384 research outputs found

    Phenomenological Comparison of Models with Extended Higgs Sectors

    Full text link
    Beyond the Standard Model (SM) extensions usually include extended Higgs sectors. Models with singlet or doublet fields are the simplest ones that are compatible with the ρ\rho parameter constraint. The discovery of new non-SM Higgs bosons and the identification of the underlying model requires dedicated Higgs properties analyses. In this paper, we compare several Higgs sectors featuring 3 CP-even neutral Higgs bosons that are also motivated by their simplicity and their capability to solve some of the flaws of the SM. They are: the SM extended by a complex singlet field (CxSM), the singlet extension of the 2-Higgs-Doublet Model (N2HDM), and the Next-to-Minimal Supersymmetric SM extension (NMSSM). In addition, we analyse the CP-violating 2-Higgs-Doublet Model (C2HDM), which provides 3 neutral Higgs bosons with a pseudoscalar admixture. This allows us to compare the effects of singlet and pseudoscalar admixtures. Through dedicated scans of the allowed parameter space of the models, we analyse the phenomenologically viable scenarios from the view point of the SM-like Higgs boson and of the signal rates of the non-SM-like Higgs bosons to be found. In particular, we analyse the effect of singlet/pseudoscalar admixture, and the potential to differentiate these models in the near future. This is supported by a study of couplings sums of the Higgs bosons to massive gauge bosons and to fermions, where we identify features that allow us to distinguish the models, in particular when only part of the Higgs spectrum is discovered. Our results can be taken as guidelines for future LHC data analyses, by the ATLAS and CMS experiments, to identify specific benchmark points aimed at revealing the underlying model.Comment: Matches journal version; figures for NMSSM changed; conclusions unchange

    More genes in fish?

    Get PDF

    Strong first order electroweak phase transition in the CP-conserving 2HDM revisited

    Get PDF
    The discovery of the Higgs boson by the LHC experiments ATLAS and CMS has marked a milestone for particle physics. Yet, there are still many open questions that cannot be answered within the Standard Model (SM). For example, the generation of the observed matter-antimatter asymmetry in the universe through baryogenesis can only be explained qualitatively in the SM. A simple extension of the SM compatible with the current theoretical and experimental constraints is given by the 2-Higgs-Doublet Model (2HDM) where a second Higgs doublet is added to the Higgs sector. We investigate the possibility of a strong first order electroweak phase transition in the CP-conserving 2HDM type I and type II where either of the CP-even Higgs bosons is identified with the SM-like Higgs boson. The renormalisation that we apply on the loop-corrected Higgs potential allows us to efficiently scan the 2HDM parameter space and simultaneously take into account all relevant theoretical and up-to-date experimental constraints. The 2HDM parameter regions found to be compatible with the applied constraints and a strong electroweak phase transition are analysed systematically. Our results show that there is a strong interplay between the requirement of a strong phase transition and collider phenomenology with testable implications for searches at the LHC

    ScannerS: parameter scans in extended scalar sectors

    Get PDF
    We present the public code ScannerS–2 that performs parameter scans and checks parameter points in theories beyond the Standard Model (BSM) with extended scalar sectors. ScannerS incorporates theoretical and experimental constraints from many different sources in order to judge whether a parameter point is allowed or excluded at approximately 95% {CL}. The BSM models implemented in ScannerS include many popular BSM models such as singlet extensions, different versions of the Two-Higgs-Doublet Model, or the different phases of the Next-to Two-Higgs-Doublet Model. The ScannerS framework allows straightforward extensions by additional constraints and BSM models
    corecore