997 research outputs found

    Baryon chiral perturbation theory transferred to hole-doped antiferromagnets on the honeycomb lattice

    Full text link
    A systematic low-energy effective field theory for hole-doped antiferromagnets on the honeycomb lattice is constructed. The formalism is then used to investigate spiral phases in the staggered magnetization as well as the formation of two-hole bound states.Comment: Talk delivered by C.P. Hofmann at the XIII Mexican Workshop on Particles and Fields, October 19-26, 2011, Leon, Guanajuato, Mexico; 15 pages, 7 figure

    Systematic Low-Energy Effective Field Theory for Magnons and Holes in an Antiferromagnet on the Honeycomb Lattice

    Full text link
    Based on a symmetry analysis of the microscopic Hubbard and t-J models, a systematic low-energy effective field theory is constructed for hole-doped antiferromagnets on the honeycomb lattice. In the antiferromagnetic phase, doped holes are massive due to the spontaneous breakdown of the SU(2)sSU(2)_s symmetry, just as nucleons in QCD pick up their mass from spontaneous chiral symmetry breaking. In the broken phase the effective action contains a single-derivative term, similar to the Shraiman-Siggia term in the square lattice case. Interestingly, an accidental continuous spatial rotation symmetry arises at leading order. As an application of the effective field theory we consider one-magnon exchange between two holes and the formation of two-hole bound states. As an unambiguous prediction of the effective theory, the wave function for the ground state of two holes bound by magnon exchange exhibits ff-wave symmetry.Comment: 33 pages, 6 figure

    Standardized assessment of walking capacity after spinal cord injury: the European network approach

    Full text link
    OBJECTIVES: After a spinal cord injury (SCI), walking function is an important outcome measure for rehabilitation and new treatment interventions. The current status of four walking capacity tests that are applied to SCI subjects is presented: the revised walking index for spinal cord injury (WISCI II), the 6 minute walk test (6MinWT), 10 meter walk test (10MWT) and the timed up and go (TUG) test. Then, we investigated which categories of the WISCI II apply to SCI subjects who participated in the European Multicenter Study of Human Spinal Cord Injury (EM-SCI), and the relationship between the 10MWT and the TUG. METHODS: In the EM-SCI, the walking tests were applied 2 weeks and 1, 3, 6 and 12 months after SCI. We identified the WISCI II categories that applied to the EM-SCI subjects at each time point and quantified the relationship between the 10MWT and the TUG using Spearman's correlation coefficients (rho) and linear regression. RESULTS: Five WISCI II categories applied to 71% of the EM-SCI subjects with walking ability, while 11 items applied to 11% of the subjects. The 10MWT correlated excellently with the TUG at each time point (rho>0.80). However, this relationship changed over time. One year after SCI, the time needed to accomplish the TUG was 1.25 times greater than the 10MWT time. DISCUSSION: Some categories of the WISCI II appear to be redundant, while some discriminate to an insufficient degree. In addition, there appear to be ceiling effects, which limit its usefulness. The relationship between the 10MWT and TUG is high, but changes over time. We suggest that, at present, the 10MWT appears to be the best tool to assess walking capacity in SCI subjects. Additional valuable information is provided by assessing the needs for walking aids or personal assistance. To ensure comparability of study results, proposals for standardized instructions are presented

    The gastric acid pocket is attenuated in H. pylori infected subjects

    Get PDF
    Objective Gastric acid secretory capacity in different anatomical regions, including the postprandial acid pocket, was assessed in Helicobacter pylori positive and negative volunteers in a Western population. Design We studied 31 H. pylori positive and 28 H. pylori negative volunteers, matched for age, gender and body mass index. Jumbo biopsies were taken at 11 predetermined locations from the gastro-oesophageal junction and stomach. Combined high-resolution pH metry (12 sensors) and manometry (36 sensors) was performed for 20 min fasted and 90 min postprandially. The squamocolumnar junction was marked with radio-opaque clips and visualised radiologically. Biopsies were scored for inflammation and density of parietal, chief and G cells immunohistochemically. Results Under fasting conditions, the H. pylori positives had less intragastric acidity compared with negatives at all sensors >1.1 cm distal to the peak lower oesophageal sphincter (LES) pressure (p<0.01). Postprandially, intragastric acidity was less in H. pylori positives at sensors 2.2, 3.3 and 4.4 cm distal to the peak LES pressure (p<0.05), but there were no significant differences in more distal sensors. The postprandial acid pocket was thus attenuated in H. pylori positives. The H. pylori positives had a lower density of parietal and chief cells compared with H. pylori negatives in 10 of the 11 gastric locations (p<0.05). 17/31 of the H. pylori positives were CagA-seropositive and showed a more marked reduction in intragastric acidity and increased mucosal inflammation. Conclusions In population volunteers, H. pylori positives have reduced intragastric acidity which most markedly affects the postprandial acid pocket

    Difficulty of elderly SCI subjects to translate motor recovery -"body function"- into activity of daily living

    Full text link
    The objective of this retrospective analysis was to determine whether outcome of body functions and activities as well as length of stay of inpatient rehabilitation is related to age in patients with traumatic spinal cord injury (SCI). Data were collected from a European network of 17 SCI rehabilitation centers (EM-SCI) and 237 traumatic SCI subjects were included. Assessments were performed at one, six and twelve months after SCI. The measures analyzed were: motor score according to the American Spinal Injury Association, Spinal Cord Independence Measure (SCIM), gait speed and length of stay. Correlation analysis was applied to quantify the association between age and change in the outcome measures. A positive relationship was found between age and neurological recovery in both the first and second 6 month- period of assessment. A negative relationship was found between age and change in SCIM in the second six month period after SCI. A negative relationship between age and gait speed was observed in the first half year. Length of stay was not associated with age. It is concluded that age is an important determining factor for functional outcome after SCI and that elderly patients have difficulties in translating an improvement in neurological outcome into functional changes. Therefore, rehabilitation approaches should focus on functional training in elderly subjects

    Remote Programming of Multirobot Systems within the UPC-UJI Telelaboratories: System Architecture and Agent-Based Multirobot Control

    Get PDF
    One of the areas that needs further improvement within E-Learning environments via Internet (A big effort is required in this area if progress is to be made) is allowing students to access and practice real experiments in a real laboratory, instead of using simulations [1]. Real laboratories allow students to acquire methods, skills and experience related to real equipment, in a manner that is very close to the way they are being used in industry. The purpose of the project is the study, development and implementation of an E-Learning environment to allow undergraduate students to practice subjects related to Robotics and Artificial Intelligence. The system, which is now at a preliminary stage, will allow the remote experimentation with real robotic devices (i.e. robots, cameras, etc.). It will enable the student to learn in a collaborative manner (remote participation with other students) where it will be possible to combine the onsite activities (performed “in-situ” within the real lab during the normal practical sessions), with the “on-line” one (performed remotely from home via the Internet). Moreover, the remote experiments within the E-Laboratory to control the real robots can be performed by both, students and even scientist. This project is under development and it is carried out jointly by two Universities (UPC and UJI). In this article we present the system architecture and the way students and researchers have been able to perform a Remote Programming of Multirobot Systems via web

    Double-network acrylamide hydrogel compositions adapted to achieve cartilage-like dynamic stiffness

    Get PDF
    Since articular cartilage has a limited potential for spontaneous healing, various techniques are employed to repair cartilage lesions. Acrylate-based double-network (DN) hydrogels containing ~90% water have shown promising properties as repair materials for skeletal system soft tissues. Although their mechanical properties approach those of native cartilage, the critical factor—stiffness—of DN-gels does not equal the stiffness of articular cartilage. This study investigated whether revised PAMPS/PAAm compositions with lower water content result in stiffness parameters closer to cartilage. DN-gels containing 61, 86 and 90% water were evaluated using two non-destructive, mm-scale indentation test modes: fast-impact (FI) and slow-sinusoidal (SS) deformation. Deformation resistance (dynamic modulus) and energy handling (loss angle) were determined. The dynamic modulus increased with decreasing water content in both testing modes. In the 61% water DN-gel, the modulus resembled that of cartilage (FI-mode: DN-gel = 12, cartilage = 17; SS-mode: DN-gel = 4, cartilage = 1.7MPa). Loss angle increased with decreasing water content in fast-impact, but not in slow-sinusoidal deformation. However, loss angle was still much lower than cartilage (FI: DN-gel = 5, cartilage = 11; SS: DN-gel = 10, cartilage = 32°), indicating somewhat less ability to dissipate energy. Overall, results show that it is possible to adapt DN-gel composition to produce dynamic stiffness properties close to normal articular cartilag

    Engineering human cell-based, functionally integrated osteochondral grafts by biological bonding of engineered cartilage tissues to bony scaffolds

    Get PDF
    In this study, we aimed at developing and validating a technique for the engineering of osteochondral grafts based on the biological bonding of a chondral layer with a bony scaffold by cell-laid extracellular matrix. Osteochondral composites were generated by combining collagen-based matrices (Chondro-Gide) containing human chondrocytes with devitalized spongiosa cylinders (Tutobone) using a fibrin gel (Tisseel). We demonstrate that separate pre-culture of the chondral layer for 3 days prior to the generation of the composite allows for (i) more efficient cartilaginous matrix accumulation than no pre-culture, as assessed histologically and biochemically, and (ii) superior biological bonding to the bony scaffold than 14 days of pre-culture, as assessed using a peel-off mechanical test, developed to measure integration of bilayered materials. The presence of the bony scaffold induced an upregulation in the infiltrated cells of the osteoblast-related gene bone sialoprotein, indicative of the establishment of a gradient of cell phenotypes, but did not affect per se the quality of the cartilaginous matrix in the chondral layer. The described strategy to generate osteochondral plugs is simple to be implemented and--since it is based on clinically compliant cells and materials--is amenable to be readily tested in the clinic

    Distributed expertise: Qualitative study of a British network of multidisciplinary teams supporting parents of children with chronic kidney disease

    Get PDF
    © 2014 The Authors. Background: Long-term childhood conditions are often managed by hospital-based multidisciplinary teams (MDTs) of professionals with discipline specific expertise of a condition, in partnership with parents. However, little evidence exists on professional-parent interactions in this context. An exploration of professionals' accounts of the way they individually and collectively teach parents to manage their child's clinical care at home is, therefore, important for meeting parents' needs, informing policy and educating novice professionals. Using chronic kidney disease as an exemplar this paper reports on one aspect of a study of interactions between professionals and parents in a network of 12 children's kidney units in Britain. Methods: We conducted semi-structured, qualitative interviews with a convenience sample of 112 professionals (clinical-psychologists, dietitians, doctors, nurses, pharmacists, play-workers, therapists and social workers), exploring accounts of their parent-educative activity. We analysed data using framework and the concept of distributed expertise. Results: Four themes emerged that related to the way expertise was distributed within and across teams: (i) recognizing each other's' expertise, (ii) sharing expertise within the MDT, (iii) language interpretation, and (iv) acting as brokers. Two different professional identifications were also seen to co-exist within MDTs, with participants using the term 'we' both as the intra-professional 'we' (relating to the professional identity) when describing expertise within a disciplinary group (for example: 'As dietitians we aim to give tailored advice to optimize children's growth'), and the inter-professional 'we' (a 'team-identification'), when discussing expertise within the team (for example: 'We work as a team and make sure we're all happy with every aspect of their training before they go home'). Conclusions: This study highlights the dual identifications implicit in 'being professional' in this context (to the team and to one's profession) as well as the unique role that each member of a team contributes to children's care. Our methodology and results have the potential to be transferred to teams managing other conditions

    Circadian rhythms and sleep regulation in seasonal affective disorder

    Get PDF
    Seasonal affective disorder (SAD) is characterised by recurrent episodes in autumn and winter of depression, hypersomnia, augmented appetite with carbohydrate craving, and weight gain, and can be successfully treated with bright light. Circadian rhythm hypotheses (summarized in) have stimulated research into the pathophysiology of SAD, postulating that: 1.The illness is a consequence of delayed phase position, 2.It is correlated with diminished circadian amplitude, or 3.It results from changes in the nocturnal duration between dusk and dawn e.g. of low core body temperature or melatonin secretion. Light is considered to act directly on the circadian pacemaker (‘Process C') and not on sleep dependent processes (‘Process S'). Thus successful treatment of SAD must act via mechanisms within known retinohypothalamic pathways. Conversely, emergence of SAD symptoms may reflect inappropriate neurobiological response to decreasing daylengt
    • 

    corecore