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Abstract We present the public code ScannerS–2 that
performs parameter scans and checks parameter points in
theories beyond the Standard Model (BSM) with extended
scalar sectors.ScannerS incorporates theoretical and exper-
imental constraints from many different sources in order to
judge whether a parameter point is allowed or excluded at
approximately 95% CL. The BSM models implemented in
ScannerS include many popular BSM models such as sin-
glet extensions, different versions of the Two-Higgs-Doublet
Model, or the different phases of the Next-to Two-Higgs-
Doublet Model. The ScannerS framework allows straight-
forward extensions by additional constraints and BSM mod-
els.
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1 Introduction

In the exploration of extensions of the Standard Model (SM)
of particle physics it is mandatory to work with allowed
parameter points – points within the parameter space of the
model that do not disagree with current observations. Such
samples of allowed parameter points can be used to showcase
the possible phenomenology in a beyond the SM (BSM) the-
ory or to illustrate the impact of novel calculations for a phys-
ically relevant scenario. The code ScannerS [1] can be used
to generate and validate samples of such allowed parameter
points in many BSM models with extended scalar sectors.
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All of the BSM models implemented in ScannerS are pure
electroweak (EW) scalar extensions of the SM. In particular,
ScannerS does not target supersymmetric models or any
other BSM models that introduce new colored scalars. The
models implemented inScannerS range from simple singlet
extensions of the SM, through the commonly used variants
of the two-Higgs-doublet model (2HDM) to extensions by
both additional doublets and scalar singlets. We have found
these models to be extremely useful as benchmark models
for both collider physics and particle cosmology, but also
as well understood reference models to study the impact of
novel theoretical calculations. We specifically invite users to
implement their own models of interest within theScannerS
framework and make those implementations available to the
community.

ScannerS performs parameter scans within the param-
eter space of the model. A parameter scan is a greatly sim-
plified model fit that forgoes making any statements about
the model as a whole in favor of a simpler, point-by-point
approach. In model fits – such as those performed with the
Fittino [2], ZFitter [3], GFitter [4], GAMBIT [5], or HEP-
FIT [6] public codes – an overall combined χ2 or likelihood
is constructed from all available measurements. By sampling
this distribution and using the resulting best fit point of the
model, statements about the favoured regions of parameter
space and the compatibility between model predictions and
data can be made.1 However, there are many cases where
no global statements about the model are required. In these
cases performing a full model fit is often excessive and a
simpler approach is sufficient.

The parameter scan approach employed in ScannerS
does not construct a global likelihood distribution but instead
uses a set of individual constraints. This means, that Scan-
nerS tests the model predictions for the (randomly gener-
ated) input parameter points against all implemented con-
straints and treats each parameter point that passes all con-
straints as allowed. This point-by-point approach means that
no overall best-fit-point is found, nor is the resulting sample
of allowed parameter points a faithful representation of the
global likelihood distribution. These limitations mean that
the results of a parameter scan should never be used to make
global statements about the model – such as “the model fits
the data well” or “the model cannot explain this observa-
tion”. Furthermore, no conclusions should be drawn based
on the density of the allowed parameter points in the parame-
ter space of the model. This would require the points to follow
a statistically meaningful distribution while, in a parameter
scan, their distribution entirely depends on the sampling.

On the other hand, the results of a parameter scan are
perfectly suited for phenomenological benchmark scenar-

1 The exact statements possible depend on the chosen statistical inter-
pretation – frequentist, bayesian, or some mixture of the two.

ios, illustrating interesting signatures, checking the effects
of precision calculations, and many other applications that
only rely on the existence of allowed parameter points in
some region of parameter space. Since the naive combination
of the individual constraints leads to an overestimated com-
bined constraint, the region covered by the allowed parameter
points is a conservative estimate for the favoured region that
would be found in a model fit.2 The most important advan-
tage of parameter scans is simplicity. Since no best fit point
is found or needed3 it is perfectly fine to run small parameter
scans that only yield a few allowed parameter points or to
focus on some special regions of the parameter space that
may not necessarily contain the best fit point of the model.
Additionally, the non-reliance on the best fit point means
that an existing sample of parameter points can simply be
re-checked with ScannerS if some constraints are updated
and no new scan is required.

This manual discusses the physics of ScannerS and
accompanies the release ofScannerS–2. It is complemented
by the technical documentation available online at https://
jonaswittbrodt.gitlab.io/ScannerS.

ScannerS–2 is a new code inspired by the old
ScannerS–1 [1]. Compared to the old code, we imple-
mented substantial technical upgrades and many physics
improvements. In this manual we first discuss the constraints
included inScannerS in Sect. 2. In Sect. 3 we then give short
overviews of the implemented BSM models to establish the
conventions used in the code. Section 4 contains instructions
on how to build and use ScannerS and an explanation on
how additional models and constraints can be implemented.
We summarize in Sect. 5. In Appendix A we describe the
anyHdecay interface library and in Appendix B we discuss
the Mathematica package for finding perturbative unitarity
constraints that is distributed with ScannerS.

2 Constraints

Experimental constraints in ScannerS are implemented at a
confidence level (CL) of 95% or – almost equivalently – 2σ

while theoretical constraints are simple exclusions without
an associated statistical interpretation. As such, the allowed
parameter points returned by ScannerS are valid from a
theoretical point of view and not excluded by observations

2 This only holds as long as correlations between different constraints
are small. In ScannerS, most constraints stem from distinct sources
and can be assumed uncorrelated to a good approximation.
3 In the constraints that are reconstructed as a χ2 value – notably the
oblique parameters and the Higgs measurements – ScannerS applies
the constraint with the SM as alternative hypothesis.
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at approximately 95% CL.4 Constraints in ScannerS have
one of three different severities governing how their result
is handled by the code. The strongest and default severity
is apply, meaning that only parameter points fulfilling the
constraints will be kept as allowed points. If the weakest
severity, skip, is set for a constraint, no calculations asso-
ciated with it will be performed and parameter points will
not be tested against it. For a constraint with the intermedi-
ate severity, ignore, all associated calculations will be exe-
cuted and the results saved to the output. However, parameter
points will be treated as allowed whether they fulfill the con-
straint or not, while an additional output value will be added
to indicate if the specific constraint was fulfilled. Practical
information on setting severities is given in Sect. 4.

Some of the following constraints are not applicable to all
of the models implemented in ScannerS. Detailed technical
information regarding the implementation of constraints in
ScannerS can be found in the online documentation for
the ScannerS::Constraints namespace. The online
documentation also lists all output quantities associated to
the constraints.

2.1 Theoretical constraints

Theoretical constraints are self-consistency requirements on
a parameter point of the model. As such, they do not have
a statistical interpretation – they are either fulfilled or the
parameter point is invalid and excluded.

2.1.1 Perturbative unitarity

If a theory violates unitarity it is strongly coupled and cannot
be treated in the perturbative approach employed in Scan-
nerS. Unitarity constraints, are obtained by requiring the
eigenvalues Mi

2→2 of the 2 → 2 scattering matrix M2→2

to fulfill
∣
∣
∣Mi

2→2

∣
∣
∣ ≤ 8π . (1)

The tree-level scattering matrix can be easily constructed
in most BSM models with extended Higgs sectors in the
high energy limit [7,8]. It often has a block-diagonal form
that can – at least partially – be diagonalized analytically.
Whenever possible the corresponding closed form solutions
for the eigenvalues are implemented in ScannerS.

Tree-level perturbative unitarity provides only a first
approximation to the true unitarity constraint on the model
parameters. It may be impacted by loop-corrections [9] or
finite-energy effects [10–12].

4 The overall constraint is in fact slightly stronger than 95% CL due
to the naive combination of constraints. Additionally, all correlations
between constraints are neglected.

2.1.2 Boundedness from below

Boundedness of the scalar potential from below is a prereq-
uisite to the existence of a stable vacuum. ScannerS imple-
ments analytical conditions that ensure boundedness from
below at tree level, whenever possible. In general, such con-
ditions can be very challenging to obtain (see e.g. Ref. [13]
for a recent overview of different methods and their appli-
cations). However, closed form solutions have been found
for many BSM models – including all of the models imple-
mented in ScannerS, see Sect. 3.

2.1.3 Vacuum stability

Even if the scalar potential is bounded from below, the EW
vacuum is not necessarily the global minimum (absolute sta-
bility). In this case the lifetime of the EW vacuum with
respect to vacuum decay must be long-lived compared to
the age of the universe, otherwise the vacuum is unstable.

In some models or phases of models, absolute stability of
the tree-level EW vacuum has been proven, or analytic condi-
tions ensuring stability have been found (see also Sect. 3). For
the remaining cases, ScannerS offers a link to the EVADE
library [14–16] to test the stability of the EW vacuum numeri-
cally at tree-level. Since the theoretical uncertainties involved
in this computation are large and hard to estimate we are very
conservative in the application of this constraint and only
consider points unstable and excluded if the survival proba-
bility of the EW vacuum is less than 5σ ≈ 3 × 10−7. See the
discussion in Ref. [14] for more details.

2.2 Electroweak precision constraints

Precision measurements of EW observables are sensitive to
BSM loop effects present in many extended scalar sectors.
As long as the BSM effects are fully captured through self-
energy corrections to the gauge-boson propagators – which
holds in all models discussed here – and the new physics scale
is not too small, these effects can be parametrized through
the oblique parameters S, T , andU [17].ScannerS does not
compute any EW precision observables and instead uses a fit
result – currently from Ref. [18] – for the values of the oblique
parameters as constraint. This result includes a covariance
matrix to account for correlations among S, T , and U . In
order to calculate model predictions for the oblique param-
eters ScannerS implements the results of Refs. [19,20],
which are valid for models with any number of scalar SU(2)L
doublets and singlets. Given the model predictions and the
fit result, we calculate a χ2 value and treat the constraint as
fulfilled if χ2 < χ2

crit(2σ).
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2.3 Flavour constraints

Since all of the models currently implemented in ScannerS
are naturally flavor conserving [21], the dominant contribu-
tions to most flavor observables originate in charged Higgs
exchange. Since the charged Higgs sector of all implemented
models is either absent or identical to the 2HDM, we treat
flavour constraints similar to the EW precision constraints
and use the fit results of Ref. [18] providing 2σ constraints
in the mH±–tan β parameter plane of the 2HDM. These gen-
eralize to models with additional singlets, such as the next-to
2HDM (N2HDM).5

2.4 Higgs searches and Higgs measurements

Searches for additional scalars as well as measurements of
125 GeV Higgs boson (h125) are among the most impor-
tant constraints on extended scalar sectors. ScannerS pro-
vides an interface to the tools HiggsBounds [22–26] and
HiggsSignals [27,28] to incorporate these constraints. The
HiggsBounds input can either be given in the effective cou-
pling approximation or by providing all branching ratios and
hadronic cross sections to the Higgs bosons. For simple mod-
els, such as pure singlet extensions, the effective coupling
approximation is exact and used by ScannerS.

Otherwise, ScannerS uses the anyHdecay library (see
Appendix A) as an interface to the many adaptations of
the code HDECAY [29–31] for different BSM models to
obtain model predictions for Higgs boson branching ratios
and total widths including state-of-the-art QCD corrections
and off-shell effects. To obtain precise cross section predic-
tions, ScannerS includes a tabulated parametrization of the
NNLO QCD gluon fusion and bb̄-associated Higgs produc-
tion cross sections at hadron colliders obtained with SusHi-
1.6.1 [32,33]. Additionally, ScannerS uses cross section
parametrizations included in HiggsBounds (see Ref. [26]),
such as the W±/Z -associated cross sections calculated using
VH@NNLO [34,35], as well as the t-associated charged
Higgs production cross section at NLO QCD [36–41].

HiggsBounds uses this input to check the model predic-
tions against exclusion bounds from Higgs searches at LEP,
TEVATRON and the LHC@. Using the expected limit infor-
mation, only the most sensitive search for each scalar in the
model is applied to obtain an approximate combined 2σ con-
straint on the model parameter space. HiggsBounds uses
this treatment since applying all of the hundreds of imple-
mented exclusion limits simultaneously would lead to a con-

5 Only the B → μμ observables receive relevant neutral Higgs contri-
butions, which were left to float in the fit of Ref. [18]. The resulting limit
is conservative with respect to the possible impact of the neutral Higgs
bosons and can be approximately generalized to models with additional
neutral particles.

siderably stronger exclusion than the desired 95% CL. See
Refs. [24,26] for details.

HiggsSignals uses the same input as HiggsBounds to
calculate a χ2 value that quantifies the agreement of the
model prediction with up-to-date measurements of the h125
properties at the LHC@. In interpreting this χ2, ScannerS
uses a profiled likelihood ratio test with the SM as the alter-
native hypothesis. In the Gaussian approximation the test
statistic is

�χ2 = χ2
Model − χ2

SM , (2)

where bothχ2
Model andχ2

SM are obtained fromHiggsSignals.
As discussed in Sect. 1, we use this test statistic – instead of
e.g. constructing a goodness-of-fit test using χ2

Model/d.o.f.
– since it allows for a much easier statistical interpretation
and does not require knowledge about the best fit point of
the model. The resulting �χ2 approximately describes the
best-fit region of the parameter space. The upper bound χ2

crit
to be imposed on �χ2 depends on the desired confidence
level and on the number ν of degrees of freedom. As stated
above, we aim to impose 2σ constraints in the Gaussian limit
and thus �χ2 < χ2

crit(2σ, ν). When presenting results where
all but n model parameters and all nuisance parameters are
profiled over, the set of allowed parameter points are those
with �χ2 < χ2

crit(2σ, n). In ScannerS, we by default use

�χ2 < 6.18 , (3)

which corresponds to a 2σ constraint for n = 2 under the
assumption of Gaussian errors. The choice of a fixed n = 2
is an arbitrary but very commonly made approximation. It is
fully correct in the common case where results are presented
as a function of two parameters of interest, i.e. in benchmark
planes or scatter plots. In particular, it avoids the issue of
correctly determining the appropriate value of ν, which is
challenging and requires detailed knowledge about the best
fit point of the model. See Ref. [28] for an in depth discussion
of the different possibilities to interpret the χ2 value.

2.5 Electric dipole moments

In CP-violating models the stringent limits on fermionic elec-
tric dipole moments (EDMs) have to be considered. Scan-
nerS includes a constraint to check the model prediction
for the electron EDM against the latest limits by the ACME
collaboration [42]. Constraints from the neutron or nuclear
EDMs could easily be included in ScannerS if theoretical
predictions for these quantities are available in the model.

2.6 DM constraints

A global symmetry of an extended scalar sector that remains
unbroken after EW symmetry breaking (EWSB) may lead
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to a dark sector with a stable lightest particle. Such a par-
ticle is a dark matter (DM) candidate and constraints from
DM searches need to be considered. ScannerS includes an
interface to the codeMicrOMEGAs [43–49] to calculate DM
observables. The relic density ωmodel

c predicted by the model
is required not to exceed the observed dark matter density
ωc [50],

ωmodel
c ≤ ωc + 2�ωc , (4)

where �ωc is the uncertainty of the measurement. By impos-
ing only an upper bound we allow for additional contribu-
tions to DM beyond the one stemming from the model under
consideration.

ScannerS also imposes constraints from dark mat-
ter searches using direct detection – more specifically
the XENON1T results [51]. The required dark-matter–
nucleon scattering cross sections are also obtained from
MicrOMEGAs. ScannerS currently does not include con-
straints from indirect detection or collider searches for
dark particles, as these are not available as simple, model-
independent limits and require additional effort to interpret
them correctly. Since MicrOMEGAs can compute and test
some of these constraints, they could be included in Scan-
nerS by extending the existing interface. However, in the
parameter scan approach it is also valid to apply additional
constraints such as these on top of the ScannerS results
using dedicated external computations.

2.7 A first order EW phase transition

When studying models that could facilitate EW baryogen-
esis [52–55] or in the context of gravitational wave signa-
tures [56–63] (see also Ref. [64]) it is interesting to look at
parameter regions where the EW phase transition (EWPT)
is (strongly) first order. ScannerS includes an interface to
the BSMPT [65,66] library to calculate the strength of the
EWPT in several of the implemented models. When using
this constraint, ScannerS requires that the EWPT is of first
order and that the EW vacuum at zero temperature is the
global minimum of the 1-loop effective potential. This sec-
ond requirement – which contains the requirement that the
1-loop effective potential is bounded from below – is a pre-
requisite for the phase transition search and is verified numer-
ically within BSMPT.

This constraint by default only requires the EWPT to be
first order without putting any bound on the strength of the
phase transition. However, the critical temperature Tc and
critical vacuum expectation value (vev) ωc

6 are stored in the

6 In BSMPT ωc is defined as the euclidean norm of the field-space
distance between the two degenerate vacua at the critical temperature
Tc. Only vevs of fields that carry EW charge – so no singlet vevs –
are included in ωc, since only those can contribute to EW baryogenesis
[65,66].

output, such that more stringent requirements – e.g. ωc > Tc
for a strong first order EWPT – can be imposed in post-
processing. Note that in general, there is no physical require-
ment that the EWPT has to be first order. Therefore, you
should only enable this constraint if you wish to study physics
associated with a first order EWPT.

3 BSM Models in ScannerS

ScannerS includes implementations for a variety of BSM
models with extended scalar sectors. In this section, we will
give short overviews of the implemented models mainly
meant to establish the conventions used in the ScannerS
implementation. Additional technical information on all
implemented models can be found in the online documen-
tation for the model classes in the ScannerS::Models
namespace. The name of the model class and ScannerS
executable for each model is indicated in the title of the sub-
section with the corresponding model or phase description.

3.0.1 Input parameters and mass-ordering

As the very first step for each parameter point, ScannerS
calculates all model parameters from a chosen set of input
parameters.7 The input parameters are chosen to allow for
a physically motivated selection of scan ranges. This means
that physical masses, mixing angles or couplings, and vevs
are used rather than directly using the parameters of the scalar
potential.

In most BSM models, scalars of identical charge and
CP, hi , are distinguished based on their mass – typically
by imposing some kind of mass ordering, e.g. mhi ≤ mh j

for i < j . In contrast to more complex BSM models –
such as supersymmetry or composite Higgs models – the
mhi can be chosen as input parameters in all of the scalar
extensions implemented in ScannerS. This greatly facili-
tates phenomenological studies, as one of the Higgs masses
can be set to match the observed mass of h125. However,
since the other scalars can in general be either lighter or heav-
ier than h125 it is inconvenient to use mass ordered states as
input. Instead,ScannerS uses a basis of input states ha,b,c,...

for which no ordering is required.
As an example, consider a model with three mixing

scalars. The three by three mixing matrix is parametrized as

7 In the old ScannerS–1 this calculation was performed numerically
and referred to as the generation of a local minimum. Now, the analytic
relations between input parameters and the remaining model parameters
– e.g. between masses and mixing angles on the one hand and the
parameters of the scalar potential on the other – are implemented in
closed form, whenever possible.
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R =
⎛

⎝

c1c2 s1c2 s2

−(c1s2s3 + s1c3) c1c3 − s1s2s3 c2s3

−c1s2c3 + s1s3 −(c1s3 + s1s2c3) c2c3

⎞

⎠ , (5)

where c1,2,3 = cos α1,2,3 and s1,2,3 = sin α1,2,3 for the three
mixing angles −π/2 ≤ α1,2,3 < π/2. This parametrization
is sufficiently general for physics purposes, but is not a full
parametrization of O(3), in particular – since cos αi ≥ 0 for
the chosen angular ranges – it requires

det R = +1 , R11 ≥ 0 , R33 ≥ 0 . (6)

The model input is given in the form of three Higgs masses,
e.g.

mha = 125 GeV , mhb = 300 GeV , mhc = 50 GeV ,

(7)

and values for the three input mixing angles αin
1,2,3 that

parametrize Rin in the basis
⎛

⎝

ha
hb
hc

⎞

⎠ = Rin

⎛

⎝

φ1

φ2

φ3

⎞

⎠ , (8)

where φ1,2,3 are the mixing fields of the scalar potential. To
convert this to the desired basis (h1, h2, h3)

T with mh1 <

mh2 < mh3 , a set of row transpositions is applied on the
mixing matrix, such that – for the example mass values of
Eq. (7)
⎛

⎝

h1

h2

h3

⎞

⎠ ≡
⎛

⎝

hc
ha
hb

⎞

⎠ =
⎛

⎝

Rin
c1 Rin

c2 Rin
c3

Rin
a1 Rin

a2 Rin
a3

Rin
b1 Rin

b2 Rin
b3

⎞

⎠

⎛

⎝

φ1

φ2

φ3

⎞

⎠ . (9)

In general, the resulting mixing matrix no longer fulfills
Eq. (6) and is thus no longer parametrized by Eq. (5). The
parametrization can be restored by physically irrelevant field
redefinitions of the form hi → −hi that flip the sign of all
elements in a row of the mixing matrix, i.e. h1 → −h1 if
R11 < 0, h3 → −h3 if R33 < 0, and finally h2 → −h2 if
det R = −1.8

This procedure works analogously for other dimensional-
ities or different parametrizations of R. It can also be used
if not all of the masses are input parameters. In this case the
remaining masses are first calculated using Rin and then the
reordering is performed.

The input parametrizations in ScannerS are usually
agnostic regarding which of the Ha is identified with h125.
Any exceptions to this are stated in the description of the
parametrizations below.

8 The corresponding implementation can be found in
ScannerS::Utilities::OrderedMixMat3d.

3.1 The complex-singlet-extension of the SM

Pure extension of the SM by gauge-singlet scalar fields are
the simplest possible extended scalar sectors. The complex-
singlet-extension of the SM (CxSM) [1,67,68] adds a com-
plex singlet field Swith a softly brokenU (1) symmetry to the
SM. The implementation in ScannerS follows Refs. [1,68]
where an additional symmetry under S → S

∗ is imposed that
forces all model parameters to be real. The resulting scalar
potential is

VCxSM = m2

2
�†� + λ

4
(�†�)

2 + δ2

2
�†�|S|2

+b2

2
|S|2 + d2

4
|S|4

+
(
b1

4
S

2 + a1S + h.c.

)

(10)

with seven real parameters. The CxSM allows for different
phases, where different fields acquire vevs. Implementations
for thebrokenphase and thedarkphase are included inScan-
nerS. The following constraints are included for both phases
with very similar implementations:

• The perturbative unitarity constraint was obtained purely
numerically in Refs. [1,68]. ScannerS instead uses the
analytic conditions (see Appendix B)

|λ|
2

,
|δ2|
2

,
|d2|

2
< 8π ,

∣
∣
∣
∣
2d2 + 3λ ±

√

8δ2
2 + (2d2 − 3λ)2

∣
∣
∣
∣

4
< 8π . (11)

• Boundedness from below is ensured using the known
analytic conditions [1].

• The oblique parameters are calculated and tested using
the generic method described in Sect. 2.2.

• The branching ratios of the scalars are calculated using
sHDECAY [68] through the anyHdecay interface (see
Appendix A).

• Predictions for gluon-fusion and bb-associated Higgs
production at hadron colliders are obtained using tab-
ulated results from SusHi (see Sect. 2.4) and the
parametrization included in HiggsBounds is used to
obtain cross sections for the V H -associated (sub)
channels (see Ref. [26]).

• Constraints from Higgs searches and Higgs measure-
ments are tested with HiggsBounds and HiggsSignals
as described in Sect. 2.4 using the aforementioned pre-
dictions for branching ratios and cross sections.

• Using BSMPT for the calculation, the EWPT can be
required to be first order. Since this requirement is not
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a necessary constraint it is not enabled by default (see
Sect. 2.7).

3.1.1 The broken-phase CxSM – CxSMBroken

The CxSM is in the broken phase if both the real and imag-
inary parts of S acquire non-zero vevs. This leads to a
Higgs sector with three mixing CP-even scalar bosons hi
(i ∈ {1, 2, 3}). ScannerS uses the input parameters [68]

ma , mb , αin
1 , αin

2 , αin
3 , vS , v = vEW , (12)

wherema,b are the masses of two of the hi , αin
1,2,3 are the input

mixing angles, vS is the real singlet vev, and vEW ≈ 246 GeV
is the EW vev. The third scalar input mass mc is calculated
through

m2
c = − m2

am
2
bR

in
c1R

in
c2

m2
a R

in
b1R

in
b2 + m2

bR
in
a1R

in
a2

. (13)

If Eq. (13) predicts a tachyonic m2
c the corresponding param-

eter point is rejected.

3.1.2 The dark-phase CxSM – CxSMDark

If the imaginary part of S acquires no vev during EWSB, the
corresponding particle is a dark-matter candidate stabilized
by a Z2 symmetry. The real component of the singlet field
still has a non-zero vev and mixes with the SM Higgs boson.
The additional assumption a1 = 0 is made, such that this
dark phase of the CxSM only has six real parameters:

ma , mb , mX , αin vS , v = vEW , (14)

where ma,b are the masses of the two visible Higgs bosons,
mX is the mass of the dark scalar, αin is the input mixing
angle, and vS is the real singlet vev. The convention for the
mixing angle α matches Eq. (5) with α1 → α and α2,3 → 0
(and analogously for the αin). Since the dark phase contains
a DM candidate, the corresponding DM constraints have
to be considered in addition to the constraints discussed in
Sect. 3.1:

• Dark matter observables are calculated using
MicrOMEGAs and tested against the experimental limits
as discussed in Sect. 2.6.

3.2 The two-real-singlet-extension of the SM

The two-real-singlet-extension of the SM (TRSM) [69] is a
different extension of the SM by two real scalar degrees of
freedom. The scalar potential in terms of two real scalar fields

S and X is given by

VTRSM = μ2
��†� + λ�(�†�)

2 + μ2
S S

2

+λS S
4 + μ2

X X
2 + λX X

4 + λ�S�
†�S2

+λ�X�†�X2 + λXSS
2X2 . (15)

This scalar potential respects a Z2 ⊗Z2 symmetry for S and
X and has nine real parameters. Depending on the vacuum
structure the TRSM allows for different phases, though only
the broken phase is currently implemented.

3.2.1 The broken-phase TRSM – TRSMBroken

In the broken phase both S and X acquire vacuum expectation
values vS and vX , respectively. This phase with three mixing
CP-even scalars hi (i ∈ {1, 2, 3}) was studied in detail in
Ref. [69] and we follow the conventions used there. The input
parameters are

Ma , Mb , Mc , θ in
hS θ in

hX , θ in
SX , vS , vX , v = vEW ,

(16)

where Ma,b,c are the three Higgs masses, θ in
hS , θ in

hX , θ in
SX are

the input mixing angles, and vS,X are the singlet vevs. The
mixing angles θ parametrize the mixing matrix R of Eq. (5)
as

θhS ≡ −α1 , θhX ≡ −α2 , θSX ≡ −α3 . (17)

Analogous relations hold for the corresponding input quan-
tities θ in, Rin, and αin.

In the broken phase of the TRSM, ScannerS implements
the following constraints and calculations:

• Perturbative unitarity and boundedness from below are
ensured using the analytic conditions given in Ref. [69].

• The oblique parameters are calculated and tested using
the generic method of Sect. 2.2.

• The Higgs-to-Higgs decay widths of the scalars are calcu-
lated at tree-level and combined with the appropriately
rescaled SM-like branching ratios as tabulated in Hig-
gsBounds using the effective coupling input (see Ref.
[26]).

• HiggsBounds and HiggsSignals are used to test con-
straints from Higgs data as described in Sect. 2.4.

3.3 The two-Higgs-doublet model

The 2HDM [70] (see e.g. Ref. [71] for a review) is probably
the most studied non-supersymmetric scalar extension of the
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SM. In the conventions of Ref. [71] the scalar potential of
the 2HDM with a softly broken Z2 symmetry is given by

V2HDM = m2
11�

†
1�1 + m2

22�
†
2�2 − (m2

12�
†
1�2 + h.c.)

+λ1

2
(�

†
1�1)

2 + λ2

2
(�

†
2�2)

2 + λ3(�
†
1�1)(�

†
2�2)

+λ4(�
†
1�2)(�

†
2�1) +

(
λ5

2
(�

†
1�2)

2 + h.c.

)

(18)

The softly brokenZ2 symmetry is extended to the Yukawa
sector to prevent tree-level flavour changing neutral currents
leading to the four Yukawa types of the 2HDM.

The parameters m2
12 and λ5 of Eq. (18) can take complex

values and lead to a CP-violating scalar sector. ScannerS
implements two variants of the 2HDM – the CP-conserving
real 2HDM (R2HDM) and the CP-violating complex 2HDM
(C2HDM) [72–74]. The following constraints have similar
implementations in both cases.

• Perturbative unitarity and boundedness from below are
tested using the analytic conditions given in Ref. [71].

• The oblique parameters are calculated and tested using
the generic method of Sect. 2.2.

• Constraints from b-physics are tested as discussed in
Sect. 2.3.

• Using BSMPT for the calculation, the EWPT can be
required to be first order. Since this requirement is not
a necessary constraint it is not enabled by default (see
Sect. 2.7).

3.3.1 The R2HDM – R2HDM

In the R2HDM, CP-conservation is imposed in the Higgs
sector forcing all eight parameters of Eq. (18) to be real.
In the R2HDM, the mixing matrix is conventionally defined
through
(

H
h

)

=
(

cos α sin α

− sin α cos α

)(

ρ1
ρ2

)

with − π/2 ≤ α < π/2 ,

(19)

where ρ1,2 are the real, neutral component fields of the two
doublets. One set of input parameters implemented in Scan-
nerS is thus

mHa , mHb , mA , mH± , αin ,

tan β , m2
12 , v = vEW , (20)

where mHa,b are the neutral, CP-even Higgs masses, mA is
the mass of the pseudoscalar, m±

H is the charged Higgs mass,
αin is the CP-even neutral sector input mixing angle, tan β =
v2/v1 is the ratio of the vevs, and m2

12 is the soft Z2-breaking
parameter. Furthermore, the Yukawa type has to be specified,

which can be either

1 ≡ type I , 2 ≡ type II ,

3 ≡ lepton specific , 4 ≡ flipped . (21)

Instead of using αin as input parameter, ScannerS also
implements an alternative (default) input parametrization in
terms of the effective gauge coupling of Hb,

c(HbV V ) = sin(β − αin) . (22)

Restricting c(HbV V ) ∼ 0 forces Ha to be close to the align-
ment limit. This is the default parametrization of the R2HDM
consisting of

mHa , mHb , mA , mH± , c(HbV V ) ,

tan β , m2
12 , v = vEW , (23)

together with the Yukawa type.
The following constraints and calculations in the R2HDM

are implemented in addition to the ones mentioned in
Sect. 3.3:

• Absolute stability of the EW vacuum is ensured using the
discriminant of Ref. [75].

• The branching ratios of the scalars are calculated using
HDECAY [29–31] through the anyHdecay interface
(see Appendix A).

• Predictions for gluon-fusion and bb-associated Higgs
production at hadron colliders are obtained using tab-
ulated results from SUSHI (see Sect. 2.4). The Higgs-
Bounds parametrizations are used to obtain cross section
predictions for the V H -associated (sub)channels and for
charged Higgs production in association with a top-quark
(see Ref. [26]).

• HiggsBounds and HiggsSignals are used to test con-
straints from Higgs data as described in Sect. 2.4.

3.3.2 The C2HDM – C2HDM

If complex values for m2
12 and λ5 are allowed, the 2HDM

scalar potential can be CP-violating [73]. The phases of
these two parameters are not both independent, such that
the C2HDM has nine real free parameters. The C2HDM was
discussed in detail in Ref. [76] and we follow the conventions
used there. The 3 × 3 mixing matrix of the neutral scalars
is parametrized as in Eq. (5). The input parametrization in
terms of the mixing angles αin

1,2,3 is

mHa , mHb , mH± , αin
1 , αin

2 ,

αin
3 , tan β , �(m2

12) , v = vEW , (24)
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where mHa,b are two of the neutral Higgs masses, mH± is
the charged Higgs mass, αin

1,2,3 are the neutral-sector input
mixing angles, tan β = v2/v1 is the ratio of the vevs and
�(m2

12) is the real part of the soft Z2-breaking parameter.
Furthermore, the Yukawa type needs to be specified. The
third neutral scalar massmHc is calculated from the two other
ones using [76]

m2
Hc

=
m2

Ha
Rin
a3(Rin

a2 tan β − Rin
a1) + m2

Hb
Rin
b3(Rin

b2 tan β − Rin
b1)

Rin
c3(Rin

c1 − Rin
c2 tan β)

.

(25)

If this results in a tachyonic Hc the parameter point is
rejected.

ScannerS implements a second C2HDM input
parametrization in terms of the couplings and mixing matrix
elements of Ha and Hb. The input parameters are

mHa , mHb , mH± ,

tan β , �(m2
12) , v = vEW ,

c2(HaV V ) , |c(Hat t̄)|2 , sign(Rin
a3) , Rin

b3 ,

(26)

where c(HaV V ) denotes the effective coupling of Ha to the
massive gauge bosons (V ∈ {W±, Z}), |c(Hat t̄)|2 is the
squared absolute value of the effective coupling between Ha

and top-quarks, and Rin
a3 and Rin

b3 are the mixing matrix ele-
ments between the input states Ha,b and the pseudoscalar
gauge eigenstate. Additionally, the Yukawa type has to be
specified. The second sign required to compensate for the
two squared couplings as input is fixed by assuming

c(HaV V )ce(Hat t̄) > 0 . (27)

This assumption is enforced by the Higgs measurements
for Ha ≡ h125 which should be chosen when using this
parametrization. The mixing angles are obtained from these
couplings using the relations

c(HaV V ) = cos βRin
a1 + sin βRin

a2 , (28)

|c(Hat t̄)|2 = (ce(Hat t̄))
2 + (co(Hat t̄))

2 (29)

=
(

Ra2

sin β

)2

+
(

Ra3

tan β

)2

, (30)

in combination with Eq. (5), where ce and co refer to the CP-
even and CP-odd components of the effective Higgs-fermion
coupling, respectively. If this system of conditions does not
yield a valid solution for αin

1,2,3 the parameter point is rejected.
This parametrization is very useful to ensure that Ha ≡ h125

has SM-like couplings and is used by default.
ScannerS checks the following constraints in addition to

the ones mentioned in Sect. 3.3:

• Absolute stability of the EW vacuum is ensured using the
discriminant of Ref. [77].

• The branching ratios of the scalars are calculated using
C2HDM_HDECAY [76] through the anyHdecay inter-
face (see Appendix A).

• Predictions for gluon-fusion and bb-associated Higgs
production at hadron colliders are obtained using tab-
ulated results from SUSHI (see Sect. 2.4). CP-mixing
effects are included, but CP-interference effects like
the ones discussed in [78] are not included. The Hig-
gsBounds parametrizations are used to obtain cross
section predictions for the CP-mixed V H -associated
(sub)channels and for charged Higgs production in asso-
ciation with a top-quark (see Ref. [26]).

• HiggsBounds and HiggsSignals are used to test con-
straints from Higgs data as described in Sect. 2.4.

• The model prediction for the electron EDM is calculated
following Ref. [79] and checked against the limit by the
ACME collaboration [42].

3.4 The next-to 2HDM

The next-to 2HDM (N2HDM) [80–82] adds an additional
real scalar singlet field �S to the R2HDM. In the conventions
of Ref. [82] its scalar potential is given by

VN2HDM = m2
11�

†
1�1 + m2

22�
†
2�2 − m2

12(�
†
1�2 + h.c.)

+λ1

2
(�

†
1�1)

2 + λ2

2
(�

†
2�2)

2 + λ3(�
†
1�1)(�

†
2�2)

+λ4(�
†
1�2)(�

†
2�1)

+λ5

2
((�

†
1�2)

2 + h.c.) + m2
S

2
�2
S + λ6

8
�4
S

+λ7

2
(�

†
1�1)�2

S + λ8

2
(�

†
2�2)�2

S . (31)

The N2HDM scalar potential has an exact Z2 symmetry
for the singlet field in addition to the softly broken Z2 sym-
metry of the doublet field inherited from the 2HDM. The
doublet Z2 symmetry leads to the same 2HDM types when
extended to the Yukawa sector. The N2HDM features differ-
ent phases, depending on which symmetries remain unbroken
after EWSB. Most constraints and calculations are imple-
mented similarly for all phases of the N2HDM:

• Perturbative unitarity and boundedness from below [83]
are ensured using the analytic conditions given in Ref.
[82].

• The oblique parameters are calculated and tested using
the generic method of Sect. 2.2.

• The branching ratios of the scalars are calculated using
N2HDECAY [82,84] through the anyHdecay interface
(see Appendix A).
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• Predictions for gluon-fusion and bb-associated Higgs
production at hadron colliders are obtained using tab-
ulated results from SUSHI (see Sect. 2.4). The Higgs-
Bounds parametrizations are used to obtain cross section
predictions for the V H -associated (sub)channels and for
charged Higgs production in association with a top-quark
(see Ref. [26]).

• HiggsBounds and HiggsSignals are used to test con-
straints from Higgs data as described in Sect. 2.4.

• Metastability constraints on the stability of the EW vac-
uum are obtained using the EVADE library. See also Ref.
[15] for a detailed study of vacuum stability in the broken-
phase N2HDM.

3.4.1 The broken-phase N2HDM – N2HDMBroken

If both doublets and the singlet fields acquire non-zero vevs
the EW vacuum of the N2HDM is in the broken phase. In
this phase, the three CP-even neutral scalar fields mix with
the 3 × 3 mixing matrix parametrized as Eq. (5). The input
parametrization in terms of the mixing angles αin

1,2,3 is

mHa , mHb , mHc ,

mA , mH± , tan β , αin
1 ,αin

2 ,

αin
3 , m2

12 , vS , v = vEW ,

(32)

where mHa,b,c are the CP-even scalar Higgs masses, mA is
the pseudoscalar mass, mH± is the charged Higgs mass,
tan β = v2/v1 is the ratio of the doublet vevs, αin

1,2,3 are
the input mixing angles of the CP-even neutral scalar sector,
m2

12 is the soft Z2-breaking parameter and vS is the singlet
vev. Additionally, the Yukawa type has to be specified as in
Eq. (21). Similar to the C2HDM we provide a reparametriza-
tion in terms of effective couplings and mixing matrix ele-
ments. In this case the input parameters are

mHa , mHb , mHc ,

mA , mH± , tan β ,

c2(HaV V ) , c2(Hat t̄) , sign(Rin
a3) , Rin

b3

m2
12 , vS , v = vEW ,

(33)

where c(HaV V ) and c(Hat t̄) are the effective couplings of
Ha to massive gauge bosons and top-quarks, respectively,
while Rin

a3 and Rin
b3 are the mixing matrix elements between

Ha,b and the singlet field. The Yukawa type has to be specified
as an additional input parameter. The second sign required
to compensate for the squared coupling input is again fixed
by the assumption

c(HaV V )c(Hat t̄) > 0 , (34)

which is physically motivated for Ha ≡ h125 which should
be chosen when using this parametrization. We obtain the

mixing angles from the couplings using

c(HaV V ) = cos βRin
a1 + sin βRin

a2 , (35)

c(Hat t̄) = Rin
a2

sin β
, (36)

and Eq. (5).
On top of the constraints listed in Sect. 3.4, the broken

phase N2HDM implements the following:

• Using BSMPT for the calculation [85], the EWPT can
be required to be first order. Since this requirement is not
a necessary constraint it is not enabled by default (see
Sect. 2.7).

3.4.2 The dark-singlet-phase N2HDM – N2HDMDarkS

If the singlet vev is zero after EWSB, the singlet field �S is a
mass eigenstate stabilized by the Z2 symmetry of �S . In this
dark-singlet-phase [81,84,86,87] we follow the conventions
of Ref. [87]. The mixing between the two visible CP-even
neutral scalars is treated in the convention of the R2HDM in
Eq. (19), though – for better analogy to the other phases –
this 2 ×2 mixing is embedded in a 3×3 mixing matrix [87].
The input parameters are

mHa , mHb , mA , mH± , mHD , tan β ,

αin , m2
12 , λ6 , λ7 , λ8 , v = vEW ,

(37)

together with the Yukawa type, where now mHa,b are the
masses of the visible CP-even scalars, mHD is the mass of
the dark scalar, and αin is the remaining visible-sector mixing
angle. In addition to the constraints listed in Sect. 3.4, the
dark-singlet-phase N2HDM also implements the following:

• Dark matter observables are calculated using
MicrOMEGAs and tested against the experimental lim-
its as discussed in Sect. 2.6. Due to the limitations of the
model file format used by MicrOMEGAs, dark matter
observables can currently only be calculated for Yukawa
sectors of type I.

3.4.3 The dark-doublet-phase N2HDM – N2HDMDarkD

If m2
12 = 0 it is possible that only one Higgs doublet of the

N2HDM acquires a vev. The resulting exact Z2 symmetry
leads to an inert Higgs doublet similar to the inert doublet
model [88]. As long as the singlet vev is non-zero, there is still
mixing between the SM-like doublet Higgs and the singlet.
We again follow the conventions of Ref. [87]. TheScannerS

123



Eur. Phys. J. C           (2022) 82:198 Page 11 of 17   198 

input parameters in the dark-doublet-phase N2HDM are

mHa , mHb , mAD , mH±
D

, mHD , αin ,

m2
22 , λ2 , λ8 , vS , v = vEW , (38)

where mAD and mHD denote the masses of the two opposite-
CP neutral dark scalars and mH±

D
is the dark charged scalar

mass. Since one of the doublets is inert, there are no Yukawa
types in this phase. The dark-doublet-phase N2HDM imple-
ments the following additional constraints:

• Dark matter observables are calculated using
MicrOMEGAs and tested against the experimental limits
as discussed in Sect. 2.6.

3.4.4 The fully-dark-phase N2HDM – N2HDMDarkSD

If the singlet vev additionally vanishes, both Z2 symmetries
of the N2HDM remain exact after EWSB. This phase fea-
tures a visible sector identical to the SM and two distinct
dark sectors – one containing the inert doublet and the other
composed of just the singlet – that are also stabilized with
respect to each other. Since there is no mixing in this phase,
the input parametrization is extremely simple. In the conven-
tions of Ref. [87], ScannerS uses the parameters

mHSM , mHD
D

, mAD , mH±
D

, mHS
D

, m2
22 ,

m2
S λ2 , λ6 , λ8 , v = vEW , (39)

where HD
D is the real, neutral dark Higgs from the inert

doublet sector, and HS
D is the dark singlet. The fully-dark

N2HDM also implements DM constraints:

• Dark matter observables are calculated using
MicrOMEGAs and tested against the experimental lim-
its as discussed in Sect. 2.6. The MicrOMEGAs routines
adapted for two-component DM are used.

3.5 Minimal CP-violating dark matter – CPVDM

The minimal model of CP-violating scalar dark matter [89]
is a variant of the N2HDM, where the two separate Z2 sym-
metries for the doublet and singlet fields are merged into one.
The resulting scalar potential in the conventions of Ref. [89]

is

VCPVDM = m2
11�

†
1�1 + m2

22�
†
2�2 + m2

S

2
�2

S

+
(

A�
†
1�2�S + h.c.

)

+λ1

2
(�

†
1�1)

2 + λ2

2
(�

†
2�2)

2

+λ3(�
†
1�1)(�

†
2�2) + λ4(�

†
1�2)(�

†
2�1)

+λ5

2

(

(�
†
1�2)

2 + h.c.
)

+λ6

8
�4

S + λ7

2
(�

†
1�1)�

2
S + λ8

2
(�

†
2�2)�

2
S ,

(40)

where the trilinear parameter A can be complex.9 Only �1

acquires a vev such that the visible sector is identical to the
SM, but CP-violating mixing between the three neutral fields
in the dark sector is induced by the A term. With the mix-
ing matrix parametrized as in Eq. (5) the ScannerS input
parameters are

mh , mha , mhb , mH± , αin
1 , αin

2 , αin
3 ,

λ2 , λ6 , λ8 , m2
22 , m2

S , v = vEW ,
(41)

where h is the SM-like visible Higgs boson and ha,b are dark
neutral scalars. The third dark neutral Higgs mass mhc is
calculated through the relation

m2
hc = −m2

ha
Ra1Ra2 + m2

hb
Rb1Rb2

Rc1Rc2
. (42)

The parameter point is rejected if this leads to a tachyonic
hc. The CP violation in this model does not enter the fermion
sector and, therefore, no CP-sensitive EDM constraints need
to be considered for the model. The implemented constrains
are:

• Perturbative unitarity and boundedness from below are
ensured using the same analytic conditions as in the
N2HDM [82].

• The oblique parameters are calculated and tested using
the generic method of Sect. 2.2.

• The Higgs-to-Higgs decay widths of the scalars are calcu-
lated at tree-level and combined with the appropriately
rescaled SM-like branching ratios as tabulated in Hig-
gsBounds using the effective coupling input (see Ref.
[26]).

• HiggsBounds and HiggsSignals are used to test con-
straints from Higgs data as described in Sect. 2.4.

• Dark matter observables are calculated using
MicrOMEGAs and tested against the experimental limits
as discussed in Sect. 2.6.

9 A priori, λ5 could also be complex, but it can always be made real by
a rephasing of the fields.
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• Metastability constraints on the stability of the EW vac-
uum are obtained using the EVADE library. See also Ref.
[15] for a detailed study of vacuum stability in the broken-
phase N2HDM.

4 User operating instructions

TheScannerS source code is available at https://gitlab.com/
jonaswittbrodt/ScannerS.

ScannerS requires the following tools and libraries to be
available on the system:

• While most of the code is written in C++, some of the
dependencies are Fortran codes such that working
compilers for C, C++, and Fortran are required. The
C++ compiler has to support at least C++-17.

• ScannerS is compiled using CMake which has to be
available on the system.

• The GSL [90] is used for some numerical operations.
• The Eigen3 library [91] is used throughout the code.

Detailed information on the required versions is included in
the README file.

If these basic requirements are fulfilled, ScannerS can
be compiled using

mkdir build && cd build
cmake ..
make

after which the ScannerS test suite can be run with make
test. The physics codes required by ScannerS are auto-
matically downloaded by CMake. These currently include
HiggsBounds [22–26], HiggsSignals [27,28], and any-
Hdecay (see Appendix A). Additionally, there are several
optional dependencies to enable additional constraints.

• MicrOMEGAs [43–49] is needed for the calculation of
DM observables.

• EVADE [14–16] is needed for metastability constraints.
• BSMPT [65,66] is needed to compute the order and

strength of the EW phase transition.

Again, see the README file for more technical information
on how to link these codes to ScannerS.

Compiling ScannerS generates one executable in the
build directory for each implemented model. The executable
names for each model are given in the title of the corre-
sponding subsection in Sect. 3. All of theScannerS executa-
bles support two run modes: scan mode and check mode. In
scan mode, ScannerS generates and tests random parame-
ter points until the requested number of valid points is found.
It can be called as e.g.

./ R2HDM --config \
example_input/R2HDM_T1.ini \
scan -n 10

to generate ten valid parameter points using the scan
ranges in the example configuration file in the R2HDM
and write them into an output file with the default name
R2HDM.tsv (the same name as the executable with the
extension.tsv added). All possible options are documented
in the command line help which can be accessed e.g. through
./R2HDM –help (these include constraint severities and
input parameter ranges). The configuration file simply speci-
fies command line options. Since ScannerS performs a ran-
dom scan, it is easily parallelizable by launching multiple
jobs with the same input and different output files.

The output format used by ScannerS is a simple tab-
separated tabular format where each line corresponds to one
parameter point. The first column contains an index which
identifies the point, while all following columns contain data.
The first line contains a header that specifies the contents of
each row.10 The pandas Python package for example can
be used to easily read:

df = pandas.read_table("R2HDM.tsv",
index_col =0)

and write:

df.to_csv("R2HDM_copy.tsv", sep="\t")

files in this format.
In check mode, the input parameters are read from a file.

All of the input parameter points that fulfill the constraints are
written to the output. This can e.g. be used to re-check a set
of parameter points when the constraints have been updated.
For example

./R2HDM R2HDM_re.tsv check R2HDM.tsv

would re-check the parameter points generated in the pre-
vious example. Of course, unless the constraints changed
between the two runs, R2HDM.tsv and R2HDM_re.tsv
would contain the same parameter points. The check mode
can also be used to apply the constraints to a manually speci-
fied set of parameter points, e.g. a parameter plane of interest.
In models with multiple implemented sets of input param-
eters, check mode always uses the simplest possible input
method – usually the input in terms of mixing angles – to min-
imize the numerical errors induced by repeated re-checks.

4.1 Extending ScannerS

ScannerS can easily be extended given some C++ program-
ming experience. New constraints can be added by extend-

10 The row names are documented with the function that stores the cor-
responding value to the output. This can either be one of the constraints
in ScannerS::Constraints or a member function of the model
class in ScannerS::Models.

123

https://gitlab.com/jonaswittbrodt/ScannerS
https://gitlab.com/jonaswittbrodt/ScannerS


Eur. Phys. J. C           (2022) 82:198 Page 13 of 17   198 

ing the minimal example given in the documentation of
the ScannerS::Constraints::Constraint class.
The existing constraints illustrate a wide variety of possi-
bilities. Some have almost trivial implementations that del-
egate all calculations to the model – such as the bound-
edness (ScannerS::Constraints::BFB) and unitar-
ity (ScannerS::Constraints::Unitarity) con-
straints – some perform calculations themselves – e.g. the
constraint ScannerS::Constraints::STU that cal-
culates and checks the oblique parameters – or delegate
to external codes – like ScannerS::Constraints::
Higgs, the constraint from Higgs observables, that calls
HiggsBounds and HiggsSignals.

New models are also straightforward to implement. The
main requirement is to implement the relations between
the chosen set of input parameters and the remaining
model parameters – e.g. the expressions for the λi in
terms of masses and mixing angles – in the constructor of
a ParameterPoint member class. The basic technical
requirements on a model class are listed in the documenta-
tion of the Scanners::Models namespace.

Constraints are enabled for a model class by implementing
their required functions and attributes. In most cases these
are static member functions of the model class operating
on a ParameterPoint object, the detailed requirements
can be found in the documentation of each constraint in the
Scanners::Constraints namespace.

5 Summary

We have presented the C++ code ScannerS that performs
parameter scans in many BSM models with extended Higgs
sectors. The resulting samples of parameter points can be
used e.g. for phenomenological studies, as benchmark sce-
narios for experimental searches, or as numerical examples
for precision calculations.

ScannerS implements many different sources of con-
straints on the models. These include theoretical constraints,
constraints from precision measurements in the EW and
flavour sector, constraints from LHC Higgs data, DM con-
straints, and EDM constraints as well as the requirement of
a strong-first-order EW phase transition, if applicable. These
constraints can be applied in parameter scans of many differ-
ent implemented BSM models – different singlet extensions
of the SM, both the CP-conserving and CP-violating 2HDM,
and many different phases and variants of the N2HDM.

ScannerS aims to be easy to install – with automatic
dependency management for the physics codes it uses – and
easy to use – using a straightforward command line interface
and simple tabular data files. We have used ScannerS to
generate tens of millions of valid parameter points across the
implemented models and the code proved to be reliable and
efficient.

Implementing new constraints or models in ScannerS is
straightforward and encouraged. The online documentation
specifies the technical requirements and most extensions can
be easily implemented by modifying and extending exist-
ing model or constraint implementations. If you have imple-
mented new models or constraints in ScannerS we encour-
age you to contact us with regards to merging them back into
the main code.
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A The anyHdecay library

In order to apply constraints from Higgs searches and Higgs
measurements, precise model predictions for Higgs branch-
ing ratios and total widths are needed.11 ScannerS uses the
interface libraryanyHdecay to obtain these predictions from
dedicated tools based on the code HDECAY [29–31] that
exist for various models. As these codes are not designed to
be used as a library, anyHdecay wraps their functionality
into a common C++ interface.

The library currently incorporates HDECAY for the SM
and R2HDM, sHDECAY [68] for the different phases of the
CxSM (and the real-singlet-extended SM (RxSM) that is not
currently implemented in ScannerS), N2HDECAY [82,84]
for the phases of the N2HDM, and C2HDM_HDECAY
[76] for the C2HDM. The anyHdecay source code is avail-

11 In simple models – such as pure singlet extensions – this can be
circumvented by using the HiggsBounds effective coupling input [26].
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able at https://gitlab.com/jonaswittbrodt/anyhdecay and only
requires working Fortran and C++-17 compilers as well
as CMake. The underlying codes are downloaded through
CMake and automatically restructured to allow linking them
into one library. The API documentation for anyHdecay is
available at https://jonaswittbrodt.gitlab.io/anyhdecay/.

B Perturbative unitarity bounds

The tree-level 2 → 2 scattering matrix M2→2 in the high
energy limit is easy to derive directly from the scalar poten-
tial. An element of M2→2 corresponding to a set of two
particle states |AB〉 and |CD〉 is given by

〈AB|M|CD〉 = 1√
(1 + δAB)(1 + δCD)

∂4V

∂A∂B∂C∂D
,(43)

where the δ functions lead to the correct symmetry factors for
the two-particle states. The perturbative unitarity constraint
bounds the n eigenvalues Mi

2→2 (i ∈ {1, . . . , n}) of M2→2

as
|Mi

2→2| < 8π . (44)

However, since basis transformations are unitary transfor-
mations, the Mi

2→2 are independent of the basis [8], and the
most convenient one – usually the basis of gauge eigenstates
– can be used for the calculation.

The eigenvalues of M2→2 can be calculated numeri-
cally in a straightforward way. However, in most cases
the diagonalization can – at least partially – be carried
out analytically. This both leads to additional insight into
the allowed ranges for the parameters of the scalar poten-
tial and allows a much faster evaluation of perturbative
unitarity constraints. A small Mathematica package –
tools/PerturbativeUnitarity.m – that can be
used to perform this calculation is included in ScannerS.
We will illustrate its usage by deriving the CxSM unitarity
constraints of Eq. (11).

The package is loaded as usual (with the path adjusted as
needed)

<<tools/PerturbativeUnitarity.m

It only needs the quartic part of the scalar potential – in
terms of eigenstates of electric charge – and a list of fields as
input. For the CxSM we define the quartic part of the scalar
potential, Eq. (10), as
Phi = {

{(HCr + I HCi)},
{(v + HR + I HI)}

}/Sqrt [2];
PhiCC = ConjugateTranspose[Phi];
PhiS = (

vsR + sR + I vsI + I sI
)/Sqrt [2];

hChargedTrans = {
HCr -> (Hm + Hp)/Sqrt[2],
HCi -> I (Hm - Hp)/Sqrt [2]

};

V = Expand[ComplexExpand[
lambda /4 (PhiCC.Phi)^2
+ delta2 /2 (PhiCC.Phi)Abs[PhiS ]^2
+ d2/4 Abs[PhiS ]^4

][[1, 1]] /. hChargedTrans ];

where the hChargedTrans rules are used to transform
from the real field components into the complex electrically
charged fields. The fields are defined as

fields = {{Hp, Hm}, HR, HI , sR , sI};

where any charged fields should be given in a two-component
sub-list with the positive eigenstate first and the negative
eigenstate second. This information is used to avoid gener-
ating redundant charge conjugate states. With this input the
package generates the scatter matrix M2→2 through

scatterMatrixForm [
sMat = scatterMatrix[V, fields]

]

The scatterMatrixForm creates a formatted output of
the – in case of the CxSM 16×16 – scattering matrix, where
the corresponding two-particle states are indicated at each
row and column. This full scatter matrix is decomposed into
sub-blocks using

blocks = splitBlockMatrix[sMat];
TableForm[

scatterMatrixForm /@ blocks
]

The second line prints all of the sub-matrices. In the CxSM
this will show a 1 × 1 matrix of the doubly-charged states
|H±H±〉, four 1 × 1 matrices for the singly-charged states,
and another six 1 × 1 matrices and one 5 × 5 matrix for
the neutral states. The eigenvalues Mi

2→2 are then obtained
using

uniqueEV[blocks]

which gives the exact results of Eq. (11). The maximum and
minimum values for the quartic potential parameters that are
possible without violating unitarity may also be of interest.
These can be obtained using

maxUnitaryParRange[
uniqueEV[blocks],
{lambda ,delta2 ,d2}

]

where the second argument lists the quartic parameters that
enter the unitarity constraints. For the CxSM this returns that
perturbative unitarity can only be fulfilled if
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|λ| � 16.8 , |δ2| � 35.6 , |d2| � 25.2 . (45)

This information is particularly relevant to obtain reasonable
scan ranges for models where some of the quartic parame-
ters are input parameters – such as the dark phases of the
N2HDM. The function works by numerically minimizing
and maximizing each parameter given the perturbative uni-
tarity constraints on all parameters. Optionally, additional
constraints that should be included can be given as a third
argument. For example, by including the CxSM bounded-
ness conditions [1] as

maxUnitaryParRange[
uniqueEV[blocks],
{lambda ,delta2 ,d2},
lambda > 0 &&
d2 > 0 && (

delta2 > 0 ||
delta2 ^2 < lambda d2

)
]

we obtain the smaller maximally allowed parameter ranges

0 ≤ λ � 16.8 , − 13.1 � δ2 � 35.6 , 0 ≤ d2 � 25.2 .

(46)

For more complicated models such as the N2HDM it is
not possible to obtain all eigenvalues analytically. In this case
some of theMi

2→2 in the output of theuniqueEV command
will be expressed as the roots of a polynomial. These roots
can then be calculated numerically, which is still substantially
simpler than diagonalizing the full scatter matrix numerically
– in the N2HDM the difference is between finding the roots of
a cubic polynomial and diagonalizing a 40×40 scatter matrix.
This exploding complexity is the reason, why ScannerS–2
no longer uses the generic numerical method for perturbative
unitarity constraints [1] and instead includes thisMathemat-
ica package for easily obtaining (semi-)analytic conditions.

References

1. R. Coimbra, M.O.P. Sampaio, R. Santos, ScannerS: constrain-
ing the phase diagram of a complex scalar singlet at the LHC.
Eur. Phys. J. C 73, 2428 (2013). https://doi.org/10.1140/epjc/
s10052-013-2428-4 arXiv:1301.2599

2. P. Bechtle, K. Desch, P. Wienemann, Fittino, a program for deter-
mining MSSM parameters from collider observables using an iter-
ative method. Comput. Phys. Commun. 174, 47 (2006). https://doi.
org/10.1016/j.cpc.2005.09.002 arXiv:hep-ph/0412012

3. A.B. Arbuzov et al., ZFITTER: a semi-analytical program for
fermion pair production in e+ e− annihilation, from version 6.21
to version 6.42. Comput. Phys. Commun. 174, 728 (2006). https://
doi.org/10.1016/j.cpc.2005.12.009 arXiv:hep-ph/0507146

4. H. Flacher et al., Revisiting the global electroweak fit of thes-
tandard model and beyond with Gfitter. Eur. Phys. J. C 60, 543

(2009). https://doi.org/10.1140/epjc/s10052-009-0966-6. https://
doi.org/10.1140/epjc/s10052-011-1718-y. arXiv:0811.0009

5. GAMBIT, GAMBIT: the global and modular beyond-the-
standard-model in-ference tool. Eur. Phys. J. C 77, 784 (2017).
https://doi.org/10.1140/epjc/s10052-017-5513-2. https://doi.org/
10.1140/epjc/s10052-017-5321-8. arXiv:1705.07908

6. J. De Blas et al., HEPfit: a code for the combination of indi-
rect and direct constraints on high energy physics models (2019).
arXiv:1910.14012

7. B.W. Lee, C. Quigg, H.B. Thacker, Weak interactions at very
high-energies: the role of the Higgs Boson mass. Phys. Rev. D
16, 1519 (1977), FERMILAB-PUB-77-30-THY. https://doi.org/
10.1103/PhysRevD.16.1519

8. S. Kanemura, T. Kubota, E. Takasugi, Lee–Quigg–Thacker bounds
for Higgs boson masses in a two doublet model. Phys. Lett. B
313, 155 (1993). https://doi.org/10.1016/0370-2693(93)91205-2
arXiv:hep-ph/9303263

9. W.J. Marciano, G. Valencia, S. Willenbrock, Renormalization
Group Im-proved unitarity bounds on the Higgs Boson and top
quark masses. Phys. Rev. D 40, 1725 (1989), BNL-42766. https://
doi.org/10.1103/PhysRevD.40.1725

10. M.D. Goodsell, F. Staub, Unitarity constraints on general scalar
couplings with SARAH. Eur. Phys. J. C 78, 649 (2018). https://
doi.org/10.1140/epjc/s10052-018-6127-z arXiv:1805.07306

11. M.D. Goodsell, F. Staub, Improved unitarity constraints in Two-
Higgs-Doublet-Models. Phys. Lett. B 788, 206 (2019). https://doi.
org/10.1016/j.physletb.2018.11.030 arXiv:1805.07310

12. M.E. Krauss, F. Staub, Unitarity constraints in triplet extensions
beyond the large s limit. Phys. Rev. D 98, 015041 (2018). https://
doi.org/10.1103/PhysRevD.98.015041 arXiv:1805.07309

13. I.P. Ivanov, M. Köpke, M. Mühlleitner, Algorithmic boundedness-
from-below conditions for generic scalar potentials. Eur. Phys. J. C
78, 413 (2018). https://doi.org/10.1140/epjc/s10052-018-5893-y
arXiv:1802.07976

14. W.G. Hollik, G. Weiglein, J. Wittbrodt, Impact of vacuum stabil-
ity constraints on the phenomenology of supersymmetric models.
JHEP 03, 109 (2019). https://doi.org/10.1007/JHEP03(2019)109
arXiv:1812.04644

15. P.M. Ferreira et al., Vacuum instabilities in the N2HDM. J. High
Energy Phys. (2019). https://doi.org/10.1007/JHEP09(2019)006.
arXiv:1905.10234

16. J. Wittbrodt, EVADE: Efficient constraints from Vacuum DEcay.
http://gitlab.com/jonaswittbrodt/evade

17. M.E. Peskin, T. Takeuchi, Estimation of oblique electroweak cor-
rections. Phys. Rev. D 46, 381 (1992), SLAC-PUB-5618. https://
doi.org/10.1103/PhysRevD.46.381

18. J. Haller et al., Update of the global electroweak fit and
constraints on two-Higgs-doublet models. Eur. Phys. J. C
78, 675 (2018). https://doi.org/10.1140/epjc/s10052-018-6131-3
arXiv:1803.01853

19. W. Grimus et al., A precision constraint on multi-Higgs-doublet
models. J. Phys. G35, 075001 (2008). https://doi.org/10.1088/
0954-3899/35/7/075001 arXiv:0711.4022

20. W. Grimus et al., The oblique parameters in multi-Higgs-doublet
models. Nucl. Phys. B 801, 81 (2008). https://doi.org/10.1016/j.
nuclphysb.2008.04.019 arXiv:0802.4353

21. A.J. Buras et al., Higgs-mediated FCNCs: natural flavour conser-
vation vs minimal flavour violation. JHEP 10, 009 (2010). https://
doi.org/10.1007/JHEP10(2010)009 arXiv:1005.5310

22. P. Bechtle et al., HiggsBounds: confronting arbitrary Higgs sectors
with exclusion bounds from LEP and the Tevatron. Comput. Phys.
Commun. 181, 138 (2010). https://doi.org/10.1016/j.cpc.2009.09.
003 arXiv:0811.4169

23. P. Bechtle et al., HiggsBounds 2.0.0: confronting neutral and
charged higgs sector predictions with exclusion bounds from LEP

123

https://doi.org/10.1140/epjc/s10052-013-2428-4
https://doi.org/10.1140/epjc/s10052-013-2428-4
http://arxiv.org/abs/1301.2599
https://doi.org/10.1016/j.cpc.2005.09.002
https://doi.org/10.1016/j.cpc.2005.09.002
http://arxiv.org/abs/hep-ph/0412012
https://doi.org/10.1016/j.cpc.2005.12.009
https://doi.org/10.1016/j.cpc.2005.12.009
http://arxiv.org/abs/hep-ph/0507146
https://doi.org/10.1140/epjc/s10052-009-0966-6
https://doi.org/10.1140/epjc/s10052-011-1718-y
https://doi.org/10.1140/epjc/s10052-011-1718-y
http://arxiv.org/abs/0811.0009
https://doi.org/10.1140/epjc/s10052-017-5513-2
https://doi.org/10.1140/epjc/s10052-017-5321-8
https://doi.org/10.1140/epjc/s10052-017-5321-8
http://arxiv.org/abs/1705.07908
http://arxiv.org/abs/1910.14012
https://doi.org/10.1103/PhysRevD.16.1519
https://doi.org/10.1103/PhysRevD.16.1519
https://doi.org/10.1016/0370-2693(93)91205-2
http://arxiv.org/abs/hep-ph/9303263
https://doi.org/10.1103/PhysRevD.40.1725
https://doi.org/10.1103/PhysRevD.40.1725
https://doi.org/10.1140/epjc/s10052-018-6127-z
https://doi.org/10.1140/epjc/s10052-018-6127-z
http://arxiv.org/abs/1805.07306
https://doi.org/10.1016/j.physletb.2018.11.030
https://doi.org/10.1016/j.physletb.2018.11.030
http://arxiv.org/abs/1805.07310
https://doi.org/10.1103/PhysRevD.98.015041
https://doi.org/10.1103/PhysRevD.98.015041
http://arxiv.org/abs/1805.07309
https://doi.org/10.1140/epjc/s10052-018-5893-y
http://arxiv.org/abs/1802.07976
https://doi.org/10.1007/JHEP03(2019)109
http://arxiv.org/abs/1812.04644
https://doi.org/10.1007/JHEP09(2019)006
http://arxiv.org/abs/1905.10234
http://gitlab.com/jonaswittbrodt/evade
https://doi.org/10.1103/PhysRevD.46.381
https://doi.org/10.1103/PhysRevD.46.381
https://doi.org/10.1140/epjc/s10052-018-6131-3
http://arxiv.org/abs/1803.01853
https://doi.org/10.1088/0954-3899/35/7/075001
https://doi.org/10.1088/0954-3899/35/7/075001
http://arxiv.org/abs/0711.4022
https://doi.org/10.1016/j.nuclphysb.2008.04.019
https://doi.org/10.1016/j.nuclphysb.2008.04.019
http://arxiv.org/abs/0802.4353
https://doi.org/10.1007/JHEP10(2010)009
https://doi.org/10.1007/JHEP10(2010)009
http://arxiv.org/abs/1005.5310
https://doi.org/10.1016/j.cpc.2009.09.003
https://doi.org/10.1016/j.cpc.2009.09.003
http://arxiv.org/abs/0811.4169


  198 Page 16 of 17 Eur. Phys. J. C           (2022) 82:198 

and the Tevatron. Comput. Phys. Commun. 182, 2605 (2011).
https://doi.org/10.1016/j.cpc.2011.07.015 arXiv:1102.1898

24. P. Bechtle et al., HiggsBounds-4: improved tests of extended Higgs
sectors against exclusion bounds from LEP, the Tevatron and the
LHC. Eur. Phys. J. C 74, 2693 (2014). https://doi.org/10.1140/epjc/
s10052-013-2693-2 arXiv:1311.0055

25. P. Bechtle et al., Applying exclusion likelihoods from LHC
searches to extended Higgs sectors. Eur. Phys. J. C 75,
421 (2015). https://doi.org/10.1140/epjc/s10052-015-3650-z
arXiv:1507.06706

26. P. Bechtle et al., HiggsBounds-5: testing Higgs sectors in the
LHC13 TeV Era (2020). arXiv:2006.06007

27. P. Bechtle et al., HiggsSignals: confronting arbitrary Higgs sectors
with measurements at the Tevatron and the LHC. Eur. Phys. J. C
74, 2711 (2014). https://doi.org/10.1140/epjc/s10052-013-2711-4
arXiv:1305.1933

28. P. Bechtle et al., HiggsSignals-2: probing new physics with preci-
sion Higgs measurements in the LHC 13 TeV era. Eur. Phys. J. C
81, 145 (2021). https://doi.org/10.1140/epjc/s10052-021-08942-y
arXiv:2012.09197

29. A. Djouadi, J. Kalinowski, M. Spira, HDECAY: a program for
Higgs boson decays in the standard model and its supersymmetric
extension. Comput. Phys. Commun. 108, 56 (1998). https://doi.
org/10.1016/S0010-4655(97)00123-9 arXiv:hep-ph/9704448

30. R. Harlander et al., Interim recommendations for the evaluation of
Higgs production cross sections and branching ratios at the LHC
in the Two-Higgs-Doublet Model (2013). arXiv:1312.5571

31. A. Djouadi et al., HDECAY: twenty++ years after. Comput. Phys.
Commun. 238, 214 (2019). https://doi.org/10.1016/j.cpc.2018.12.
010 arXiv:1801.09506

32. R.V. Harlander, S. Liebler, H. Mantler, SusHi: a program for the
calculation of Higgs production in gluon fusion and bottom-quark
annihilation in the Standard Model and the MSSM. Comput. Phys.
Commun. 184, 1605 (2013). https://doi.org/10.1016/j.cpc.2013.
02.006 arXiv:1212.3249

33. R.V. Harlander, S. Liebler, H. Mantler, SusHi Bento: beyond
NNLO and the heavy-top limit. Comput. Phys. Commun.
212, 239 (2017). https://doi.org/10.1016/j.cpc.2016.10.015
arXiv:1605.03190

34. O. Brein, R.V. Harlander, T.J.E. Zirke, vh@nnlo-Higgs Strahlung at
hadron colliders. Comput. Phys. Commun. 184, 998 (2013). https://
doi.org/10.1016/j.cpc.2012.11.002 arXiv:1210.5347

35. R.V. Harlander et al., vh@nnlo-v2: new physics in Higgs Strahlung.
JHEP 05, 089 (2018). https://doi.org/10.1007/JHEP05(2018)089
arXiv:1802.04817

36. E.L. Berger et al., Associated production of a top quark and a
charged Higgs boson. Phys. Rev. D 71, 115012 (2005). https://doi.
org/10.1103/PhysRevD.71.115012 arXiv:hep-ph/0312286

37. S. Dittmaier et al., Charged-Higgs-boson production at the
LHC: NLO supersymmetric QCD corrections. Phys. Rev. D
83, 055005 (2011). https://doi.org/10.1103/PhysRevD.83.055005
arXiv:0906.2648

38. M. Flechl et al., Improved cross-section predictions for heavy
charged Higgs boson production at the LHC. Phys. Rev. D
91, 075015 (2015). https://doi.org/10.1103/PhysRevD.91.075015
arXiv:1409.5615

39. C. Degrande et al., Heavy charged Higgs boson production
at the LHC. JHEP 10, 145 (2015). https://doi.org/10.1007/
JHEP10(2015)145 arXiv:1507.02549

40. LHC Higgs Cross Section Working Group, Handbook of
LHC Higgs Cross Sections: 4. Deciphering the Nature of the
Higgs Sector (2016). https://doi.org/10.23731/CYRM-2017-002.
arXiv:1610.07922

41. C. Degrande et al., Accurate predictions for charged Higgs produc-
tion: closing themH± ∼ mt window. Phys. Lett. B 772, 87 (2017).
https://doi.org/10.1016/j.physletb.2017.06.037 arXiv:1607.05291

42. ACME, Improved limit on the electric dipole moment of
the electron. Nature 562, 355 (2018). https://doi.org/10.1038/
s41586-018-0599-8

43. G. Belanger et al., MicrOMEGAs 2.0: a program to calculate the
relic density of dark matter in a generic model. Comput. Phys.
Commun. 176, 367 (2007). https://doi.org/10.1016/j.cpc.2006.11.
008 arXiv:hep-ph/0607059

44. G. Belanger et al., Dark matter direct detection rate in a
generic model with micrOMEGAs 2.2. Comput. Phys. Com-
mun. 180, 747 (2009). https://doi.org/10.1016/j.cpc.2008.11.019
arXiv:0803.2360

45. G. Belanger et al., Indirect search for dark matter with
micrOMEGAs2 4. Comput. Phys. Commun. 182, 842 (2011).
https://doi.org/10.1016/j.cpc.2010.11.033 arXiv:1004.1092

46. G. Belanger et al., micrOMEGAs 3: a program for calculating
dark matter observables. Comput. Phys. Commun. 185, 960 (2014).
https://doi.org/10.1016/j.cpc.2013.10.016 arXiv:1305.0237

47. G. Bélanger et al., micrOMEGAs4.1: two dark matter candidates.
Comput. Phys. Commun. 192, 322 (2015). https://doi.org/10.1016/
j.cpc.2015.03.003 arXiv:1407.6129

48. D. Barducci et al., Collider limits on new physics within
micrOMEGAs 4.3. Comput. Phys. Commun. 222, 327 (2018).
https://doi.org/10.1016/j.cpc.2017.08.028 arXiv:1606.03834

49. G. Bélanger et al., micrOMEGAs5.0: freeze-in. Comput. Phys.
Commun. 231, 173 (2018). https://doi.org/10.1016/j.cpc.2018.04.
027 arXiv:1801.03509

50. Planck, Planck 2018 results. VI. Cosmological parameters (2018).
arXiv:1807.06209

51. XENON, Dark matter search results from a one ton-year exposure
of XENON1T. Phys. Rev. Lett. 121, 111302 (2018). https://doi.
org/10.1103/PhysRevLett.121.111302. arXiv:1805.12562

52. V.A. Kuzmin, V.A. Rubakov, M.E. Shaposhnikov, On the anoma-
lous electroweak baryon number nonconservation in the early uni-
verse. Phys. Lett. B 155, 36, IC/85/8 (1985). https://doi.org/10.
1016/0370-2693(85)91028-7

53. M.E. Shaposhnikov, Possible appearance of the baryon asymmetry
of the universe in an electroweak theory. JETP Lett. 44, 465 (1986)

54. M. Trodden, Electroweak baryogenesis. Rev. Mod. Phys.
71, 1463 (1999). https://doi.org/10.1103/RevModPhys.71.1463
arXiv:hep-ph/9803479

55. D.E. Morrissey, M.J. Ramsey-Musolf, Electroweak baryogene-
sis. New J. Phys. 14, 125003 (2012). https://doi.org/10.1088/
1367-2630/14/12/125003 arXiv:1206.2942

56. A. Kosowsky, M.S. Turner, R. Watkins, Gravitational waves from
first order cosmological phase transitions. Phys. Rev. Lett. 69,
2026 (1992) FERMILAB-PUB-91-333-A-REV. https://doi.org/
10.1103/PhysRevLett.69.2026

57. A. Kosowsky, M.S. Turner, R. Watkins, Gravitational radiation
from colliding vacuum bubbles. Phys. Rev. D 45, 4514 (1992),
FERMILAB-PUB-91-323-A. https://doi.org/10.1103/PhysRevD.
45.4514

58. A. Kosowsky, M.S. Turner, Gravitational radiation from collid-
ing vacuum bubbles: envelope approximation to many bubble col-
lisions. Phys. Rev. D 47, 4372 (1993). https://doi.org/10.1103/
PhysRevD.47.4372 arXiv:astro-ph/9211004

59. M. Kamionkowski, A. Kosowsky, M.S. Turner, Gravita-
tional radiation from first order phase transitions. Phys. Rev.
D 49, 2837 (1994). https://doi.org/10.1103/PhysRevD.49.2837
arXiv:astro-ph/9310044

60. R. Apreda et al., Gravitational waves from electroweak phase tran-
sitions. Nucl. Phys. B 631, 342 (2002). https://doi.org/10.1016/
S0550-3213(02)00264-X arXiv:gr-qc/0107033

61. A. Kosowsky, A. Mack, T. Kahniashvili, Gravitational radi-
ation from cosmological turbulence. Phys. Rev. D 66,
024030 (2002). https://doi.org/10.1103/PhysRevD.66.024030
arXiv:astro-ph/0111483

123

https://doi.org/10.1016/j.cpc.2011.07.015
http://arxiv.org/abs/1102.1898
https://doi.org/10.1140/epjc/s10052-013-2693-2
https://doi.org/10.1140/epjc/s10052-013-2693-2
http://arxiv.org/abs/1311.0055
https://doi.org/10.1140/epjc/s10052-015-3650-z
http://arxiv.org/abs/1507.06706
http://arxiv.org/abs/2006.06007
https://doi.org/10.1140/epjc/s10052-013-2711-4
http://arxiv.org/abs/1305.1933
https://doi.org/10.1140/epjc/s10052-021-08942-y
http://arxiv.org/abs/2012.09197
https://doi.org/10.1016/S0010-4655(97)00123-9
https://doi.org/10.1016/S0010-4655(97)00123-9
http://arxiv.org/abs/hep-ph/9704448
http://arxiv.org/abs/1312.5571
https://doi.org/10.1016/j.cpc.2018.12.010
https://doi.org/10.1016/j.cpc.2018.12.010
http://arxiv.org/abs/1801.09506
https://doi.org/10.1016/j.cpc.2013.02.006
https://doi.org/10.1016/j.cpc.2013.02.006
http://arxiv.org/abs/1212.3249
https://doi.org/10.1016/j.cpc.2016.10.015
http://arxiv.org/abs/1605.03190
https://doi.org/10.1016/j.cpc.2012.11.002
https://doi.org/10.1016/j.cpc.2012.11.002
http://arxiv.org/abs/1210.5347
https://doi.org/10.1007/JHEP05(2018)089
http://arxiv.org/abs/1802.04817
https://doi.org/10.1103/PhysRevD.71.115012
https://doi.org/10.1103/PhysRevD.71.115012
http://arxiv.org/abs/hep-ph/0312286
https://doi.org/10.1103/PhysRevD.83.055005
http://arxiv.org/abs/0906.2648
https://doi.org/10.1103/PhysRevD.91.075015
http://arxiv.org/abs/1409.5615
https://doi.org/10.1007/JHEP10(2015)145
https://doi.org/10.1007/JHEP10(2015)145
http://arxiv.org/abs/1507.02549
https://doi.org/10.23731/CYRM-2017-002
http://arxiv.org/abs/1610.07922
https://doi.org/10.1016/j.physletb.2017.06.037
http://arxiv.org/abs/1607.05291
https://doi.org/10.1038/s41586-018-0599-8
https://doi.org/10.1038/s41586-018-0599-8
https://doi.org/10.1016/j.cpc.2006.11.008
https://doi.org/10.1016/j.cpc.2006.11.008
http://arxiv.org/abs/hep-ph/0607059
https://doi.org/10.1016/j.cpc.2008.11.019
http://arxiv.org/abs/0803.2360
https://doi.org/10.1016/j.cpc.2010.11.033
http://arxiv.org/abs/1004.1092
https://doi.org/10.1016/j.cpc.2013.10.016
http://arxiv.org/abs/1305.0237
https://doi.org/10.1016/j.cpc.2015.03.003
https://doi.org/10.1016/j.cpc.2015.03.003
http://arxiv.org/abs/1407.6129
https://doi.org/10.1016/j.cpc.2017.08.028
http://arxiv.org/abs/1606.03834
https://doi.org/10.1016/j.cpc.2018.04.027
https://doi.org/10.1016/j.cpc.2018.04.027
http://arxiv.org/abs/1801.03509
http://arxiv.org/abs/1807.06209
https://doi.org/10.1103/PhysRevLett.121.111302
https://doi.org/10.1103/PhysRevLett.121.111302
http://arxiv.org/abs/1805.12562
https://doi.org/10.1016/0370-2693(85)91028-7
https://doi.org/10.1016/0370-2693(85)91028-7
https://doi.org/10.1103/RevModPhys.71.1463
http://arxiv.org/abs/hep-ph/9803479
https://doi.org/10.1088/1367-2630/14/12/125003
https://doi.org/10.1088/1367-2630/14/12/125003
http://arxiv.org/abs/1206.2942
https://doi.org/10.1103/PhysRevLett.69.2026
https://doi.org/10.1103/PhysRevLett.69.2026
https://doi.org/10.1103/PhysRevD.45.4514
https://doi.org/10.1103/PhysRevD.45.4514
https://doi.org/10.1103/PhysRevD.47.4372
https://doi.org/10.1103/PhysRevD.47.4372
http://arxiv.org/abs/astro-ph/9211004
https://doi.org/10.1103/PhysRevD.49.2837
http://arxiv.org/abs/astro-ph/9310044
https://doi.org/10.1016/S0550-3213(02)00264-X
https://doi.org/10.1016/S0550-3213(02)00264-X
http://arxiv.org/abs/gr-qc/0107033
https://doi.org/10.1103/PhysRevD.66.024030
http://arxiv.org/abs/astro-ph/0111483


Eur. Phys. J. C           (2022) 82:198 Page 17 of 17   198 

62. A.D. Dolgov, D. Grasso, A. Nicolis, Relic backgrounds of
gravitational waves from cosmic turbulence. Phys. Rev. D
66, 103505 (2002). https://doi.org/10.1103/PhysRevD.66.103505
arXiv:astro-ph/0206461

63. C. Grojean, G. Servant, Gravitational waves from phase tran-
sitions at the electroweak scale and beyond. Phys. Rev. D
75, 043507 (2007). https://doi.org/10.1103/PhysRevD.75.043507.
arXiv:hep-ph/0607107

64. C. Caprini et al., Science with the space-based interferometer
eLISA. II: Gravitational waves from cosmological phase transi-
tions. JCAP 1604, 001 (2016). https://doi.org/10.1088/1475-7516/
2016/04/001. arXiv:1512.06239

65. P. Basler, M. Mühlleitner, BSMPT (Beyond the Standard Model
Phase Transitions): a tool for the electroweak phase transition in
extended Higgs sectors. Comput. Phys. Commun. 237, 62 (2019).
https://doi.org/10.1016/j.cpc.2018.11.006 arXiv:1803.02846

66. P. Basler, M. Mühlleitner, J. Müller, BSMPT v2 a tool for the elec-
troweak phase transition and the baryon asymmetry of the universe
in extended Higgs sectors (2020). arXiv:2007.01725

67. V. Barger et al., Complex singlet extension of the standard
model. Phys. Rev. D 79, 015018 (2009). https://doi.org/10.1103/
PhysRevD.79.015018 arXiv:0811.0393

68. R. Costa et al., Singlet extensions of the standard model at
LHCRun 2: bench-marks and comparison with the NMSSM.
JHEP 06, 034 (2016). https://doi.org/10.1007/JHEP06(2016)034
arXiv:1512.05355

69. T. Robens, T. Stefaniak, J. Wittbrodt, Two-real-scalar-singlet exten-
sion of the SM: LHC phenomenology and benchmark scenarios
(2019). arXiv:1908.08554

70. T.D. Lee, A theory of spontaneous T violation. Phys. Rev. D 8,
1226 (1973). https://doi.org/10.1103/PhysRevD.8.1226

71. G.C. Branco et al., Theory and phenomenology of two-Higgs-
doublet models. Phys. Rep. 516, 1 (2012). https://doi.org/10.1016/
j.physrep.2012.02.002 arXiv:1106.0034

72. G.C. Branco, M.N. Rebelo, The Higgs mass in a model
with two scalar doublets and spontaneous CP violation. Phys.
Lett. B 160, 117 (1985), IFM-7/85. https://doi.org/10.1016/
0370-2693(85)91476-5

73. I.F. Ginzburg, M. Krawczyk, P. Osland, Two Higgs doublet models
with CP violation. In: Linear colliders, Seogwipo, Korea, August
26–30, pp. 703–706 (2002). arXiv:hep-ph/0211371

74. W. Khater, P. Osland, CP violation in top quark production
at the LHC and two Higgs doublet models. Nucl. Phys. B
661, 209 (2003). https://doi.org/10.1016/S0550-3213(03)00300-6
arXiv:hep-ph/0302004

75. A. Barroso et al., Metastability bounds on the two Higgs
doublet model. JHEP 06, 045 (2013). https://doi.org/10.1007/
JHEP06(2013)045 arXiv:1303.5098

76. D. Fontes et al., The C2HDM revisited. JHEP 02, 073 (2018).
https://doi.org/10.1007/JHEP02(2018)073 arXiv:1711.09419

77. I.P. Ivanov, J.P. Silva, Tree-level metastability bounds for the most
general two Higgs doublet model. Phys. Rev. D 92, 055017 (2015).
https://doi.org/10.1103/PhysRevD.92.055017 arXiv:1507.05100

78. S. Liebler, S. Patel, G. Weiglein, Phenomenology of on-shell Higgs
production in the MSSM with complex parameters. Eur. Phys. J. C
77, 305 (2017). https://doi.org/10.1140/epjc/s10052-017-4849-y
arXiv:1611.09308

79. T. Abe et al., Gauge invariant Barr–Zee type contributions to
fermionic EDMs in the two-Higgs doublet models. JHEP 01,
106 (2014). https://doi.org/10.1007/JHEP01(2014)106,10.1007/
JHEP04(2016)161 arXiv:1311.4704

80. C.-Y. Chen, M. Freid, M. Sher, Next-to-minimal two Higgs doublet
model. Phys. Rev. D 89, 075009 (2014). https://doi.org/10.1103/
PhysRevD.89.075009 arXiv:1312.3949

81. A. Drozd et al., Extending two-Higgs-doublet models by a singlet
scalar field-the Case for Dark Matter. JHEP 11, 105 (2014). https://
doi.org/10.1007/JHEP11(2014)105 arXiv:1408.2106

82. M. Mühlleitner et al., The N2HDM under theoretical and exper-
imental scrutiny. JHEP 03, 094 (2017). https://doi.org/10.1007/
JHEP03(2017)094 arXiv:1612.01309

83. K.G. Klimenko, On necessary and sufficient conditions for some
Higgs potentials to be bounded from below. Theor. Math. Phys. 62,
58 (1985), IFVE-84-43. https://doi.org/10.1007/BF01034825

84. I. Engeln, M. Mühlleitner, J. Wittbrodt, N2HDECAY: Higgs boson
decays in the different phases of the N2HDM. Comput. Phys. Com-
mun. 234, 256 (2018). https://doi.org/10.1016/j.cpc.2018.07.020
arXiv:1805.00966

85. P. Basler, M. Mühlleitner, J. Müller, Electroweak phase transition
in nonminimal Higgs sectors. JHEP 05, 016 (2020). https://doi.
org/10.1007/JHEP05(2020)016 arXiv:1912.10477

86. I. Engeln, Phenomenological comparison of the dark phases
of the next-to-two-Higgs-doublet model, MA thesis, KIT,
Karlsruhe (2018). https://www.itp.kit.edu/_media/publications/
masterthesis_isabellengeln.pdf

87. I. Engeln et al., The dark phases of the N2HDM (2020).
arXiv:2004.05382

88. N.G. Deshpande, E. Ma, Pattern of symmetry breaking with two
Higgs doublets. Phys. Rev. D 18, 2574 (1978), OITS-81. https://
doi.org/10.1103/PhysRevD.18.2574

89. D. Azevedo et al., CP in the dark. JHEP 11, 091 (2018). https://
doi.org/10.1007/JHEP11(2018)091 arXiv:1807.10322

90. M. Galassi et al., GNU Scientific Library Reference Manual, 3rd
ed. (Network Theory Limited, Bristol, 2009)

91. G. Guennebaud, B. Jacob et al., Eigen v3 (2010). https://eigen.
tuxfamily.org

123

https://doi.org/10.1103/PhysRevD.66.103505
http://arxiv.org/abs/astro-ph/0206461
https://doi.org/10.1103/PhysRevD.75.043507
http://arxiv.org/abs/hep-ph/0607107
https://doi.org/10.1088/1475-7516/2016/04/001
https://doi.org/10.1088/1475-7516/2016/04/001
http://arxiv.org/abs/1512.06239
https://doi.org/10.1016/j.cpc.2018.11.006
http://arxiv.org/abs/1803.02846
http://arxiv.org/abs/2007.01725
https://doi.org/10.1103/PhysRevD.79.015018
https://doi.org/10.1103/PhysRevD.79.015018
http://arxiv.org/abs/0811.0393
https://doi.org/10.1007/JHEP06(2016)034
http://arxiv.org/abs/1512.05355
http://arxiv.org/abs/1908.08554
https://doi.org/10.1103/PhysRevD.8.1226
https://doi.org/10.1016/j.physrep.2012.02.002
https://doi.org/10.1016/j.physrep.2012.02.002
http://arxiv.org/abs/1106.0034
https://doi.org/10.1016/0370-2693(85)91476-5
https://doi.org/10.1016/0370-2693(85)91476-5
http://arxiv.org/abs/hep-ph/0211371
https://doi.org/10.1016/S0550-3213(03)00300-6
http://arxiv.org/abs/hep-ph/0302004
https://doi.org/10.1007/JHEP06(2013)045
https://doi.org/10.1007/JHEP06(2013)045
http://arxiv.org/abs/1303.5098
https://doi.org/10.1007/JHEP02(2018)073
http://arxiv.org/abs/1711.09419
https://doi.org/10.1103/PhysRevD.92.055017
http://arxiv.org/abs/1507.05100
https://doi.org/10.1140/epjc/s10052-017-4849-y
http://arxiv.org/abs/1611.09308
https://doi.org/10.1007/JHEP01(2014)106,10.1007/JHEP04(2016)161
https://doi.org/10.1007/JHEP01(2014)106,10.1007/JHEP04(2016)161
http://arxiv.org/abs/1311.4704
https://doi.org/10.1103/PhysRevD.89.075009
https://doi.org/10.1103/PhysRevD.89.075009
http://arxiv.org/abs/1312.3949
https://doi.org/10.1007/JHEP11(2014)105
https://doi.org/10.1007/JHEP11(2014)105
http://arxiv.org/abs/1408.2106
https://doi.org/10.1007/JHEP03(2017)094
https://doi.org/10.1007/JHEP03(2017)094
http://arxiv.org/abs/1612.01309
https://doi.org/10.1007/BF01034825
https://doi.org/10.1016/j.cpc.2018.07.020
http://arxiv.org/abs/1805.00966
https://doi.org/10.1007/JHEP05(2020)016
https://doi.org/10.1007/JHEP05(2020)016
http://arxiv.org/abs/1912.10477
https://www.itp.kit.edu/_media/publications/masterthesis_isabellengeln.pdf
https://www.itp.kit.edu/_media/publications/masterthesis_isabellengeln.pdf
http://arxiv.org/abs/2004.05382
https://doi.org/10.1103/PhysRevD.18.2574
https://doi.org/10.1103/PhysRevD.18.2574
https://doi.org/10.1007/JHEP11(2018)091
https://doi.org/10.1007/JHEP11(2018)091
http://arxiv.org/abs/1807.10322
https://eigen.tuxfamily.org
https://eigen.tuxfamily.org

	ScannerS: parameter scans in extended scalar sectors
	Abstract 
	1 Introduction
	2 Constraints
	2.1 Theoretical constraints
	2.1.1 Perturbative unitarity
	2.1.2 Boundedness from below
	2.1.3 Vacuum stability

	2.2 Electroweak precision constraints
	2.3 Flavour constraints
	2.4 Higgs searches and Higgs measurements
	2.5 Electric dipole moments
	2.6 DM constraints
	2.7 A first order EW phase transition

	3 BSM Models in ScannerS
	3.0.1 Input parameters and mass-ordering
	3.1 The complex-singlet-extension of the SM
	3.1.1 The broken-phase CxSM – CxSMBroken
	3.1.2 The dark-phase CxSM – CxSMDark

	3.2 The two-real-singlet-extension of the SM
	3.2.1 The broken-phase TRSM – TRSMBroken

	3.3 The two-Higgs-doublet model
	3.3.1 The R2HDM – R2HDM
	3.3.2 The C2HDM – C2HDM

	3.4 The next-to 2HDM
	3.4.1 The broken-phase N2HDM – N2HDMBroken
	3.4.2 The dark-singlet-phase N2HDM – N2HDMDarkS
	3.4.3 The dark-doublet-phase N2HDM – N2HDMDarkD
	3.4.4 The fully-dark-phase N2HDM – N2HDMDarkSD

	3.5 Minimal CP-violating dark matter – CPVDM

	4 User operating instructions
	4.1 Extending ScannerS

	5 Summary
	Acknowledgements
	A The anyHdecay library
	B Perturbative unitarity bounds
	References





