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Many acoustical measurements, e.g., measurement of sound power and transmission loss, rely on
determining the total sound energy in a reverberation room. The total energy is usually
approximated by measuring the mean-square pressure �i.e., the potential energy density� at a number
of discrete positions. The idea of measuring the total energy density instead of the potential energy
density on the assumption that the former quantity varies less with position than the latter goes back
to the 1930s. However, the phenomenon was not analyzed until the late 1970s and then only for the
region of high modal overlap, and this analysis has never been published. Moreover, until fairly
recently, measurement of the total sound energy density required an elaborate experimental
arrangement based on finite-difference approximations using at least four amplitude and phase
matched pressure microphones. With the advent of a three-dimensional particle velocity transducer,
it has become somewhat easier to measure total rather than only potential energy density in a sound
field. This paper examines the ensemble statistics of kinetic and total sound energy densities in
reverberant enclosures theoretically, experimentally, and numerically.
© 2010 Acoustical Society of America. �DOI: 10.1121/1.3304158�

PACS number�s�: 43.55.Cs, 43.58.Bh �AJZ� Pages: 2332–2337

I. INTRODUCTION

Many acoustical measurements rely on determining the
sound energy in an enclosure. Examples include standardized
measurements of sound power and transmission loss in re-
verberation rooms. The total sound energy is usually esti-
mated by measuring the mean-square pressure �that is, the
potential energy density� either at a number of discrete posi-
tions or using a moving microphone, and much effort has
been spent on developing efficient averaging procedures.1,2

The idea of measuring the total energy density rather than the
potential energy density on the assumption that the former
quantity varies less with position than the latter goes back to
the 1930s and has occasionally been discussed in the
literature.3,4 In the late 1970s the phenomenon was analyzed
using a stochastic interference model of a diffuse sound
field,5 and in the late 1980s the matter was examined experi-
mentally for the first time.6 However, until recently measure-
ment of the total sound energy density has required an elabo-
rate arrangement based on finite-difference approximations
using at least four pressure microphones.6–9 The micro-
phones should be amplitude and phase matched very well,

and the signal-to-noise ratio is poor because the finite-
difference signals should be time integrated,10 which is per-
haps one of the reasons why the method has not been used
much in practice. With the advent of a three-dimensional
particle velocity transducer, “Microflown,”11 it has become
somewhat easier to measure kinetic and total rather than only
potential energy density in a sound field, as demonstrated a
few years ago.12

A recent investigation examined the ensemble statistics
of the sound power emitted by a monopole in reverberant
surroundings using Waterhouse’s random wave theory13 ex-
tended to the region of low modal overlap.14 Another recent
investigation used the same model to examine the ensemble
statistics of potential energy density.15 The purpose of the
present study is to examine the ensemble statistics of kinetic
and total sound energy densities in reverberant spaces theo-
retically, experimentally, and numerically.

II. THE RANDOM WAVE THEORY

A. The region of high modal overlap

The starting point of this investigation is a stochastic
pure-tone diffuse-field interference model of the sound field
in a reverberation room originally developed by
Waterhouse.13 This model describes the sound field as a sum
of plane waves arriving with random phase angles from ran-
dom directions,

a�
Portions of this work were presented in “Measurement of total sound en-
ergy in an enclosure at low frequencies,” Proceedings of Acoustics ’08,
Paris, France, July 2008, pp. 3249–3254, and “The uncertainty of pure tone
measurements in reverberation rooms below the Schroeder frequency,”
Proceedings of Sixteenth International Congress on Sound and Vibration,
Krakow, Poland, July 2009.
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p�r� = lim
N→�

1
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n=1

N

Anej��t−kn·r�, �1�

where p�r� is the sound pressure at position r, An is a com-
plex random amplitude the phase angle of which is uni-
formly distributed between 0 and 2�, and kn is a random
wave number vector with a uniform distribution over all di-
rections. The corresponding particle velocity components in
three perpendicular directions can be written as
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1
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�
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N
An sin �n cos �n

�c
ej��t−kn·r�, �2a�
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1
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�
n=1

N
An cos �n

�c
ej��t−kn·r�, �2c�

where �n and �n are the azimuth and polar angles defining
the wave number vector of the nth wave, and �c is the char-
acteristic impedance of air.5 Each set of random amplitudes
and wave number vectors corresponds to an outcome of a
stochastic process, and above the Schroeder frequency there
is no difference between the statistics with respect to position
and the full ensemble statistics.5,14 It is easy to show that the
mean-square values of the pressure and each component of
the particle velocity can be expressed as a sum of two inde-
pendent squared Gaussian variables �random sums� with zero
mean.5,13 Thus, the mean-square pressure as well as the
mean-square value of any individual component of the par-
ticle velocity have a chi-square distribution with two degrees
of freedom �also known as the exponential distribution�,13,16

from which it follows that their relative �normalized� en-
semble variance is 1. �The relative variance of a stochastic
variable X, �2�X�, is the squared ratio of its standard devia-
tion ��X� to its expected value E�X�.� Moreover, these four
random variables can be shown to be statistically
independent.5 This combined with the fact that the variance
of a sum of independent random variables equals the sum of
their variances16 leads to the conclusion that the relative vari-
ance of the kinetic energy density is

�2�wkin� =
�2�wkin,x + wkin,y + wkin,z�

�E�wkin,x + wkin,y + wkin,z��2 =
3�2�wkin,x�
9E2�wkin,x�

=
1

3
,

�3�

where wkin,x, wkin,y, and wkin,z are the kinetic densities corre-
sponding to the particle velocity components associated with
the x-, y-, and z-directions. Since the ensemble average of the
potential energy density must equal the ensemble average of
the kinetic energy density, the relative variance of the total
energy density becomes

�2�wtot� =
�2�wpot + wkin�

�E�wpot + wkin��2 =
�2�wpot� + �2�wkin�

4E2�wpot�

=
1 + 1

3

4
=

1

3
. �4�

To summarize, in the region of high modal overlap, measur-
ing the kinetic sound energy density at one position in a
reverberation room gives the same statistical information as
measuring the potential energy density at three statistically
independent positions. No further gain is obtained by mea-
suring the total energy density. These results have been vali-
dated experimentally6 and, more recently, also confirmed by
a numerical implementation of the Green’s function in a
room.12

B. The region below the Schroeder frequency

When the modal overlap cannot be assumed to be high,
the source that generates the sound field can no longer be
assumed to emit its free field sound power.14 The reason is
that the radiation impedance is affected by the random rever-
berant part of the sound field, which moreover is increased at
the source position because of coherent backscattering or
“weak Anderson localization” as predicted by Weaver and
Burkhardt.17 Besides, one can no longer expect the same
statistics with respect to position as would be found in an
ensemble of rooms.14,15 The resulting relative ensemble vari-
ance of the sound power emitted by a monopole has been
found, based on Eq. �1�, to be

�2�Pa� =
2

Ms
, �5�

where Ms is the statistical modal overlap of the room.14 This
quantity is the product of the modal density and the statisti-
cal modal bandwidth� and can be written as

Ms =
12� ln�10�Vf2

T60c
3 =

�Af2

2c2 , �6�

where V is the volume of the room, T60 is its reverberation
time, A is the total absorption area of the room, f is the
frequency, and c is the speed of sound. A very different
modal model based on an assumption of the modal frequen-
cies being distributed according to the random matrix theory
of Gaussian orthogonal ensembles leads to almost the same
expression.18

Since the average of the squared amplitudes of the
waves that compose the sound field at any frequency and in
any room is proportional to the sound power emitted by the
source that generates the sound field, it follows that one may
expect additional ensemble variations in the kinetic and total
energy densities when the modal overlap is low. Such addi-
tional variations, reflected in an increase in the relative en-
semble variance, have recently been demonstrated for poten-
tial energy density.15 Moreover, because these additional
variations affect the pressure and the three perpendicular par-
ticle velocity components in the same way, these components
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can no longer be assumed to be statistically independent, nor
can kinetic and potential energy densities be expected to be
statistically independent.

One can model the phenomenon by multiplying each of
the original independent exponentially distributed variables
in Eqs. �3� and �4� by another random variable that repre-
sents the relative variations in the emitted sound power,

1 + W =
Pa

E�Pa�
. �7�

The new variable W is normally distributed and has zero
mean and a variance given by Eq. �5�. It is statistically inde-
pendent of the other quantities because the variations in the
sound power depends only on the reverberant part of the
sound pressure at the source position.14 The relative en-
semble variance of the mean-square particle velocity compo-
nent in an arbitrary direction now becomes

�2�wkin,x� � =
E�wkin,x

2 �1 + W�2�
�E�wkin,x�1 + W���2 − 1

=
E�wkin,x

2 �E��1 + W�2�
E2�wkin,x�E2�1 + W�

− 1

=
2E2�wkin,x�E��1 + W�2�

E2�wkin,x�E2�1 + W�
− 1

= 2�1 + E�W2�� − 1 = 2	1 +
2

Ms

 − 1 = 1 +

4

Ms
, �8�

where wkin,x� is the modified kinetic energy density associated
with the x-direction. �The first step in Eq. �8� follows from
the general relation �2�X�=E�X2� /E2�X�−1, the second step
follows because the variables are statistically independent,
and the third step follows from the fact that the relative vari-
ance of wkin,x is unity.� This expression is identical with the
relative ensemble variance of potential energy density,15

�2�wpot� � = 1 +
4

Ms
. �9�

�The modal model mentioned above leads to a very similar
expression.18� In the same way, Eq. �3� becomes

�2�wkin� � =
E��wkin,x + wkin,y + wkin,z�2�1 + W�2�
�E��wkin,x + wkin,y + wkin,z��1 + W���2 − 1

=
E��wkin,x + wkin,y + wkin,z�2�E��1 + W�2�

�3E�wkin,x��2E2��1 + W��
− 1

=
3E�wkin,x

2 � + 6E2�wkin,x�
9E2�wkin,x�

�1 + E�W2�� − 1

=
12E2�wkin,x�
9E2�wkin,x�

	1 +
2

Ms

 − 1 =

1

3
+

8

3Ms
, �10�

where wkin� is the modified kinetic energy density.
It is apparent that the relative variance of the modified

kinetic energy density is not simply one-third of the relative
variance of a single component, given by Eq. �8�; it is some-
what larger. The explanation is that the modified components
are no longer independent. An alternative derivation of Eq.
�10� could be based on the covariance between the three
modified components of the kinetic energy density.

Note that

�2�wpot� �
�2�wkin� �

=

1 +
4

Ms

1

3
+

8

3Ms

= 3

1 +
4

Ms

1 +
8

Ms

→ �3 for Ms → �

3

2
for Ms → 0, �

�11�

which shows that the statistical advantage of determining
kinetic rather than potential energy density is halved at low
modal overlap because of the correlation between the three
particle velocity components due to the varying sound
power.

Equation �4� can be modified in the same manner,

�2�wtot� � =
E��wkin,x + wkin,y + wkin,z + wpot�2�1 + W�2�
�E��wkin,x + wkin,y + wkin,z + wpot��1 + W���2 − 1

=
3E�wkin,x

2 � + 6E2�wkin,x� + E�wpot
2 � + 6E�wpot�E�wkin,x�

4E2�wpot�
�1 + E�W2�� − 1

=
12E2�wkin,x� + 2E2�wpot� + 6E�wpot�E�wkin,x�

4E2�wpot�
	1 +

2

Ms

 − 1

=

12

9
+ 2 +

6

3

4
	1 +

2

Ms

 − 1 =

1

3
+

8

3Ms
. �12�

Apparently, there is no statistical advantage in measuring
total rather than kinetic energy density in the region of low
modal overlap either.

To summarize, the stochastic model derived in the fore-
going is based on the fundamental assumption that Eq. �1� is
also valid in the region of low modal overlap, although there
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are additional variations in the random set of squared wave
amplitudes, An2, caused by the variations in the sound
power emitted by the source. It is worth noting that in this
frequency range the spatial statistics in any room depend
strongly on whether the frequency is coinciding with a modal
frequency or not. Equations �5�, �8�–�10�, and �12� express
the relative variances associated with an ensemble of rooms
with slightly different dimensions but the same modal over-
lap.

III. EXPERIMENTAL RESULTS

Some experiments have been carried out in various
rooms at the Technical University of Denmark in order to
validate the foregoing stochastic considerations: a small
�40 m3� lightly damped room, the same room with extra
absorption, a large �245 m3� reverberation room, and the
same large room with added absorption. The reverberation
times of the four rooms are shown in Fig. 1. The correspond-
ing Schroeder frequencies are 500, 330, 310, and 200 Hz,
respectively. All rooms are essentially rectangular although
there are large stationary diffusers in the reverberation room.

The rooms were driven with a Brüel & Kjær �B&K�
“OmniSource” �a loudspeaker� fitted with a B&K “Volume
velocity adapter,” a device with two matched quarter-inch
microphones for measuring the output volume velocity and
sound power. Kinetic, potential, and total energy densities
were measured at a number of positions using an “Ultimate
sound probe” �USP�, a three-dimensional pressure-velocity
probe produced by Microflown �Zevenaar, The Netherlands�.
The three particle velocity channels were calibrated as de-
scribed in Ref. 19. The frequency responses between the vol-
ume velocity of the source and the sound pressure and three
perpendicular components of the particle velocity were mea-
sured with a B&K “PULSE” analyzer using pseudorandom
noise �6400 spectral lines� synchronized to the analysis in the
frequency range up to 3.2 kHz. The experimental technique

10
2

10
3

0

1

2

3

4

5

6

Frequency [Hz]

R
ev

er
be

ra
tio

n
tim

e
[s

]

FIG. 1. �Color online� Reverberation time of the test rooms. Solid line:
small lightly damped room; dashed line: small damped room; dash-dotted
line: large reverberation room; line with circle markers: large damped rever-
beration room.
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FIG. 2. �Color online� Relative space-frequency standard deviation of the mean-square value of one component of the particle velocity in �a� a small lightly
damped room, �b� a small damped room, �c� a large reverberation room, and �d� a large damped reverberation room. Solid line: measured standard deviation;
dash-dotted line: theory �Eq. �8��.
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has been described in detail in Ref. 14. Obviously one cannot
measure in an ensemble of rooms, so in order to approach
the full variation associated with ensemble statistics, both
source and receiver positions were varied. In the postpro-
cessing of the results, obtained at 25 pairs of positions, ad-
ditional variations over 8 Hz bands �16 adjacent frequency
bins� were also taken into account to produce space-
frequency variations, which can be expected to approximate
the ensemble variations.14

Figure 2 compares the measured relative space-
frequency standard deviation of a single mean-square par-
ticle velocity component in an arbitrary direction with the
predicted value calculated using Eq. �8�. It is apparent that
the results fluctuate significantly with frequency, but there is
nevertheless fairly good agreement, confirming that a single
mean-square particle velocity component exhibits the same
statistics as the mean-square pressure. At high modal overlap
the relative standard deviation approaches unity, but there is
a large increase at low modal overlap. The agreement be-
tween measurements and predictions is better for the large
room than for the small room, and for some reason Eq. �8�
seems to underestimate the variations observed in the small
damped room below the Schroeder frequency �Fig. 2�b��.

Figure 3 compares the relative space-frequency standard
deviation of kinetic and total energy densities with the theory
given by the identical expressions �10� and �12�. The agree-
ment is fairly good, confirming that the relative standard de-
viation of both quantities approaches 1 /�3�0.58 at high

modal overlap and takes higher values at low modal overlap,
although not as high values as the standard deviation of a
single mean-square particle velocity component. In some
cases the theory seems to underestimate the experimental
results below the Schroeder frequency, though, but all data
certainly confirm that the kinetic energy density exhibits the
same statistics as the total energy density.

There is no obvious explanation for the tendency to un-
derestimation observed in Fig. 2�b�. The measurements pre-
sented in Fig. 3 are more difficult since they rely on accurate
calibration of the three channels of the particle velocity
transducer. Inaccurate calibration of the three channels of the
particle velocity transducer may have emphasized one chan-
nel; this would tend to increase the experimental variance.

IV. NUMERICAL RESULTS

The full ensemble standard deviation is rather difficult to
measure, but it can be estimated with a numerical model. A
finite element model of 25 different rooms, constructed using
the commercial software packet ACTRAN, was used in this
investigation. The rooms were rectangular, and their dimen-
sions were chosen as uniformly distributed random variables
varying between 2 and 6 m. The source positions were
placed randomly, but they were at least 0.4 m away from any
wall. The calculations were carried out from 200 to 300 Hz
with a frequency step of 2 Hz. The element size was chosen
so as to provide a low numerical pollution in the examined
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FIG. 3. �Color online� Relative space-frequency standard deviation of kinetic and total energy densities in �a� a small lightly damped room, �b� a small damped
room, �c� a large reverberation room, and �d� a large damped reverberation room. Solid line: measured standard deviation of kinetic energy density; dashed
line: measured standard deviation of total energy density; dash-dotted line: theory �Eqs. �10� and �12��.
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frequency range. The mean-square values of the particle ve-
locity vector were calculated at 50 000 randomly chosen
nodal points of the mesh. Nodes closer than 0.4 m away from
the walls or closer than 1 m from the source were not used.
In order to determine the relative ensemble standard devia-
tion as a function of the modal overlap, the data were sorted
into appropriate modal overlap intervals. A similar technique
was used recently in Refs. 14 and 15.

Figure 4 shows the results. There is excellent agreement,
confirming the validity of Eq. �10� and indeed of the proba-
bilistic approach described in Sec. II. Finally Fig. 5 com-
pares the ratio of the relative variance of potential energy
density to the relative variance of kinetic energy density with
the theoretical ratio given by Eq. �11�. There is very good
agreement.

V. CONCLUSION

Waterhouse’s simple free-wave theory has been ex-
tended to the region of low modal overlap and used for de-
termining the relative ensemble variance of kinetic and total
energy densities in reverberation rooms, and the predictions
have been confirmed by experimental and numerical results.
At high modal overlap, the relative variance of both quanti-
ties approaches one-third, and it is statistically three times

more efficient to measure kinetic or total energy density than
to measure potential energy density. At lower modal overlap,
there is an increase in the relative variance of both kinetic
and total energy densities that is inversely proportional to the
modal overlap, that is, proportional to the ratio of the rever-
beration time to the room volume and inversely proportional
to the square of the frequency. In this frequency range, the
statistical advantage of measuring kinetic or total energy
density is reduced, and ultimately halved, because the differ-
ent components of the particle velocity are no longer statis-
tically independent.
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FIG. 4. �Color online� Relative ensemble standard deviation of kinetic en-
ergy density. Solid line: finite element calculations; dash-dotted line: theory
�Eq. �10��.
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FIG. 5. �Color online� Ratio of relative variance of potential energy density
to relative variance of kinetic energy density. Solid line: finite element cal-
culations; dash-dotted line: theory �Eq. �11��.
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