216 research outputs found

    First results from the CROP-11 deep seismic profile, central Apennines, Italy: evidence of mid-crustal folding

    Get PDF
    The CROP-11 deep seismic profile across the central Apennines, Italy, reveals a previously unknown, mid-crustal antiform here interpreted as a fault-bend fold-like structure. The seismic facies and gravity signature suggest that this structure consists of low-grade metamorphic rocks. Geomorphological, stratigraphic and tectonic evidence in the overlying shallow thrusts suggests that this structure developed in early to mid-Messinian time and grew out of sequence in late Messinian– Pliocene time. The out-of-sequence growth may reflect a taper subcriticality stage of the Apenninic thrust wedge, which induced renewed contraction in the rear.Published583–586ope

    First results from the CROP-11 deep seismic profile, central Apennines, Italy: evidence of mid-crustal folding

    Get PDF
    The CROP-11 deep seismic profile across the central Apennines, Italy, reveals a previously unknown, mid-crustal antiform here interpreted as a fault-bend fold-like structure. The seismic facies and gravity signature suggest that this structure consists of low-grade metamorphic rocks. Geomorphological, stratigraphic and tectonic evidence in the overlying shallow thrusts suggests that this structure developed in early to mid-Messinian time and grew out of sequence in late Messinian– Pliocene time. The out-of-sequence growth may reflect a taper subcriticality stage of the Apenninic thrust wedge, which induced renewed contraction in the rear

    Silver nanowire networks: Physical properties and potential integration in solar cells

    Get PDF
    peer reviewedWith the growing interest in flexible electronics and the increased utilization of Indium Tin Oxide electrodes for display and photovoltaic applications the need for new materials is emerging. In this work we present the electro-optical properties of Ag nanowire networks as an alternative transparent conductive material. A comparison of different film deposition techniques is made and indicates that the properties of the network are independent of the fabrication method. Analysis of the electrical behavior as a function of nanowire density is made and compared with theoretical results as well as Monte Carlo simulations. Thermal annealing is shown to reduce the sheet resistance from 1000 Ω/sq to 8 Ω/sq; this reduction is achieved by local sintering of the nanowire junctions. Experimental optimization of Ag nanowire electrodes was undertaken and a peak in the electro-optical properties is observed at approximately 100 mg/mÂČ. Finally a discussion of the potential integration of Ag nanowire networks into solar cells is undertaken; we observe that these electrodes show promise as an emerging transparent conductive material, especially for flexible applications

    Hypolithic Microbial Community of Quartz Pavement in the High-Altitude Tundra of Central Tibet

    Get PDF
    The hypolithic microbial community associated with quartz pavement at a high-altitude tundra location in central Tibet is described. A small-scale ecological survey indicated that 36% of quartz rocks were colonized. Community profiling using terminal restriction fragment length polymorphism revealed no significant difference in community structure among a number of colonized rocks. Real-time quantitative PCR and phylogenetic analysis of environmental phylotypes obtained from clone libraries were used to elucidate community structure across all domains. The hypolithon was dominated by cyanobacterial phylotypes (73%) with relatively low frequencies of other bacterial phylotypes, largely represented by the chloroflexi, actinobacteria, and bacteriodetes. Unidentified crenarchaeal phylotypes accounted for 4% of recoverable phylotypes, while algae, fungi, and mosses were indicated by a small fraction of recoverable phylotypes

    Single-cell sequencing reveals Hippo signaling as a driver of fibrosis in hidradenitis suppurativa

    Get PDF
    Hidradenitis suppurativa (HS) is a chronic inflammatory disease characterized by abscesses, nodules, dissecting/draining tunnels, and extensive fibrosis. Here, we integrate single-cell RNA sequencing, spatial transcriptomics, and immunostaining to provide an unprecedented view of the pathogenesis of chronic HS, characterizing the main cellular players and defining their interactions. We found a striking layering of the chronic HS infiltrate and identified the contribution of 2 fibroblast subtypes (SFRP4+ and CXCL13+) in orchestrating this compartmentalized immune response. We further demonstrated the central role of the Hippo pathway in promoting extensive fibrosis in HS and provided preclinical evidence that the profibrotic fibroblast response in HS can be modulated through inhibition of this pathway. These data provide insights into key aspects of HS pathogenesis with broad therapeutic implications.</p

    Limits of Life and the Habitability of Mars: The ESA Space Experiment BIOMEX on the ISS

    Get PDF
    BIOMEX (BIOlogy and Mars EXperiment) is an ESA/Roscosmos space exposure experiment housed within the exposure facility EXPOSE-R2 outside the Zvezda module on the International Space Station (ISS). The design of the multiuser facility supports—among others—the BIOMEX investigations into the stability and level of degradation of space-exposed biosignatures such as pigments, secondary metabolites, and cell surfaces in contact with a terrestrial and Mars analog mineral environment. In parallel, analysis on the viability of the investigated organisms has provided relevant data for evaluation of the habitability of Mars, for the limits of life, and for the likelihood of an interplanetary transfer of life (theory of lithopanspermia). In this project, lichens, archaea, bacteria, cyanobacteria, snow/permafrost algae, meristematic black fungi, and bryophytes from alpine and polar habitats were embedded, grown, and cultured on a mixture of martian and lunar regolith analogs or other terrestrial minerals. The organisms and regolith analogs and terrestrial mineral mixtures were then exposed to space and to simulated Mars-like conditions by way of the EXPOSE-R2 facility. In this special issue, we present the first set of data obtained in reference to our investigation into the habitability of Mars and limits of life. This project was initiated and implemented by the BIOMEX group, an international and interdisciplinary consortium of 30 institutes in 12 countries on 3 continents. Preflight tests for sample selection, results from ground-based simulation experiments, and the space experiments themselves are presented and include a complete overview of the scientific processes required for this space experiment and postflight analysis. The presented BIOMEX concept could be scaled up to future exposure experiments on the Moon and will serve as a pretest in low Earth orbit
    • 

    corecore