171 research outputs found

    Quantum size effects in a one-dimensional semimetal

    Full text link
    We study theoretically the quantum size effects in a one-dimensional semimetal by a Boltzmann transport equation. We derive analytic expressions for the electrical conductivity, Hall coefficient, magnetoresistance, and the thermoelectric power in a nanowire. The transport coefficients of semimetal oscillate as the size of the sample shrinks. Below a certain size the semimetal evolves into a semiconductor. The semimetal-semiconductor transition is discussed quantitatively. The results should make a theoretical ground for better understanding of transport phenomena in low-dimensional semimetals. They can also provide useful information while studying low-dimensional semiconductors in general.Comment: 5 pages in PDF; LaTeX sourc

    Application of track-etched nanopore in nanofluidic

    Get PDF

    Sound power emitted by a pure-tone source in a reverberation room

    Get PDF
    Energy considerations are of enormous practical importance in acoustics. In "energy acoustics," sources of noise are described in terms of the sound power they emit, the underlying assumption being that this property is independent of the particular environment where the sources are placed. However, it is well known that the sound power output of a source emitting a pure tone or a narrow band of noise actually varies significantly with its position in a reverberation room at low frequencies, and even larger variations occur between different rooms. The resulting substantial uncertainty in measurements of sound power as well as in predictions based on knowledge of sound power is one of the fundamental limitations of energy acoustics. The existing theory for this phenomenon is fairly complicated and has only been validated rather indirectly. This paper describes a far simpler theory and demonstrates that it gives predictions in excellent agreement with the established theory. The results are confirmed by experimental results as well as finite element calculations

    Direct Observation of Propagating Gigahertz Coherent Guided Acoustic Phonons in Free Standing Single Copper Nanowires

    Full text link
    We report on gigahertz acoustic phonon waveguiding in free-standing single copper nanowires studied by femtosecond transient reflectivity measurements. The results are discussed on the basis of the semianalytical resolution of the Pochhammer and Chree equation. The spreading of the generated Gaussian wave packet of two different modes is derived analytically and compared with the observed oscillations of the sample reflectivity. These experiments provide a unique way to independently obtain geometrical and material characterization. This direct observation of coherent guided acoustic phonons in a single nano-object is also the first step toward nanolateral size acoustic transducer and comprehensive studies of the thermal properties of nanowires
    • …
    corecore