715 research outputs found

    Feller property and infinitesimal generator of the exploration process

    Get PDF
    We consider the exploration process associated to the continuous random tree (CRT) built using a Levy process with no negative jumps. This process has been studied by Duquesne, Le Gall and Le Jan. This measure-valued Markov process is a useful tool to study CRT as well as super-Brownian motion with general branching mechanism. In this paper we prove this process is Feller, and we compute its infinitesimal generator on exponential functionals and give the corresponding martingale

    Multiplicative decompositions and frequency of vanishing of nonnegative submartingales

    Full text link
    In this paper, we establish a multiplicative decomposition formula for nonnegative local martingales and use it to characterize the set of continuous local submartingales Y of the form Y=N+A, where the measure dA is carried by the set of zeros of Y. In particular, we shall see that in the set of all local submartingales with the same martingale part in the multiplicative decomposition, these submartingales are the smallest ones. We also study some integrability questions in the multiplicative decomposition and interpret the notion of saturated sets in the light of our results.Comment: Typos corrected. Close to the published versio

    Anomalous Processes with General Waiting Times: Functionals and Multipoint Structure

    Get PDF
    Many transport processes in nature exhibit anomalous diffusive properties with non-trivial scaling of the mean square displacement, e.g., diffusion of cells or of biomolecules inside the cell nucleus, where typically a crossover between different scaling regimes appears over time. Here, we investigate a class of anomalous diffusion processes that is able to capture such complex dynamics by virtue of a general waiting time distribution. We obtain a complete characterization of such generalized anomalous processes, including their functionals and multi-point structure, using a representation in terms of a normal diffusive process plus a stochastic time change. In particular, we derive analytical closed form expressions for the two-point correlation functions, which can be readily compared with experimental data.Comment: Accepted in Phys. Rev. Let

    The role of the agent's outside options in principal-agent relationships

    Get PDF
    We consider a principal-agent model of adverse selection where, in order to trade with the principal, the agent must undertake a relationship-specific investment which affects his outside option to trade, i.e. the payoff that he can obtain by trading with an alternative principal. This creates a distinction between the agent’s ex ante (before investment) and ex post (after investment) outside options to trade. We investigate the consequences of this distinction, and show that whenever an agent’s ex ante and ex post outside options differ, this may equip the principal with an additional tool for screening among different agent types, by randomizing over the probability with which trade occurs once the agent has undertaken the investment. In turn, this may enhance the efficiency of the optimal second-best contract

    Bessel processes, the Brownian snake and super-Brownian motion

    Full text link
    We prove that, both for the Brownian snake and for super-Brownian motion in dimension one, the historical path corresponding to the minimal spatial position is a Bessel process of dimension -5. We also discuss a spine decomposition for the Brownian snake conditioned on the minimizing path.Comment: Submitted to the special volume of S\'eminaire de Probabilit\'es in memory of Marc Yo

    Solution of the Fokker-Planck equation with a logarithmic potential and mixed eigenvalue spectrum

    Full text link
    Motivated by a problem in climate dynamics, we investigate the solution of a Bessel-like process with negative constant drift, described by a Fokker-Planck equation with a potential V(x) = - [b \ln(x) + a\, x], for b>0 and a<0. The problem belongs to a family of Fokker-Planck equations with logarithmic potentials closely related to the Bessel process, that has been extensively studied for its applications in physics, biology and finance. The Bessel-like process we consider can be solved by seeking solutions through an expansion into a complete set of eigenfunctions. The associated imaginary-time Schroedinger equation exhibits a mix of discrete and continuous eigenvalue spectra, corresponding to the quantum Coulomb potential describing the bound states of the hydrogen atom. We present a technique to evaluate the normalization factor of the continuous spectrum of eigenfunctions that relies solely upon their asymptotic behavior. We demonstrate the technique by solving the Brownian motion problem and the Bessel process both with a negative constant drift. We conclude with a comparison with other analytical methods and with numerical solutions.Comment: 21 pages, 8 figure

    Bessel bridges decomposition with varying dimension. Applications to finance

    Get PDF
    We consider a class of stochastic processes containing the classical and well-studied class of Squared Bessel processes. Our model, however, allows the dimension be a function of the time. We first give some classical results in a larger context where a time-varying drift term can be added. Then in the non-drifted case we extend many results already proven in the case of classical Bessel processes to our context. Our deepest result is a decomposition of the Bridge process associated to this generalized squared Bessel process, much similar to the much celebrated result of J. Pitman and M. Yor. On a more practical point of view, we give a methodology to compute the Laplace transform of additive functionals of our process and the associated bridge. This permits in particular to get directly access to the joint distribution of the value at t of the process and its integral. We finally give some financial applications to illustrate the panel of applications of our results

    Stochastic integration based on simple, symmetric random walks

    Full text link
    A new approach to stochastic integration is described, which is based on an a.s. pathwise approximation of the integrator by simple, symmetric random walks. Hopefully, this method is didactically more advantageous, more transparent, and technically less demanding than other existing ones. In a large part of the theory one has a.s. uniform convergence on compacts. In particular, it gives a.s. convergence for the stochastic integral of a finite variation function of the integrator, which is not c\`adl\`ag in general.Comment: 16 pages, some typos correcte

    Dual random fragmentation and coagulation and an application to the genealogy of Yule processes

    Full text link
    The purpose of this work is to describe a duality between a fragmentation associated to certain Dirichlet distributions and a natural random coagulation. The dual fragmentation and coalescent chains arising in this setting appear in the description of the genealogy of Yule processes.Comment: 14 page

    Bridge Decomposition of Restriction Measures

    Full text link
    Motivated by Kesten's bridge decomposition for two-dimensional self-avoiding walks in the upper half plane, we show that the conjectured scaling limit of the half-plane SAW, the SLE(8/3) process, also has an appropriately defined bridge decomposition. This continuum decomposition turns out to entirely be a consequence of the restriction property of SLE(8/3), and as a result can be generalized to the wider class of restriction measures. Specifically we show that the restriction hulls with index less than one can be decomposed into a Poisson Point Process of irreducible bridges in a way that is similar to Ito's excursion decomposition of a Brownian motion according to its zeros.Comment: 24 pages, 2 figures. Final version incorporates minor revisions suggested by the referee, to appear in Jour. Stat. Phy
    • 

    corecore