cases, empty pixels are omitted from calculations. It is therefore possible

to obtain a smaller minimum value of attack rate after aggregation.

(PDF)

S1 Fig. Aggregation of result using I-mobility. Plots show (A) initial result, aggregated into

(B) 2km by 2km, (C) 4km by 4km, and (D) 8km by 8km pixels.

(TIFF)

S2 Fig. Sensitivity analysis: Correlation coefficient of attack rate with population density

for different values of kernel parameters. We vary(A) α with a = 0.58 and p = 2.72 fixed,

comparing S-mobility with I-mobility (B) a and α, using S-mobility with p = 2.72 fixed, (C) a
and α, using I-mobility with p = 2.72 fixed, (D) p and α, using S-mobility with a = 0.58 fixed,

and (E) p and α, using I-mobility with a = 0.58 fixed. All fixed parameter values are those used

in main result.

(TIF)

S3 Fig. Repeating our main result with α = 1. We use (A) S-mobility, with attack rates plotted

against population density, (B) S-mobility/gradient, (C) I-mobility/density, and (D) I-mobil-

ity/gradient. Other parameters remain as in main result, i.e. a = 0.58, p = 2.72.

(TIF)

S4 Fig. Ratio R of location-specific standard deviation over 100 iterations of stochastic

model to standard deviation of corresponding deterministic model result over all pixels.

We use (A) S-mobility and (B) I-mobility. All parameters as in main result, i.e. a = 0.58,

p = 2.72, α = 0.52.

(TIF)

S5 Fig. Simulated attack rates using population density of North-East Puerto-Rico: Influ-

enza. We use a 60km by 60km grid of 1km by 1km pixels, and influenza-like natural history

parameters R0 = 1.8, γ = 1/2.6, with (A) S-mobility plotted against population density, (B) S-

mobility plotted against log population gradient, (C) I-mobility/density, and (D) I-mobility/

gradient. Kernel parameters as in main result, i.e. a = 0.58, p = 2.72, α = 0.52.

(TIF)

S6 Fig. Simulated attack rates using population density of North-East Puerto-Rico: Zika.

We use a 60km by 60km grid of 1km by 1km pixels, and natural history parameters R0 = 4, γ =

1/10 approximating vector-borne transmission (e.g. Zika, Chikungunya), with (A) S-mobility

plotted against population density, (B) S-mobility plotted against log population gradient, (C)

I-mobility/density, and (D) I-mobility/gradient. Kernel parameters as in main result, i.e.

a = 0.58, p = 2.72, α = 0.52.

(TIF)
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S7 Fig. Schematic illustration of the process by which the observed trends arise. As an

example, assume infectious-only mobility and let location x be locally densely populated, with

disease prevalence initially proportional to population density (initial infective populations are

shown in light blue). If the travel kernel K is dominated by distance (α small, c.f. S3 Fig), then

some of the infectious population in each pixel will relocate to neighboring pixels (white). The

result is a higher prevalence in locally sparsely populated pixels. Moreover, a larger local popu-

lation gradient will allow this phenomenon to persist. Moreover, infection status is recorded

by home location, which, under the I-mobility assumption, is equivalent to location when sus-

ceptible/recovered. The result is a negative correlation between local population density and

attack rate.

(TIF)

S1 Protocol. Additional algebraic analyses. Algebraic analyses of: uniform local attack rates

for dual mobility assumptions; the relationship between our results and other approximations

in the literature [35–37]; convoluted kernel formulations; and calculation of the global trans-

missibility coefficient.

(PDF)
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