3,170 research outputs found

    Large N reduction with overlap fermions

    Get PDF
    We revisit quenched reduction with fermions and explain how some old problems can be avoided using the overlap Dirac operator.Comment: Lattice2002(chiral) 3 pages, no figure

    Overlap Fermions on a 20420^4 Lattice

    Get PDF
    We report results on hadron masses, fitting of the quenched chiral log, and quark masses from Neuberger's overlap fermion on a quenched 20420^4 lattice with lattice spacing a=0.15a = 0.15 fm. We used the improved gauge action which is shown to lower the density of small eigenvalues for H2H^2 as compared to the Wilson gauge action. This makes the calculation feasible on 64 nodes of CRAY-T3E. Also presented is the pion mass on a small volume (63×126^3 \times 12 with a Wilson gauge action at β=5.7\beta = 5.7). We find that for configurations that the topological charge Q≠0Q \ne 0, the pion mass tends to a constant and for configurations with trivial topology, it approaches zero possibly linearly with the quark mass.Comment: Lattice 2000 (Chiral Fermion), 4 pages, 4 figure

    First quarter bank results: good news, bad news

    Get PDF
    Banks and banking - West ; Banks and banking - California

    Bounds on the Wilson Dirac Operator

    Full text link
    New exact upper and lower bounds are derived on the spectrum of the square of the hermitian Wilson Dirac operator. It is hoped that the derivations and the results will be of help in the search for ways to reduce the cost of simulations using the overlap Dirac operator. The bounds also apply to the Wilson Dirac operator in odd dimensions and are therefore relevant to domain wall fermions as well.Comment: 16 pages, TeX, 3 eps figures, small corrections and improvement

    Noncompact chiral U(1) gauge theories on the lattice

    Get PDF
    A new, adiabatic phase choice is adopted for the overlap in the case of an infinite volume, noncompact abelian chiral gauge theory. This gauge choice obeys the same symmetries as the Brillouin-Wigner (BW) phase choice, and, in addition, produces a Wess-Zumino functional that is linear in the gauge variables on the lattice. As a result, there are no gauge violations on the trivial orbit in all theories, consistent and covariant anomalies are simply related and Berry's curvature now appears as a Schwinger term. The adiabatic phase choice can be further improved to produce a perfect phase choice, with a lattice Wess-Zumino functional that is just as simple as the one in continuum. When perturbative anomalies cancel, gauge invariance in the fermionic sector is fully restored. The lattice effective action describing an anomalous abelian gauge theory has an explicit form, close to one analyzed in the past in a perturbative continuum framework.Comment: 35 pages, one figure, plain TeX; minor typos corrected; to appear in PR

    An alternative to domain wall fermions

    Get PDF
    We define a sparse hermitian lattice Dirac matrix, HH, coupling 2n+12n+1 Dirac fermions. When 2n2n fermions are integrated out the induced action for the last fermion is a rational approximation to the hermitian overlap Dirac operator. We provide rigorous bounds on the condition number of HH and compare them to bounds for the higher dimensional Dirac operator of domain wall fermions. Our main conclusion is that overlap fermions should be taken seriously as a practical alternative to domain wall fermions in the context of numerical QCD.Comment: Revtex Latex, 26 pages, 1 figure, a few minor change

    Energy minimization using Sobolev gradients: application to phase separation and ordering

    Full text link
    A common problem in physics and engineering is the calculation of the minima of energy functionals. The theory of Sobolev gradients provides an efficient method for seeking the critical points of such a functional. We apply the method to functionals describing coarse-grained Ginzburg-Landau models commonly used in pattern formation and ordering processes.Comment: To appear J. Computational Physic

    Two dimensional fermions in three dimensional YM

    Full text link
    Dirac fermions in the fundamental representation of SU(N) live on the surface of a cylinder embedded in R3R^3 and interact with a three dimensional SU(N) Yang Mills vector potential preserving a global chiral symmetry at finite NN. As the circumference of the cylinder is varied from small to large, the chiral symmetry gets spontaneously broken in the infinite NN limit at a typical bulk scale. Replacing three dimensional YM by four dimensional YM introduces non-trivial renormalization effects.Comment: 21 pages, 7 figures, 5 table
    • …
    corecore