742 research outputs found

    T cell mediated cerebral hemorrhages and microhemorrhages during passive Aβ immunization in APPPS1 transgenic mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Immunization against amyloid-β (Aβ), the peptide that accumulates in the form of senile plaques and in the cerebrovasculature in Alzheimer's disease (AD), causes a dramatic immune response that prevents plaque formation and clears accumulated Aβ in transgenic mice. In a clinical trial of Aβ immunization, some patients developed meningoencephalitis and hemorrhages. Neuropathological investigations of patients who died after the trial showed clearance of amyloid pathology, but also a powerful immune response involving activated T cells probably underlying the negative effects of the immunization.</p> <p>Results</p> <p>To define the impact of T cells on this inflammatory response we used passive immunization and adoptive transfer to separate the effect of IgG and T cell mediated effects on microhemorrhage in APPPS1 transgenic mice. Neither anti Aβ IgG nor adoptively transferred T cells, alone, led to increased cerebrovascular damage. However, the combination of adoptively transferred T cells and passive immunization led to massive cerebrovascular bleeding that ranged from multiple microhemorrhages in the parenchyma to large hematomas.</p> <p>Conclusions</p> <p>Our results indicate that vaccination can lead to Aβ and T cell induced cerebral micro-hemorrhages and acute hematomas, which are greatly exacerbated by T cell mediated activity.</p

    Bi-allelic GAD1 variants cause a neonatal onset syndromic developmental and epileptic encephalopathy.

    Get PDF
    Developmental and epileptic encephalopathies are a heterogeneous group of early-onset epilepsy syndromes dramatically impairing neurodevelopment. Modern genomic technologies have revealed a number of monogenic origins and opened the door to therapeutic hopes. Here we describe a new syndromic developmental and epileptic encephalopathy caused by bi-allelic loss-of-function variants in GAD1, as presented by 11 patients from six independent consanguineous families. Seizure onset occurred in the first 2 months of life in all patients. All 10 patients, from whom early disease history was available, presented with seizure onset in the first month of life, mainly consisting of epileptic spasms or myoclonic seizures. Early EEG showed suppression-burst or pattern of burst attenuation or hypsarrhythmia if only recorded in the post-neonatal period. Eight patients had joint contractures and/or pes equinovarus. Seven patients presented a cleft palate and two also had an omphalocele, reproducing the phenotype of the knockout Gad1-/- mouse model. Four patients died before 4 years of age. GAD1 encodes the glutamate decarboxylase enzyme GAD67, a critical actor of the γ-aminobutyric acid (GABA) metabolism as it catalyses the decarboxylation of glutamic acid to form GABA. Our findings evoke a novel syndrome related to GAD67 deficiency, characterized by the unique association of developmental and epileptic encephalopathies, cleft palate, joint contractures and/or omphalocele

    Peribiliary glands are key in regeneration of the human biliary epithelium after severe bile duct injury

    Get PDF
    Peribiliary glands (PBG) are a source of stem/progenitor cells organized in a cellular network encircling large bile ducts. Severe cholangiopathy with loss of luminal biliary epithelium has been proposed to activate PBG, resulting in cell proliferation and differentiation to restore biliary epithelial integrity. However, formal evidence for this concept in human livers is lacking. We, therefore, developed a novel ex vivo model using precision-cut slices of extrahepatic human bile ducts obtained from discarded donor livers, providing an intact anatomical organization of cell structures, to study spatiotemporal differentiation and migration of PBG cells after severe biliary injury. Post-ischemic bile duct slices were incubated in oxygenated culture medium for up to a week. At baseline, severe tissue injury was evident with loss of luminal epithelial lining and mural stroma necrosis. In contrast, PBG remained relatively well preserved and different reactions of PBG were noted, including PBG dilatation, cell proliferation and maturation. Proliferation of PBG cells increased after 24 h of oxygenated incubation, reaching a peak after 72 h. Proliferation of PBG cells was paralleled by a reduction in PBG apoptosis and differentiation from a primitive and pluripotent (Nanog+/Sox9+) to a mature (CFTR+/secretin receptor+) and activated phenotype (increased expression of HIF-1α, Glut-1, and VEGF-A). Migration of proliferating PBG cells in our ex vivo model was unorganized, but resulted in generation of epithelial monolayers at stromal surfaces. CONCLUSION: Human PBG contain biliary progenitor cells and are able to respond to bile duct epithelial loss with proliferation, differentiation, and maturation to restore epithelial integrity. The ex vivo spatiotemporal behaviour of human PBG cells provides evidence for a pivotal role of PBG in biliary regeneration after severe injury. This article is protected by copyright. All rights reserved

    Hypothermic oxygenated machine perfusion reduces bile duct reperfusion injury after transplantation of donation after circulatory death livers

    Get PDF
    INTRODUCTION: Dual hypothermic oxygenated machine perfusion (DHOPE) of the liver has been advocated as a method to reduce ischemia-reperfusion injury. This study aimed to determine whether DHOPE reduces IR injury of the bile ducts in DCD liver transplantation. MATERIALS AND METHODS: In a recently performed phase 1-trial, ten DCD livers were preserved with DHOPE after static cold storage (SCS) (www.trialregister.nl NTR4493). Bile duct biopsies were obtained at the end of SCS (before DHOPE; baseline) and after graft reperfusion in the recipient. Histological severity of biliary injury was graded according to an established semi-quantitative grading system. Twenty liver transplantations using DCD livers not preserved with DHOPE served as control. RESULTS: Baseline characteristics and the degree of bile duct injury at baseline (end of SCS) were similar between both groups. In controls, degree of stroma necrosis (P=0.002) and injury of the deep peribiliary glands (P=0.02) increased after reperfusion, compared to baseline. In contrast, in DHOPE preserved livers the degree of bile duct injury did not increase after reperfusion. Moreover, there was less injury of deep peribiliary glands (P=0.04) after reperfusion in the DHOPE group, compared to controls. CONCLUSION: This study suggests that DHOPE reduces ischemia-reperfusion injury of bile ducts after DCD liver transplantation. This article is protected by copyright. All rights reserved

    Protein-free formation of bone-like apatite: New insights into the key role of carbonation

    Get PDF
    International audienceThe nanometer-sized plate-like morphology of bone mineral is necessary for proper bone mechanics and physiology. However, mechanisms regulating the morphology of these mineral nanocrystals remain unclear. The dominant hypothesis attributes the size and shape regulation to organic-mineral interactions. Here, we present data supporting the hypothesis that physicochemical effects of carbonate integration within the apatite lattice control the morphology, size, and mechanics of bioapatite mineral crystals. Carbonated apatites synthesized in the absence of organic molecules presented plate-like morphologies and nanoscale crystallite dimensions. Experimentally-determined crystallite size, lattice spacing, solubility and atomic order were modified by carbonate concentration. Molecular dynamics (MD) simulations and density functional theory (DFT) calculations predicted changes in surface energy and elastic moduli with carbonate concentration. Combining these results with a scaling law predicted the experimentally observed scaling of size and energetics with carbonate concentration. The experiments and models describe a clear mechanism by which crystal dimensions are controlled by carbonate substitution. Furthermore, the results demonstrate that carbonate substitution is sufficient to drive the formation of bone-like crystallites. This new understanding points to pathways for biomimetic synthesis of novel, nanostructured biomaterials

    The helicase HAGE prevents interferon-a-induced PML expression in ABCB5+ malignant melanoma-initiating cells by promoting the expression of SOCS1

    Get PDF
    The tumour suppressor PML (promyelocytic leukaemia protein) regulates several cellular pathways involving cell growth, apoptosis, differentiation and senescence. PML also has an important role in the regulation of stem cell proliferation and differentiation. Here, we show the involvement of the helicase HAGE in the transcriptional repression of PML expression in ABCB5 + malignant melanoma-initiating cells (ABCB5 + MMICs), a population of cancer stem cells which are responsible for melanoma growth, progression and resistance to drug-based therapy. HAGE prevents PML gene expression by inhibiting the activation of the JAK-STAT (janus kinase-signal transducers and activators of transcription) pathway in a mechanism which implicates the suppressor of cytokine signalling 1 (SOCS1). Knockdown of HAGE led to a significant decrease in SOCS1 protein expression, activation of the JAK-STAT signalling cascade and a consequent increase of PML expression. To confirm that the reduction in SOCS1 expression was dependent on the HAGE helicase activity, we showed that SOCS1, effectively silenced by small interfering RNA, could be rescued by re-introduction of HAGE into cells lacking HAGE. Furthermore, we provide a mechanism by which HAGE promotes SOCS1 mRNA unwinding and protein expression in vitro

    Opposite acute potassium and sodium shifts during transplantation of hypothermic machine perfused donor livers

    Get PDF
    Liver transplantation is frequently associated with hyperkalemia, especially after graft reperfusion. Dual hypothermic oxygenated machine perfusion (DHOPE) reduces ischemia/reperfusion injury and improves graft function, compared to conventional static cold storage (SCS). We examined the effect of DHOPE on ex situ and in vivo shifts of potassium and sodium. Potassium and sodium shifts were derived from balance measurements in a preclinical study of livers that underwent DHOPE (n = 6) or SCS alone (n = 9), followed by ex situ normothermic reperfusion. Similar measurements were performed in a clinical study of DHOPE-preserved livers (n = 10) and control livers that were transplanted after SCS only (n = 9). During DHOPE, preclinical and clinical livers released a mean of 17 +/- 2 and 34 +/- 6 mmol potassium and took up 25 +/- 9 and 24 +/- 14 mmol sodium, respectively. After subsequent normothermic reperfusion, DHOPE-preserved livers took up a mean of 19 +/- 3 mmol potassium, while controls released 8 +/- 5 mmol potassium. During liver transplantation, blood potassium levels decreased upon reperfusion of DHOPE-preserved livers while levels increased after reperfusion of SCS-preserved liver, delta potassium levels were -0.77 +/- 0.20 vs. +0.64 +/- 0.37 mmol/L, respectively (P = .002). While hyperkalemia is generally anticipated during transplantation of SCS-preserved livers, reperfusion of hypothermic machine perfused livers can lead to decreased blood potassium or even hypokalemia in the recipient

    Immigration and prices: quasi-experimental evidence from Syrian refugees in Turkey

    Full text link
    We exploit the regional variation in the unexpected (or forced) inflow of Syrian refugees as a natural experiment to estimate the impact of immigration on consumer prices in Turkey. Using a difference-in- differences strategy and a comprehensive data set on the regional prices of CPI items, we find that general level of consumer prices has declined by approximately 2.5 percent due to immigration. Prices of goods and services have declined in similar magnitudes. We highlight that the channel through which the price declines take place is the informal labor market. Syrian refugees supply inexpensive informal labor and, thus, substitute the informal native workers especially in informal labor intensive sectors. We document that prices in these sectors have fallen by around 4 percent, while the prices in the formal labor intensive sectors have almost remained unchanged. Increase in the supply of informal immigrant workers generates labor cost advantages and keeps prices lower in the informal labor intensive sectors
    corecore