1,261 research outputs found
A Lax Description for Polytropic Gas Dynamics
We give a Lax description for the system of polytropic gas equations. The
special structure of the Lax function naturally leads to the two infinite sets
of conserved charges associated with this system. We obtain closed form
expressions for the conserved charges as well as the generating functions for
them. We show how the study of these generating functions can naturally lead to
the recursion relation between the conserved quantities as well as the higher
order Hamiltonian structures.Comment: 9 pages, Te
Optimal path planning for nonholonomic robotics systems via parametric optimisation
Abstract. Motivated by the path planning problem for robotic systems this paper considers nonholonomic path planning on the Euclidean group of motions SE(n) which describes a rigid bodies path in n-dimensional Euclidean space. The problem is formulated as a constrained optimal kinematic control problem where the cost function to be minimised is a quadratic function of translational and angular velocity inputs. An application of the Maximum Principle of optimal control leads to a set of Hamiltonian vector field that define the necessary conditions for optimality and consequently the optimal velocity history of the trajectory. It is illustrated that the systems are always integrable when n = 2 and in some cases when n = 3. However, if they are not integrable in the most general form of the cost function they can be rendered integrable by considering special cases. This implies that it is possible to reduce the kinematic system to a class of curves defined analytically. If the optimal motions can be expressed analytically in closed form then the path planning problem is reduced to one of parameter optimisation where the parameters are optimised to match prescribed boundary conditions.This reduction procedure is illustrated for a simple wheeled robot with a sliding constraint and a conventional slender underwater vehicle whose velocity in the lateral directions are constrained due to viscous damping
Discrete Variational Optimal Control
This paper develops numerical methods for optimal control of mechanical
systems in the Lagrangian setting. It extends the theory of discrete mechanics
to enable the solutions of optimal control problems through the discretization
of variational principles. The key point is to solve the optimal control
problem as a variational integrator of a specially constructed
higher-dimensional system. The developed framework applies to systems on
tangent bundles, Lie groups, underactuated and nonholonomic systems with
symmetries, and can approximate either smooth or discontinuous control inputs.
The resulting methods inherit the preservation properties of variational
integrators and result in numerically robust and easily implementable
algorithms. Several theoretical and a practical examples, e.g. the control of
an underwater vehicle, will illustrate the application of the proposed
approach.Comment: 30 pages, 6 figure
Equivalence of the Siegert-pseudostate and Lagrange-mesh R-matrix methods
Siegert pseudostates are purely outgoing states at some fixed point expanded
over a finite basis. With discretized variables, they provide an accurate
description of scattering in the s wave for short-range potentials with few
basis states. The R-matrix method combined with a Lagrange basis, i.e.
functions which vanish at all points of a mesh but one, leads to simple
mesh-like equations which also allow an accurate description of scattering.
These methods are shown to be exactly equivalent for any basis size, with or
without discretization. The comparison of their assumptions shows how to
accurately derive poles of the scattering matrix in the R-matrix formalism and
suggests how to extend the Siegert-pseudostate method to higher partial waves.
The different concepts are illustrated with the Bargmann potential and with the
centrifugal potential. A simplification of the R-matrix treatment can usefully
be extended to the Siegert-pseudostate method.Comment: 19 pages, 1 figur
Multiplicative renormalizability of gluon and ghost propagators in QCD
We reformulate the coupled set of continuum equations for the renormalized
gluon and ghost propagators in QCD, such that the multiplicative
renormalizability of the solutions is manifest, independently of the specific
form of full vertices and renormalization constants. In the Landau gauge, the
equations are free of renormalization constants, and the renormalization point
dependence enters only through the renormalized coupling and the renormalized
propagator functions. The structure of the equations enables us to devise novel
truncations with solutions that are multiplicatively renormalizable and agree
with the leading order perturbative results. We show that, for infrared power
law behaved propagators, the leading infrared behavior of the gluon equation is
not solely determined by the ghost loop, as concluded in previous studies, but
that the gluon loop, the three-gluon loop, the four-gluon loop, and even
massless quarks also contribute to the infrared analysis. In our new Landau
gauge truncation, the combination of gluon and ghost loop contributions seems
to reject infrared power law solutions, but massless quark loops illustrate how
additional contributions to the gluon vacuum polarization could reinstate these
solutions. Moreover, a schematic study of the three-gluon and four-gluon loops
shows that they too need to be considered in more detail before a definite
conclusion about the existence of infrared power behaved gluon and ghost
propagators can be reached.Comment: 13 pages, 1 figure, submitted to Phys. Rev.
Multiplicative renormalizability and quark propagator
The renormalized Dyson-Schwinger equation for the quark propagator is
studied, in Landau gauge, in a novel truncation which preserves multiplicative
renormalizability. The renormalization constants are formally eliminated from
the integral equations, and the running coupling explicitly enters the kernels
of the new equations. To construct a truncation which preserves multiplicative
renormalizability, and reproduces the correct leading order perturbative
behavior, non-trivial cancellations involving the full quark-gluon vertex are
assumed in the quark self-energy loop. A model for the running coupling is
introduced, with infrared fixed point in agreement with previous
Dyson-Schwinger studies of the gauge sector, and with correct logarithmic tail.
Dynamical chiral symmetry breaking is investigated, and the generated quark
mass is of the order of the extension of the infrared plateau of the coupling,
and about three times larger than in the Abelian approximation, which violates
multiplicative renormalizability. The generated scale is of the right size for
hadronic phenomenology, without requiring an infrared enhancement of the
running coupling.Comment: 17 pages; minor corrections, comparison to lattice results added;
accepted for publication in Phys. Rev.
Discrete Nonholonomic Lagrangian Systems on Lie Groupoids
This paper studies the construction of geometric integrators for nonholonomic
systems. We derive the nonholonomic discrete Euler-Lagrange equations in a
setting which permits to deduce geometric integrators for continuous
nonholonomic systems (reduced or not). The formalism is given in terms of Lie
groupoids, specifying a discrete Lagrangian and a constraint submanifold on it.
Additionally, it is necessary to fix a vector subbundle of the Lie algebroid
associated to the Lie groupoid. We also discuss the existence of nonholonomic
evolution operators in terms of the discrete nonholonomic Legendre
transformations and in terms of adequate decompositions of the prolongation of
the Lie groupoid. The characterization of the reversibility of the evolution
operator and the discrete nonholonomic momentum equation are also considered.
Finally, we illustrate with several classical examples the wide range of
application of the theory (the discrete nonholonomic constrained particle, the
Suslov system, the Chaplygin sleigh, the Veselova system, the rolling ball on a
rotating table and the two wheeled planar mobile robot).Comment: 45 page
A new Chiral Two-Matrix Theory for Dirac Spectra with Imaginary Chemical Potential
We solve a new chiral Random Two-Matrix Theory by means of biorthogonal
polynomials for any matrix size . By deriving the relevant kernels we find
explicit formulas for all -point spectral (mixed or unmixed) correlation
functions. In the microscopic limit we find the corresponding scaling
functions, and thus derive all spectral correlators in this limit as well. We
extend these results to the ordinary (non-chiral) ensembles, and also there
provide explicit solutions for any finite size , and in the microscopic
scaling limit. Our results give the general analytical expressions for the
microscopic correlation functions of the Dirac operator eigenvalues in theories
with imaginary baryon and isospin chemical potential, and can be used to
extract the tree-level pion decay constant from lattice gauge theory
configurations. We find exact agreement with previous computations based on the
low-energy effective field theory in the two special cases where comparisons
are possible.Comment: 31 pages 2 figures, v2 missing term in partially quenched results
inserted, fig 2 update
A new chiral two-matrix theory for dirac spectra with imaginary chemical potential
We solve a new chiral Random Two-Matrix Theory by means of biorthogonal polynomials for any matrix size . By deriving the relevant kernels we find explicit formulas for all -point spectral (mixed or unmixed) correlation functions. In the microscopic limit we find the corresponding scaling functions, and thus derive all spectral correlators in this limit as well. We extend these results to the ordinary (non-chiral) ensembles, and also there provide explicit solutions for any finite size , and in the microscopic scaling limit. Our results give the general analytical expressions for the microscopic correlation functions of the Dirac operator eigenvalues in theories with imaginary baryon and isospin chemical potential, and can be used to extract the tree-level pion decay constant from lattice gauge theory configurations. We find exact agreement with previous computations based on the low-energy effective field theory in the two special cases where comparisons are possible
Solution of coupled vertex and propagator Dyson-Schwinger equations in the scalar Munczek-Nemirovsky model
In a scalar model, we exactly solve the vertex and
propagator Dyson-Schwinger equations under the assumption of a spatially
constant (Munczek-Nemirovsky) propagator for the field. Various
truncation schemes are also considered.Comment: 7 pages,4 figures, minor changes, reference added for published
versio
- âŠ