1,610 research outputs found
UK utility data integration: overcoming schematic heterogeneity
In this paper we discuss syntactic, semantic and schematic issues which inhibit the integration of utility data in the UK. We then focus on the techniques employed within the VISTA project to overcome schematic heterogeneity. A Global
Schema based architecture is employed. Although automated approaches to Global Schema definition were attempted
the heterogeneities of the sector were too great. A manual approach to Global Schema definition was employed. The
techniques used to define and subsequently map source utility data models to this schema are discussed in detail. In order to ensure a coherent integrated model, sub and cross domain validation issues are then highlighted. Finally the proposed framework and data flow for schematic integration is introduced
Conditional generation of sub-Poissonian light from two-mode squeezed vacuum via balanced homodyne detection on idler mode
A simple scheme for conditional generation of nonclassical light with
sub-Poissonian photon-number statistics is proposed. The method utilizes
entanglement of signal and idler modes in two-mode squeezed vacuum state
generated in optical parametric amplifier. A quadrature component of the idler
mode is measured in balanced homodyne detector and only those experimental runs
where the absolute value of the measured quadrature is higher than certain
threshold are accepted. If the threshold is large enough then the conditional
output state of signal mode exhibits reduction of photon-number fluctuations
below the coherent-state level.Comment: 7 pages, 6 figures, REVTe
Comparisons of Supergranule Characteristics During the Solar Minima of Cycles 22/23 and 23/24
Supergranulation is a component of solar convection that manifests itself on
the photosphere as a cellular network of around 35 Mm across, with a turnover
lifetime of 1-2 days. It is strongly linked to the structure of the magnetic
field. The horizontal, divergent flows within supergranule cells carry local
field lines to the cell boundaries, while the rotational properties of
supergranule upflows may contribute to the restoration of the poloidal field as
part of the dynamo mechanism that controls the solar cycle. The solar minimum
at the transition from cycle 23 to 24 was notable for its low level of activity
and its extended length. It is of interest to study whether the convective
phenomena that influences the solar magnetic field during this time differed in
character to periods of previous minima. This study investigates three
characteristics (velocity components, sizes and lifetimes) of solar
supergranulation. Comparisons of these characteristics are made between the
minima of cycles 22/23 and 23/24 using MDI Doppler data from 1996 and 2008,
respectively. It is found that whereas the lifetimes are equal during both
epochs (around 18 h), the sizes are larger in 1996 (35.9 +/- 0.3 Mm) than in
2008 (35.0 +/- 0.3 Mm), while the dominant horizontal velocity flows are weaker
(139 +/- 1 m/s in 1996; 141 +/- 1 m/s in 2008). Although numerical differences
are seen, they are not conclusive proof of the most recent minimum being
inherently unusual.Comment: 22 pages, 5 figures. Solar Physics, in pres
Double Photoproduction off the Proton at Threshold
The reaction has been measured using the TAPS
BaF calorimeter at the tagged photon facility of the Mainz Microtron
accelerator. Chiral perturbation theory (ChPT) predicts that close to threshold
this channel is significantly enhanced compared to double pion final states
with charged pions. In contrast to other reaction channels, the lower order
tree terms are strongly suppressed in 2 photoproduction. The consequence
is the dominance of pion loops in the 2 channel close to threshold - a
result that opens new prospects for the test of ChPT and in particular its
inherent loop terms. The present measurement is the first which is sensitive
enough for a conclusive comparison with the ChPT calculation and is in
agreement with its prediction. The data also show good agreement with a
calculation in the unitary chiral approach.Comment: Submitted to PL
Lifetime distributions in the methods of non-equilibrium statistical operator and superstatistics
A family of non-equilibrium statistical operators is introduced which differ
by the system age distribution over which the quasi-equilibrium (relevant)
distribution is averaged. To describe the nonequilibrium states of a system we
introduce a new thermodynamic parameter - the lifetime of a system.
Superstatistics, introduced in works of Beck and Cohen [Physica A \textbf{322},
(2003), 267] as fluctuating quantities of intensive thermodynamical parameters,
are obtained from the statistical distribution of lifetime (random time to the
system degeneracy) considered as a thermodynamical parameter. It is suggested
to set the mixing distribution of the fluctuating parameter in the
superstatistics theory in the form of the piecewise continuous functions. The
distribution of lifetime in such systems has different form on the different
stages of evolution of the system. The account of the past stages of the
evolution of a system can have a substantial impact on the non-equilibrium
behaviour of the system in a present time moment.Comment: 18 page
The nature of an object-oriented program:how do practitioners understand the nature of what they are creating?
Object-oriented programming is seen as a difficult skill to master. There is considerable debate about the most appropriate way to introduce novice programmers to object-oriented concepts. Is it possible to uncover what the critical aspects or features are that enhance the learning of object-oriented programming? Practitioners have differing understandings of the nature of an object-oriented program. Uncovering these different ways of understanding leads to agreater understanding of the critical aspects and their relationship tothe structure of the program produced. A phenomenographic studywas conducted to uncover practitioner understandings of the nature of an object-oriented program. The study identified five levels of understanding and three dimensions of variation within these levels. These levels and dimensions of variation provide a framework for fostering conceptual change with respect to the nature of an object-oriented program
The Effects of Atmospheric Dispersion on High-Resolution Solar Spectroscopy
We investigate the effects of atmospheric dispersion on observations of the
Sun at the ever-higher spatial resolutions afforded by increased apertures and
improved techniques. The problems induced by atmospheric refraction are
particularly significant for solar physics because the Sun is often best
observed at low elevations, and the effect of the image displacement is not
merely a loss of efficiency, but the mixing of information originating from
different points on the solar surface. We calculate the magnitude of the
atmospheric dispersion for the Sun during the year and examine the problems
produced by this dispersion in both spectrographic and filter observations. We
describe an observing technique for scanning spectrograph observations that
minimizes the effects of the atmospheric dispersion while maintaining a regular
scanning geometry. Such an approach could be useful for the new class of
high-resolution solar spectrographs, such as SPINOR, POLIS, TRIPPEL, and ViSP
Observation and Modeling of the Solar-Cycle Variation of the Meridional Flow
We present independent observations of the solar-cycle variation of flows
near the solar surface and at a depth of about 60 Mm, in the latitude range
. We show that the time-varying components of the meridional flow
at these two depths have opposite sign, while the time-varying components of
the zonal flow are in phase. This is in agreement with previous results. We
then investigate whether the observations are consistent with a theoretical
model of solar-cycle dependent meridional circulation based on a flux-transport
dynamo combined with a geostrophic flow caused by increased radiative loss in
the active region belt (the only existing quantitative model). We find that the
model and the data are in qualitative agreement, although the amplitude of the
solar-cycle variation of the meridional flow at 60 Mm is underestimated by the
model.Comment: To be published in Solar Physcis Topical Issue "Helioseismology,
Asteroseismology, and MHD Connections
- …