Motivated by a problem in climate dynamics, we investigate the solution of a
Bessel-like process with negative constant drift, described by a Fokker-Planck
equation with a potential V(x) = - [b \ln(x) + a\, x], for b>0 and a<0. The
problem belongs to a family of Fokker-Planck equations with logarithmic
potentials closely related to the Bessel process, that has been extensively
studied for its applications in physics, biology and finance. The Bessel-like
process we consider can be solved by seeking solutions through an expansion
into a complete set of eigenfunctions. The associated imaginary-time
Schroedinger equation exhibits a mix of discrete and continuous eigenvalue
spectra, corresponding to the quantum Coulomb potential describing the bound
states of the hydrogen atom. We present a technique to evaluate the
normalization factor of the continuous spectrum of eigenfunctions that relies
solely upon their asymptotic behavior. We demonstrate the technique by solving
the Brownian motion problem and the Bessel process both with a negative
constant drift. We conclude with a comparison with other analytical methods and
with numerical solutions.Comment: 21 pages, 8 figure