342 research outputs found

    p27KIP1 Deletions in Childhood Acute Lymphoblastic Leukemia

    Get PDF
    AbstractThe p27KIP1 gene, which encodes a cyclin-dependent kinase (CDK) inhibitor, has been assigned to chromosome band 12p12, a region often affected by cytogenetically apparent deletions or translocations in childhood acute lymphoblastic leukemia (ALL). As described here, fluorescence in situ hybridization (FISH) analysis of 35 primary ALL samples with cytogenetic evidence of 12p abnormalities revealed hemizygous deletions of p27KIP1 in 29 cases. Further analysis of 19 of these cases with two additional gene-specific probes from the 12p region (hematopoietic cell phosphatase, HCP and cyclin D2, CCND2) showed that p27KIP1 is located more proximally on the short arm of chromosome 12 and is deleted more frequently than either HCP or CCND2. Of 16 of these cases with hemizygous deletion of p27KIP1, only eight showed loss of HCP or CCND2, whereas loss of either of the latter two loci was uniformly associated with loss of p27KIP1. Missense mutations or mutations leading to premature termination codons were not detected in the coding sequences of the retained p27KIP1 alleles in any of the 16 ALL cases examined, indicating a lack of homozygous inactivation. By Southern blot analysis, one case of primary T-cell ALL had hemizygous loss of a single p27KIP1 allele and a 34.5-kb deletion, including the second coding exon of the other allele. Despite homozygous inactivation of p27KIP1 in this case, our data suggest that haploinsufficiency for p27KIP1 is the primary consequence of 12p chromosomal deletions in childhood ALL. The oncogenic role of reduced, but not absent, levels of p27KIP1 is supported by recent studies in murine models and evidence that this protein not only inhibits the activity of complexes containing CDK2 and cyclin E, but also promotes the assembly and catalytic activity of CDK4 or CDK6 in complexes with cyclin D

    Persistence of TEL-AML1 fusion gene as minimal residual disease has no additive prognostic value in CD 10 positive B-acute lymphoblastic leukemia: a FISH study

    Get PDF
    <p>Abstract</p> <p>Objectives </p> <p>We have analyzed t(12;21)(p13:q22) in an attempt to evaluate the frequency and prognostic significance of <it>TEL-AML1 </it>fusion gene in patients with childhood CD 10 positive B-ALL by fluorescence in situ hybridization (FISH). Also, we have monitored the prognostic value of this gene as a minimal residual disease (MRD).</p> <p>Methods</p> <p>All bone marrow samples of eighty patients diagnosed as CD 10 positive B-ALL in South Egypt Cancer Institute were evaluated by fluorescence in situ hybridization (FISH) for t(12;21) in newly diagnosed cases and after morphological complete remission as a minimal residual disease (MRD). We determined the prognostic significance of <it>TEL-AML1 </it>fusion represented by disease course and survival.</p> <p>Results</p> <p><it>TEL-AML1 </it>fusion gene was positive in (37.5%) in newly diagnosed patients. There was a significant correlation between <it>TEL-AML1 </it>fusion gene both at diagnosis (r = 0.5, P = 0.003) and as a MRD (r = 0.4, P = 0.01) with favorable course. Kaplan-Meier curve for the presence of <it>TEL-AML1 </it>fusion at the diagnosis was associated with a better probability of overall survival (OS); mean survival time was 47 ± 1 month, in contrast to 28 ± 5 month in its absence (P = 0.006). Also, the persistence at <it>TEL-AML1 </it>fusion as a MRD was not significantly associated with a better probability of OS; the mean survival time was 42 ± 2 months in the presence of MRD and it was 40 ± 1 months in its absence. So, persistence of <it>TEL-AML1 </it>fusion as a MRD had no additive prognostic value over its measurement at diagnosis in terms of predicting the probability of OS.</p> <p>Conclusion</p> <p>For most patients, the presence of <it>TEL-AML1 </it>fusion gene at diagnosis suggests a favorable prognosis. The present study suggests that persistence of <it>TEL-AML1 </it>fusion as MRD has no additive prognostic value.</p

    A High-Throughput Screen Indicates Gemcitabine and JAK Inhibitors May be Useful for Treating Pediatric AML

    Get PDF
    Improvement in survival has been achieved for children and adolescents with AML but is largely attributed to enhanced supportive care as opposed to the development of better treatment regimens. High risk subtypes continue to have poor outcomes with event free survival rates \u3c 40% despite the use of high intensity chemotherapy in combination with hematopoietic stem cell transplant. Here we combine high-throughput screening, intracellular accumulation assays, and in vivo efficacy studies to identify therapeutic strategies for pediatric AML. We report therapeutics not currently used to treat AML, gemcitabine and cabazitaxel, have broad anti-leukemic activity across subtypes and are more effective relative to the AML standard of care, cytarabine, both in vitro and in vivo. JAK inhibitors are selective for acute megakaryoblastic leukemia and significantly prolong survival in multiple preclinical models. Our approach provides advances in the development of treatment strategies for pediatric AML

    Outcome of infants younger than 1 year with acute lymphoblastic leukemia treated with the interfant-06 protocol: Results from an international phase III randomized study

    Get PDF
    PURPOSE Infant acute lymphoblastic leukemia (ALL) is characterized by KMT2A (MLL) gene rearrangements and coexpression of myeloid markers. The Interfant-06 study, comprising 18 national and international study groups, tested whether myeloid-style consolidation chemotherapy is superior to lymphoid style, the role of stemcell transplantation (SCT), and which factors had independent prognostic value. MATERIALS AND METHODS Three risk groups were defined: low risk (LR): KMT2A germline; high risk (HR): KMT2A-rearranged and older than 6 months with WBC count 300 3 109/L or more or a poor prednisone response; and medium risk (MR): all other KMT2A-rearranged cases. Patients in the MR and HR groups were randomly assigned to receive the lymphoid course low-dose cytosine arabinoside [araC], 6-mercaptopurine, cyclophosphamide (IB) or experimental myeloid courses, namely araC, daunorubicin, etoposide (ADE) and mitoxantrone, araC, etoposide (MAE). RESULTS A total of 651 infants were included, with 6-year event-free survival (EFS) and overall survival of 46.1% (SE, 2.1) and 58.2% (SE, 2.0). In West European/North American groups, 6-year EFS and overall survival were 49.4% (SE, 2.5) and 62.1% (SE, 2.4), which were 10% to 12% higher than in other countries. The 6-year probability of disease-free survival was comparable for the randomized arms (ADE1MAE 39.3% [SE 4.0; n = 169] v IB 36.8% [SE, 3.9; n = 161]; log-rank P = .47). The 6-year EFS rate of patients in the HR group was 20.9% (SE, 3.4) with the intention to undergo SCT; only 46% of them received SCT, because many had early events. KMT2A rearrangement was the strongest prognostic factor for EFS, followed by age, WBC count, and prednisone response. CONCLUSION Early intensification with postinduction myeloid-type chemotherapy courses did not significantly improve outcome for infant ALL compared with the lymphoid-type course IB. Outcome for infant ALL in Interfant- 06 did not improve compared with that in Interfant-99

    Relationship of an hRAD54 gene polymorphism (2290 C/T) in an Ecuadorian population with chronic myelogenous leukemia

    Get PDF
    The hRAD54 gene is a key member of the RAD52 epistasis group involved in repair of double-strand breaks (DSB) by homologous recombination (HR). Thus, alterations of the normal function of these genes could generate genetic instability, shifting the normal process of the cell cycle, leading the cells to develop into cancer. In this work we analyzed exon 18 of the hRAD54 gene, which has been previously reported by our group to carry a silent polymorphism, 2290 C/T (Ala730Ala), associated to meningiomas. We performed a PCR-SSCP method to detect the polymorphism in 239 samples including leukemia and normal control population. The results revealed that the 2290 C/T polymorphism has frequencies of 0.1 for the leukemia and 0.1 for the control group. These frequencies show no statistical differences. Additionally, we dissected the leukemia group in chronic myelogenous leukemia (CML) and acute lymphoblastic leukemia (ALL) to evaluate the polymorphism. The frequencies found in these subgroups were 0.14 for CML and 0.05 for ALL. We found statistically significant differences between CML patients and the control group (p < 0.05) but we did not find significant differences between ALL and the control group (p > 0.05). These results suggest a possible link between the 2290 C/T polymorphism of the hRAD54 gene and CML

    Translating microarray data for diagnostic testing in childhood leukaemia

    Get PDF
    BACKGROUND: Recent findings from microarray studies have raised the prospect of a standardized diagnostic gene expression platform to enhance accurate diagnosis and risk stratification in paediatric acute lymphoblastic leukaemia (ALL). However, the robustness as well as the format for such a diagnostic test remains to be determined. As a step towards clinical application of these findings, we have systematically analyzed a published ALL microarray data set using Robust Multi-array Analysis (RMA) and Random Forest (RF). METHODS: We examined published microarray data from 104 ALL patients specimens, that represent six different subgroups defined by cytogenetic features and immunophenotypes. Using the decision-tree based supervised learning algorithm Random Forest (RF), we determined a small set of genes for optimal subgroup distinction and subsequently validated their predictive power in an independent patient cohort. RESULTS: We achieved very high overall ALL subgroup prediction accuracies of about 98%, and were able to verify the robustness of these genes in an independent panel of 68 specimens obtained from a different institution and processed in a different laboratory. Our study established that the selection of discriminating genes is strongly dependent on the analysis method. This may have profound implications for clinical use, particularly when the classifier is reduced to a small set of genes. We have demonstrated that as few as 26 genes yield accurate class prediction and importantly, almost 70% of these genes have not been previously identified as essential for class distinction of the six ALL subgroups. CONCLUSION: Our finding supports the feasibility of qRT-PCR technology for standardized diagnostic testing in paediatric ALL and should, in conjunction with conventional cytogenetics lead to a more accurate classification of the disease. In addition, we have demonstrated that microarray findings from one study can be confirmed in an independent study, using an entirely independent patient cohort and with microarray experiments being performed by a different research team

    Gene expression signatures in childhood acute leukemias are largely unique and distinct from those of normal tissues and other malignancies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Childhood leukemia is characterized by the presence of balanced chromosomal translocations or by other structural or numerical chromosomal changes. It is well know that leukemias with specific molecular abnormalities display profoundly different global gene expression profiles. However, it is largely unknown whether such subtype-specific leukemic signatures are unique or if they are active also in non-hematopoietic normal tissues or in other human cancer types.</p> <p>Methods</p> <p>Using gene set enrichment analysis, we systematically explored whether the transcriptional programs in childhood acute lymphoblastic leukemia (ALL) and myeloid leukemia (AML) were significantly similar to those in different flow-sorted subpopulations of normal hematopoietic cells (n = 8), normal non-hematopoietic tissues (n = 22) or human cancer tissues (n = 13).</p> <p>Results</p> <p>This study revealed that e.g., the t(12;21) [<it>ETV6-RUNX1</it>] subtype of ALL and the t(15;17) [<it>PML-RARA</it>] subtype of AML had transcriptional programs similar to those in normal Pro-B cells and promyelocytes, respectively. Moreover, the 11q23/<it>MLL </it>subtype of ALL showed similarities with non-hematopoietic tissues. Strikingly however, most of the transcriptional programs in the other leukemic subtypes lacked significant similarity to ~100 gene sets derived from normal and malignant tissues.</p> <p>Conclusions</p> <p>This study demonstrates, for the first time, that the expression profiles of childhood leukemia are largely unique, with limited similarities to transcriptional programs active in normal hematopoietic cells, non-hematopoietic normal tissues or the most common forms of human cancer. In addition to providing important pathogenetic insights, these findings should facilitate the identification of candidate genes or transcriptional programs that can be used as unique targets in leukemia.</p

    Optimized cytogenetic risk-group stratification of <em>KMT2A</em>-rearranged pediatric acute myeloid leukemia

    Get PDF
    \ua9 2024 by The American Society of Hematology.A comprehensive international consensus on the cytogenetic risk-group stratification of KMT2A-rearranged (KMT2A-r) pediatric acute myeloid leukemia (AML) is lacking. This retrospective (2005-2016) International Berlin-Frankfurt-M\ufcnster Study Group study on 1256 children with KMT2A-r AML aims to validate the prognostic value of established recurring KMT2A fusions and additional cytogenetic aberrations (ACAs) and to define additional, recurring KMT2A fusions and ACAs, evaluating their prognostic relevance. Compared with our previous study, 3 additional, recurring KMT2A-r groups were defined: Xq24/KMT2A::SEPT6, 1p32/KMT2A::EPS15, and 17q12/t(11;17)(q23;q12). Across 13 KMT2A-r groups, 5-year event-free survival probabilities varied significantly (21.8%-76.2%; P &lt; .01). ACAs occurred in 46.8% of 1200 patients with complete karyotypes, correlating with inferior overall survival (56.8% vs 67.9%; P &lt; .01). Multivariable analyses confirmed independent associations of 4q21/KMT2A::AFF1, 6q27/KMT2A::AFDN, 10p12/KMT2A::MLLT10, 10p11.2/KMT2A::ABI1, and 19p13.3/KMT2A::MLLT1 with adverse outcomes, but not those of 1q21/KMT2A::MLLT11 and trisomy 19 with favorable and adverse outcomes, respectively. Newly identified ACAs with independent adverse prognoses were monosomy 10, trisomies 1, 6, 16, and X, add(12p), and del(9q). Among patients with 9p22/KMT2A::MLLT3, the independent association of French-American-British-type M5 with favorable outcomes was confirmed, and those of trisomy 6 and measurable residual disease at end of induction with adverse outcomes were identified. We provide evidence to incorporate 5 adverse-risk KMT2A fusions into the cytogenetic risk-group stratification of KMT2A-r pediatric AML, to revise the favorable-risk classification of 1q21/KMT2A::MLLT11 to intermediate risk, and to refine the risk-stratification of 9p22/KMT2A::MLLT3 AML. Future studies should validate the associations between the newly identified ACAs and outcomes and unravel the underlying biological pathogenesis of KMT2A fusions and ACAs

    Signatures of DNA flexibility, interactions and sequence-related structural variations in classical X-ray diffraction patterns

    Get PDF
    The theory of X-ray diffraction from ideal, rigid helices allowed Watson and Crick to unravel the DNA structure, thereby elucidating functions encoded in it. Yet, as we know now, the DNA double helix is neither ideal nor rigid. Its structure varies with the base pair sequence. Its flexibility leads to thermal fluctuations and allows molecules to adapt their structure to optimize their intermolecular interactions. In addition to the double helix symmetry revealed by Watson and Crick, classical X-ray diffraction patterns of DNA contain information about the flexibility, interactions and sequence-related variations encoded within the helical structure. To extract this information, we have developed a new diffraction theory that accounts for these effects. We show how double helix non-ideality and fluctuations broaden the diffraction peaks. Meridional intensity profiles of the peaks at the first three helical layer lines reveal information about structural adaptation and intermolecular interactions. The meridional width of the fifth layer line peaks is inversely proportional to the helical coherence length that characterizes sequence-related and thermal variations in the double helix structure. Analysis of measured fiber diffraction patterns based on this theory yields important parameters that control DNA structure, packing and function

    Apparent diffusion coefficient restriction in the white matter: going beyond acute brain territorial ischemia

    Get PDF
    BACKGROUND: Reduction of apparent diffusion coefficient (ADC) values in white matter is not always ischaemic in nature. METHODS: We retrospectively analysed our MRI records featuring reduced ADC values in the centrum semiovale without grey matter involvement or significant vasogenic oedema. RESULTS: Several conditions showed the aforementioned MR findings: moose-horn lesions on coronal images in X-linked Charcot-Marie-Tooth disease; small fronto-parietal lesions in Menkes disease; marked signal abnormalities in the myelinised regions in the acute neonatal form of maple syrup urine disease; strip-like involvement of the corpus callosum in glutaric aciduria type 1; persistent periventricular parieto-occipital abnormalities in phenylketonuria; diffuse signal abnormalities with necrotic evolution in global cerebral anoxia or after heroin vapour inhalation; almost completely reversible symmetric fronto-parietal lesions in methotrexate neurotoxicity; chain-like lesions in watershed ischaemia; splenium involvement that normalises in reversible splenial lesions or leads to gliosis in diffuse axonal injury. CONCLUSION: Neuroradiologists must be familiar with these features, thereby preventing misdiagnosis and inappropriate management
    corecore