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Energy considerations are of enormous practical importance in acoustics. In “energy acoustics,”
sources of noise are described in terms of the sound power they emit, the underlying assumption
being that this property is independent of the particular environment where the sources are placed.
However, it is well known that the sound power output of a source emitting a pure tone or a narrow
band of noise actually varies significantly with its position in a reverberation room at low
frequencies, and even larger variations occur between different rooms. The resulting substantial
uncertainty in measurements of sound power as well as in predictions based on knowledge of sound
power is one of the fundamental limitations of energy acoustics. The existing theory for this
phenomenon is fairly complicated and has only been validated rather indirectly. This paper describes
a far simpler theory and demonstrates that it gives predictions in excellent agreement with the
established theory. The results are confirmed by experimental results as well as finite element
calculations. © 2009 Acoustical Society of America. �DOI: 10.1121/1.3158918�

PACS number�s�: 43.55.Cs, 43.58.Bh �AJZ� Pages: 676–684

I. INTRODUCTION

It has been known for many years that sound power
emitted by a stationary sound source in a reverberant room
depends on the particulars of the room �shape, size, and
damping� and the position of the source. The variations are
relatively small for sources of broad band noise but fairly
substantial for sources that emit pure tones, in particular be-
low the Schroeder frequency. This implies a fundamental
contribution to the measurement uncertainty in any sound
power measurement that takes place in a non-anechoic room
irrespective of whether the diffuse-field method or the sound
intensity method is used and, of course, to a similar uncer-
tainty in any prediction of the sound pressure level generated
by the source in another room calculated on the basis of the
sound power of the source �even if this quantity has been
measured under free-field conditions and is very close to the
“true” free-field sound power�. For pure-tone sources, this
fundamental component of the uncertainty is much larger
than all other contributions. The only way of reducing it is to
determine the sound power at different positions in different
rooms or in a room that can be changed, e.g., with a large
rotating vane.

II. A BRIEF DESCRIPTION OF THE ESTABLISHED
THEORY

The existing theory is essentially due to Lyon1 and
Davy2 but is later modified in accordance with more recent
findings by Weaver.3 Lyon’s approach was based on the ana-
lytical Green’s function in a rectangular room �and in a
point-driven plate�, which is a modal sum. Replacing modal
sums by integrals and assuming that the modal frequencies
have a Poisson distribution �i.e., are distributed indepen-
dently�, he derived the following expression for the normal-
ized standard deviation of the sound power output of a
monopole emitting a pure tone in a room,

��Pa� =
1

�Ms

�3

2
	3/2

, �1�

where Ms is the statistical modal overlap,

Ms = n�f�Bs =
4�Vf2

c3

1

2�
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12� ln�10�Vf2

T60c
3 =

S Re���k2

�

=
Ak2
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, �2�

in which n�f� is the modal density �in modes per hertz�, Bs is
the statistical modal bandwidth �in hertz�, V is the volume of
the room, f is the frequency, c is the speed of sound, � is the
modal time constant, T60 is the corresponding reverberation
time, � is the wall admittance normalized by the character-
istic impedance of air, S is the surface area of the room, k is
the wave number, and A is the total absorption area of the
room. �In this expression, one-dimensional �1D� and two-
dimensional �2D� modes have been ignored.� Lyon used the
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equivalent noise modal bandwidth, which is half the statisti-
cal bandwidth. Although Lyon’s expression at that time was
largely interpreted as the source position variance, it is clear
that since his statistical method involved different distribu-
tions of the modal frequencies the expression is in effect a
theoretical estimate of the normalized ensemble standard de-
viation, with variation over rooms—a quantity that is evi-
dently of fundamental importance for the uncertainty but dif-
ficult to measure.

Twelve years later, Davy2 extended Lyon’s theory by
deriving a more general expression of the power transmis-
sion function averaged over multiple source and receiver po-
sitions. Assuming a “nearest neighbor” distribution of the
modal frequencies, he found a normalized ensemble standard
deviation of the output power �or the real part of the radia-
tion impedance� of

��Pa� =
1

�Ms

��3

2
	3

−
1

2
	1/2

�3�

for high modal overlap, ignoring 1D and 2D modes in a
rectangular room. �No simple expression in closed form was
derived for the case of low modal overlap.� Some experi-
mental results from measurements of power transmission
functions in a very large �600 m3� room were presented.
However, Davy’s main issue in this paper was to demon-
strate that a very different theory derived by Waterhouse4

was incorrect, and this he certainly did. The assumption of
the modal frequencies having a nearest neighbor distribution
rather than being distributed independently came from evi-
dence of a “repulsion” effect between modal frequencies al-
ready anticipated by Lyon.1 The modal frequencies seem to
repel each other, and thus their distribution is not completely
random but closer to the average density than one might
have expected.

Some years later, Davy5 discussed possible improve-
ments of his theory, but in this paper he was essentially con-
cerned with the variance of random noise passed through a
reverberation room and measured using a finite averaging
time.

In the late 1980s, Weaver3 discussed Davy’s theory and
suggested replacing his K �the term �3/2�3 in Eq. �3�� with 3,
“which is appropriate for a Gaussian distribution of ampli-
tudes and based on vague arguments invoking the central
limit theorem.” At that time, it had been established that
modal frequencies tend to exhibit “spectral rigidity” or “long
range repulsions” in accordance with the random matrix
theory of Gaussian orthogonal ensembles.6 This seems to be
generally accepted now.7 A value of K=3 has also been fa-
vored by Lobkis et al.8

In 1990, Davy9 modified his theory so as to take account
of the Gaussian orthogonal ensemble modal frequency spac-
ing. Equation �3� now became

��Pa� =
1

�Ms

��3

2
	3

− 1	1/2
. �4�

This expression was further discussed in yet another con-
gress paper by Davy10 from the late 1990s. It can easily be
modified so as to take account of 1D and 2D modes. How-

ever, it is not completely clear from these papers whether its
validity is restricted to high modal overlap, as Eq. �3�.

Various consequences of Davy’s2,5,9,10 original and
modified theory have been examined experimentally, but
there is very little experimental evidence in direct support of
Eq. �4�.

III. AN ALTERNATIVE THEORY

The alternative theory presented in what follows is far
simpler than the theory briefly described in the foregoing and
does not even take account of the phenomenon of modes. It
was derived independently by Jacobsen11 and Pierce12 about
30 years ago.

The sound field in a reverberant room is modeled as an
infinite sum of plane waves,

prev�r� = lim
N→�

1
�N



n=1

N

Anej��t+kn·r�
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N→�

1
�N



n=1

N

�An�ej��t+�n+kn·r�, �5�

where the phase angles �n are uniformly distributed between
0 and 2�, the amplitudes �An� have an arbitrary distribution,
the wave number vectors kn are uniformly distributed over
all angles of incidence �corresponding to a sinusoidal distri-
bution of the polar angles and a uniform distribution of the
azimuth angles�, and r is the observation point. This stochas-
tic pure-tone diffuse-field interference model was originally
developed by Waterhouse.13

The sound field at the source position �r0� may be re-
garded as the sum of the direct field and the reverberant field,
and therefore the radiation impedance is the sum of the free-
field radiation impedance and the complex ratio of the sound
pressure associated with the reverberant field at the source
position and the volume velocity of the source,

Zr =
�ck2

4�
+

jk�c

4�a
+

prev�r0�
Qej�t , �6�

where � is the density of air, a is the radius of the monopole
that generates the sound field �modeled as a small pulsating
sphere�, and Q is its volume velocity. �As pointed out by
Lyon,1 the imaginary part of the free-field radiation imped-
ance diverges as the radius of the sphere goes toes to zero.�
All phases are equally probable in the reverberant part of the
sound field, which leads to the conclusion that on the average
the monopole emits its free-field sound power output,

E�Pa� =
�Q�2

2
E�Re�Zr�� = Pa,free field =

�ck2�Q�2

8�
. �7�

However, because of the third term in Eq. �6� the actual
sound power output of the source varies between different
outcomes of the stochastic process; i.e., it varies with the
source position and it varies from room to room. The corre-
sponding variance can be calculated as follows:
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where 
 is the phase angle of prev�r0�, which is a random
variable uniformly distributed between 0 and 2�. The expec-
tation of the mean square reverberant pressure can be ap-
proximated by its spatial average, which is related to the
actual sound power emitted by the monopole and the total
absorption area of the room by the energy balance
equation,12

E��prev�2� � ��prev�2� =
8�c

A
Pa, �9�

where � � indicates a spatial average. Equation �8� now be-
comes

	2�Pa� �
�Q�2

8

8�c

A
Pa � E2�Pa�

8�

Ak2 =
E2�Pa�

Ms
, �10�

where use has been made of Eq. �7� and Pa has been approxi-
mated by its expectation. Normalizing with the free-field
sound power finally gives

��Pa� �
1

k
�8�

A
=

1
�Ms

. �11�

It is interesting to note that this expression is identical to
Davy’s �Eq. �4�� except for a constant factor, and it is quite
surprising that the modal overlap enters into a theory that
does not even operate with the concept of a mode. The ex-
pression can, of course, easily be extended so as to include
the effect of 1D and 2D modes in a rectangular room. Note,
however, that no assumptions about the shape �or size� of the
room have been made.

Expression �11� does not take account of the phenom-
enon of “weak Anderson localization,” also known as coher-
ent backscattering,7,14,15 according to which there is a con-
centration of the reverberant sound field at the source
position. Such a phenomenon was already predicted on the
basis of Poisson statistics in Lyon’s paper.1 According to
Langley and Cotoni,7 the now generally accepted assumption
of Gaussian orthogonal ensemble statistics leads to a “con-
centration factor” for the mean square reverberant field that
approaches 3 for Ms→0 and 2 for Ms→�. This can be ex-
pected to modify Eq. �11� to

��Pa� =�F�Ms�
Ms

, �12�

where the concentration factor F is a function that goes
smoothly from 3 to 2 as the modal overlap increases. It is
worth noting that Eqs. �4� and �12� are identical if K=3 �as
suggested in Refs. 3 and 8� and F=2.

IV. EXPERIMENTAL AND NUMERICAL RESULTS

To examine the validity of the established theory and the
alternative simpler one, some experiments have been carried
out in different reverberation rooms, but since it is impos-
sible in practice to determine statistical properties associated
with an ensemble of rooms the experiments are supple-
mented by finite element calculations.

A. Experimental results

A “volume velocity source,” Brüel & Kjær �B&K� 4295
�a tube with two matched quarter-inch microphones driven
by a loudspeaker�, can also be used for measuring the radia-
tion impedance of the small opening of the tube, which is
related to the frequency response between the two micro-
phone signals �see Appendix A�. This method has been used
for measuring the radiation impedance at 24 positions in four
different rooms, one of which in two different conditions
�see Table I�. Figure 1 shows the reverberation time of the
rooms measured in one-third octave bands with a B&K
“PULSE” analyzer using interrupted noise.

The frequency response between the microphone signals
from the volume velocity source was measured with the
same analyzer in fast Fourier transform mode with 6400

TABLE I. Reverberation rooms used in the experiments.

Description of room
Volume

�m3�

Reverberation
time at
500 Hz

�s�

Schroeder
frequency

�Hz�

Small lightly damped room 40 2.3 460
Small heavily damped room 40 0.8 290
Large reverberation room 245 5.7 300
Very large reverberation room 500 5.8 220
Large strongly damped hall 650 1.1 90
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FIG. 1. �Color online� Reverberation time of the test rooms. Solid line: large
reverberation room; solid line with circles: very large reverberation room;
dashed line: small lightly damped room; solid line with squares: large
heavily damped hall; dash-dotted line: small heavily damped room.
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spectral lines and a resolution of 0.5 Hz. The source was
driven with synchronized pseudorandom noise generated by
the PULSE analyzer, and a uniform time window was used.
This corresponds to measuring at 6400 independent discrete
frequencies. A similar technique has been used by Baade and
Maling16 in “qualification” of reverberation rooms. Measur-
ing the radiation impedance of the volume velocity source
directly is extremely efficient compared with measuring the
sound power output with a conventional method using many
source and receiver positions, but it should be mentioned that
this technique makes heavy demands on the equipment as
reflected in many �meaningless� negative estimates at low
frequencies �see Appendix A�.

Figure 2 compares the normalized spatial standard de-
viation of the real part of the radiation impedance observed
in the five rooms with predictions based on Davy’s Eq. �4�
and the new expression, Eq. �12�, with F=2 because the
modal overlap is large except at very low frequencies. Since
all the rooms are essentially rectangular, Eqs. �4� and �12�
have been modified to take account also of 2D and 1D
modes, although the effect of this modification is almost neg-
ligible. It is interesting that the two fundamentally different
theories give practically identical predictions. At low fre-
quencies, the measured spatial standard deviations fluctuate
enormously with the frequency. This is not unexpected since
the spatial standard deviation at low modal overlap depends

10
3

0

0.5

1

1.5

2

Frequency [Hz]

N
or

m
al

iz
ed

sp
at

ia
ls

ta
nd

ar
d

de
vi

at
io

n

(a)

10
3

0

0.2

0.4

0.6

0.8

1

Frequency [Hz]

N
or

m
al

iz
ed

sp
at

ia
ls

ta
nd

ar
d

de
vi

at
io

n

(b)

10
3

0

0.2

0.4

0.6

0.8

1

Frequency [Hz]

N
or

m
al

iz
ed

sp
at

ia
ls

ta
nd

ar
d

de
vi

at
io

n

(c)

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

Frequency [Hz]

N
or

m
al

iz
ed

sp
at

ia
ls

ta
nd

ar
d

de
vi

at
io

n

(d)

10
3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Frequency [Hz]

N
or

m
al

iz
ed

sp
at

ia
ls

ta
nd

ar
d

de
vi

at
io

n

(e)

FIG. 2. �Color online� Normalized spatial standard deviation of sound power output in �a� small lightly damped small room, �b� small heavily damped room,
�c� large reverberation room, �d� very large reverberation room, and �e� large heavily damped hall. Solid line: measured standard deviation; dash-dotted line:
prediction based on Eq. �4�; dashed line: prediction based on Eq. �12� with F=2.
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strongly on whether one single mode dominates or whether
several modes contribute to the sound field. The spatial stan-
dard deviation tends to be slightly lower than the predicted
ensemble standard deviation except in the large hall, but it
certainly has the same tendency as the predictions in all
cases.

Figure 3 shows the corresponding space-frequency stan-
dard deviation in two of the five rooms, calculated from
variations in the same data with respect not only to source
positions but also to 16 neighboring frequencies �correspond-
ing to a band of 8 Hz�. The latter is an attempt to estimate the
ensemble standard deviation. There is fair, if not perfect,
agreement between predictions and experimental results.

B. Finite element calculations

An alternative approach involves calculating the en-
semble and spatial sound power variance numerically using
the finite element method �FEM�. With a FEM model of a
room enclosing a point source, the sound power can be cal-
culated simply by performing the integration of the normal
component of the sound intensity along the boundaries. This
integration can readily be performed by means of functions
available in most FEM packages. If the position of the point

source is varied, the spatial variance in the room can be
obtained. If, in addition, the calculation is carried out in a set
of rooms with different shapes, and thus with different modal
overlaps, the ensemble variance of sound power can be
achieved by computing the variance of sound power ob-
tained for all source positions in all tested rooms. However,
the calculation of the ensemble variance must be performed
directly in terms of the modal overlap. Since this quantity
depends on the total absorption area of the room, or its sur-
face area and wall impedance �see Eq. �2��, the modal over-
laps of the various rooms may differ. If one would try to
compute the variance of all points for a certain value of the
modal overlap, only values of a single room would be avail-
able. The solution chosen here is to divide the modal overlap
axis into bands. Performing the calculation in such modal
overlap intervals makes it possible to estimate the ensemble
variance, provided that there are enough results from differ-
ent rooms in the intervals.

Two sets of calculations were carried out: three-
dimensional �3D� calculations that can be compared directly
with the experimental data and 2D calculations that make it
possible to increase the frequency range. The equations for
2D are given in Appendix B. For simplicity, the rooms were
rectangular. All calculations were made using the FEM soft-
ware package COMSOL 3.4, with which one can specify exci-
tation by a monopole at a given position. To guarantee a low
numerical pollution, the quantity kh /2p �in which h is the
maximum size of the elements and p is their order� was kept
less than 0.5.17 In both cases, the sound source was placed
randomly in the room, provided that it was at least 0.4 m
away from the walls. For the 3D calculations the room di-
mensions were changed from 2�5�4.27 to 4�3
�3.56 m3, and for the 2D calculations the dimensions of the
“room” were changed from 2�7.2 to 4�3.6 m2. In all
cases, the walls were locally reacting with an impedance of
87 000 Pa s /m. The 3D calculations were carried out from
50 to 300 Hz with a frequency step of 1 Hz, and the en-
semble variance was calculated in modal overlap bands with
a width of 0.09. The 2D calculations were carried out in the
same frequency range with a frequency step of 12.5 Hz and
modal overlap intervals of 0.02.

Figure 4�a� compares the calculated ensemble standard
deviation of the sound power with respect to 50 different 3D
rooms and 50 source positions with predictions calculated
using Eqs. �4� and �12�, and Fig. 4�b� does the same for the
2D case, in both cases with F=2 as well as with F=3 in Eq.
�12�. In the 3D case, the two theories lead to practically
identical predictions with F=2, but the agreement with the
FEM results is better, in fact almost perfect, with F=3. This
agrees with Langley and Cotoni’s7 prediction of a concentra-
tion factor of 3 at low modal overlap. In the 2D case, Eq. �4�
underestimates and Eq. �12� overestimates the observed stan-
dard deviations with F=3, whereas Eq. �12� agrees ex-
tremely well with the FEM results with F=2.

V. DISCUSSION

It should be emphasized that the underlying theories of
Eqs. �4� and �12� are quite different. Davy’s model is based
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FIG. 3. �Color online� Normalized space-frequency standard deviation of
sound power output in �a� small lightly damped room and �b� large rever-
beration room. Solid line: measured standard deviation; dash-dotted line:
prediction based on Eq. �4�; dashed line: prediction based on Eq. �12� with
F=2.
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on the analytical Green’s function in a rectangular room,
makes use of the concept of impedance, and requires knowl-
edge of mode shapes and the modal density and distribution.
The alternative theory does not even recognize the concept
of modes, and the losses of the rooms are described in terms
of the absorption area. Thus the almost perfect agreement
between the predictions �in the 3D case� is surprising. Note,
however, that the factor of F has been derived in the litera-
ture using a modal approach.7,14 The free wave model cannot
possibly take account of the coherent backscattering effect
since the waves might be generated by independent sources.

Both the established theory and the alternative one
should be taken with a grain of salt at very low frequencies.
For example, it is obvious that at extremely low frequencies,
well below the lowest modal frequency, both theories predict
a huge variance, whereas in reality the spatial source position
variance is zero and the variation between rooms is only
related to their different volumes. The spatial source position
variance is also limited in the single mode case �19/8, 5/4,
and 1/2 for 3D, 2D, and 1D modes in a rectangular room,
respectively18�.

At somewhat higher frequencies but below the
Schroeder frequency, the spatial variance is strongly affected

by whether the frequency coincides with a modal frequency.
However, above the Schroeder frequency where the modal
overlap is high, one would expect the same statistics with
respect to room, position, and frequency. In other words,
merely varying the source position can be expected to lead to
the full ensemble variance in this frequency range because
many modes are excited at all frequencies, and this ergodic-
ity seems to be confirmed by the experimental results, al-
though Schroeder’s original “large room frequency,” which
corresponds to twice the established Schroeder frequency,19

is perhaps more adequate.

VI. CONCLUSION

Experimental and numerical results confirm the well-
known observation that there is a substantial uncertainty in
sound power measurements of pure-tone sources in non-
anechoic rooms at low frequencies. The associated standard
deviation is inversely proportional to the square root of the
modal overlap, that is, essentially proportional to the square
root of the ratio of the reverberation time to the volume of
the room and inversely proportional to the frequency.

Experimental results obtained in four very different
rooms, one of which in two different damping conditions,
confirm that the sound power output of the monopole exhib-
its the same statistical fluctuations with respect to changes in
the source position and changes in the frequency somewhat
above the Schroeder frequency.

An extremely simple, very general model based on
sound waves arriving with random phases from random di-
rections has, surprisingly, been found to give predictions of
the ensemble standard deviation of the sound power of a
monopole in almost perfect agreement with the predictions
of the established, far more complicated theory. These pre-
dictions are in fairly good agreement with experimental ob-
servations and in excellent agreement with the results of fi-
nite element calculations in three dimensions. The alternative
model indirectly confirms the phenomenon known as weak
Anderson localization in reverberation rooms and seems also
to confirm that the concentration factor, which describes the
local increase in the reverberant sound energy at the source
position, is 3 at low modal overlap and 2 at higher modal
overlap.

In 2D rooms, the results are slightly different. The gen-
eral tendencies are the same, but in this case there is a sys-
tematic difference between the two theories, and the alterna-
tive one is in best agreement with the finite element
calculations if the assumed concentration factor is 2.
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APPENDIX A: EXPERIMENTAL TECHNIQUE

A method of measuring the volume velocity of an “ex-
perimental monopole” has been described in Refs. 20 and 21.
The method is based on a tube with two matched quarter-
inch microphones driven by a loudspeaker at the other end,
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FIG. 4. �Color online� Normalized ensemble standard deviation of sound
power output in �a� 3D rooms and �b� 2D rooms. Solid line: FEM results;
dash-dotted line: prediction based on Eq. �4�; solid line with circles: predic-
tion based on Eq. �12� with F=2; dashed line: prediction based on Eq. �12�
with F=3.
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and this device, B&K 4295, can also be used for measuring
the radiation impedance of the small opening of the tube. In
the frequency range where it can be assumed that only plane
waves propagate in the tube, the volume velocity at the open-
ing of the tube can readily be shown to be

Q =
St

�c
·

pA cos kl − pB cos�k�l + �l��
j sin k�l

, �A1�

where St is the cross-sectional area of the tube, pA and pB are
the two pressure signals, �l is the distance between the mi-

crophones, and l is the distance between the opening and the
microphone nearest the opening. The sound pressure at the
opening is

p =
− pA sin kl + pB sin�k�l + �l��

sin k�l
. �A2�

It now follows that the real part of the radiation impedance is

Re�Zr� = Re� p

Q
 = −

�c

St

Im�pA
� pB�sin�k�l�

�pA�2 cos2�kl� + �pB�2 cos2�k�l + �l�� − 2 Re�pA
� pB�cos�kl�cos�k�l + �l��

. �A3�

Expressed in terms of the frequency response between the two pressure signals, this becomes

Re�Zr� = −
�c

St

Im�HAB�sin�k�l�
cos2�kl� + �HAB�2 cos2�k�l + �l�� − 2 Re�HAB�cos�kl�cos�k�l + �l��

. �A4�

The measurement is not without problems, and at low
frequencies some estimates of the real part of the radiation
impedance are negative, which is why it was chosen to
present the results only from 200 Hz and upward. The
pressure-intensity index, a quantity well known from the lit-
erature on sound intensity measurements with conventional
sound intensity probes based on two matched pressure
microphones,22 can easily be calculated from the frequency
response between the microphone signals,23

10 log� pmean
2 /��c�

I
	 = 10 log� �1 + �HAB�2 + 2 Re�HAB��/4

− Im�HAB�/�k�l�
	 ,

�A5�

and is about 13 dB below 1 kHz, indicating rather harsh
sound field conditions. However, the microphones of B&K

4295 are matched so well that this is not a very serious
problem, and an attempt to compensate for possible phase
and amplitude mismatch �using the “sensor-switching tech-
nique” suggested by Chung and Blaser24� did not improve
conditions.

Figure 5 shows an example of a frequency response
�HAB� measured in the large hall. Note that the phase angle of
this function varies between about 0.2° at 200 Hz and
about 1° at 1 kHz. Inspection of Eq. �A4� shows that the
information about the real part of the radiation impedance �or
the emitted sound power� is associated with the imaginary
part of the frequency response, which is obviously very
small below 1 kHz, and the information about how the emit-
ted sound power varies from position to position is hidden in
minute fluctuations in this very small imaginary part of the
frequency response. There are strong resonances in the loud-
speaker cavity and tube, as can be seen in Fig. 6, which
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FIG. 5. Magnitude and phase of a frequency response in the tube, HAB.
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FIG. 6. Power spectrum of the sound pressure measured near the opening of
the tube.

682 J. Acoust. Soc. Am., Vol. 126, No. 2, August 2009 F. Jacobsen and A. R. Molares: Source power in reverberation rooms



shows the spectrum of the microphone signal nearest the
opening of the tube. These resonances should obviously not
affect the radiation impedance at the outlet of the tube. How-
ever, it is believed that the most serious source of error in the
experimental results presented in Sec. IV is due to numerical
problems in the signal processing caused by the imaginary
part of the frequency response being several hundred times
smaller than the real part. Thus the resonances may never-
theless have had some effects on the estimated radiation im-
pedance.

APPENDIX B: SOUND POWER IN 2D ROOMS

By analogy with Eq. �5�, a 2D diffuse sound field can be
modeled as an infinite sum of plane waves coming from all
angles of incidence �from 0 to 2�� and having random
phases. Such a sound field might conceivably be generated
by an infinite pulsating line source in an infinitely long room.
The sound intensity that is incident on the walls of such a
room is

Iinc� =
1

2�
�

−�/2

�/2 E��prev�2�
2�c

cos �d� =
E��prev�2�

2��c
, �B1�

and thus the sound power per unit length emitted by the
source and absorbed by the walls is

Pa� �
E��prev�2�

2��c
A�, �B2�

where A� is the absorption area of the walls of the room per
unit length. On average, the sound power emitted by the line
source equals its free-field sound power,25

Pa� =
�Q��2

2
Re�Zr�� =

�ck�Q��2

8
, �B3�

where Q� is the volume velocity per unit length and Zr� is the
radiation impedance. However, because of the reverberant,
diffuse sound field, the sound power output varies from po-
sition to position and from room to room. The corresponding
variance is

	2�Pa�� =
�Q��4

4
	2�Re�Zr��� =

�Q��4

4
	2�Re� prev

Q�ej�t
=

�Q��2

4
E��prev�2cos2 �� =

�Q��2

8
E��prev�2�

�
�Q��2

8

2��c

A�
E�Pa�� = E2�Pa��

2�

A�k
. �B4�

If the source is suddenly turned off, the sound energy in the
room decays with a time constant that follows from simple
energy balance considerations,

�� =
Ea�

Pa�
=

S�

2L�c Re����
=

�S�

cA�
, �B5�

where S�= lx · ly is the cross-sectional area of the infinitely
long room, L�=2�lx+ ly�, and �� is the normalized wall ad-
mittance. The modal density in modes per hertz is

n��f� =
2�S�f

c2 , �B6�

and the statistical modal overlap is

Ms� =
n��f�
2��

=
A�k

2�
. �B7�

Combining Eqs. �B4� and �B7� finally shows that the normal-
ized standard deviation of the emitted sound power has ex-
actly the same form in 2D as in 3D,

��Pa�� =
1

�Ms�
. �B8�

This expression should be modified in the same way as Eq.
�11� because of the effect of weak Anderson localization.

In 2D, Davy’s Eq. �4� becomes

��Pa�� =
1

�Ms

��3

2
	2

− 1	1/2
. �B9�

One can easily extend Eqs. �B8� and �B9� so as to take ac-
count of 1D modes.

1R. H. Lyon, “Statistical analysis of power injection and response averag-
ing in structures and rooms,” J. Acoust. Soc. Am. 45, 545–565 �1969�.

2J. L. Davy, “The relative variance of the transmission function of a rever-
beration room,” J. Sound Vib. 77, 455–479 �1981�.

3R. L. Weaver, “On the ensemble variance of reverberation room transfer
functions, the effect of spectral rigidity,” J. Sound Vib. 130, 487–491
�1989�.

4R. V. Waterhouse, “Estimation of monopole power radiated in a reverbera-
tion chamber,” J. Acoust. Soc. Am. 64, 1443–1446 �1978�.

5J. L. Davy, “Improvements to formulae for the ensemble relative variance
of random noise in a reverberation room,” J. Sound Vib. 115, 145–161
�1987�.

6T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and S. S. M.
Wong, “Random matrix physics: Spectrum and strength fluctuations,” Rev.
Mod. Phys. 53, 385–479 �1981�.

7R. S. Langley and V. Cotoni, “The ensemble statistics of the vibrational
energy density of a random system subjected to single point harmonic
excitation,” J. Acoust. Soc. Am. 118, 3064–3076 �2005�.

8O. I. Lobkis, R. L. Weaver, and I. Rozhkov, “Power variances and decay
curvature in a reverberant system,” J. Sound Vib. 237, 281–302 �2000�.

9J. L. Davy, “The distribution of modal frequencies in a reverberation
room,” in Proceedings of Inter-Noise 90, Gothenburg, Sweden �1990�.

10J. L. Davy, “The variance of pure tone reverberant sound power measure-
ments,” in Proceedings of the Fifth International Congress on Sound and
Vibration, Adelaide, Australia, �1997�.

11F. Jacobsen, “The diffuse sound field,” Ph.D. thesis, The Acoustics Labo-
ratory, Technical University of Denmark, Denmark �1979�.

12D. Pierce, Acoustics: An Introduction to Its Physical Principles and Ap-
plications �McGraw-Hill, New York, 1981�, Secs. 6.3 and 6.1.

13R. V. Waterhouse, “Statistical properties of reverberant sound fields,” J.
Acoust. Soc. Am. 43, 1436–1444 �1968�.

14R. L. Weaver and J. Burkhardt, “Weak Anderson localization and en-
hanced backscatter in reverberation rooms and quantum dots,” J. Acoust.
Soc. Am. 96, 3186–3190 �1994�.

15G. Tanner and N. Søndergaard, “Wave chaos in acoustics and elasticity,” J.
Phys. A: Math. Theor. 40, R443–R509 �2007�.

16P. K. Baade and G. C. Maling, “Reverberation room qualification using
multitone signals,” Noise Control Eng. J. 46, 23–28 �1998�.

17F. Ihlenburg, Applied Mathematical Sciences �Springer-Verlag, New York,
1998�, Vol. 132.

18F. Jacobsen, “Sound power determination in reverberation rooms: A nor-
mal mode analysis,” Ph.D. thesis, The Acoustics Laboratory, Technical
University of Denmark, Denmark �1979�.

J. Acoust. Soc. Am., Vol. 126, No. 2, August 2009 F. Jacobsen and A. R. Molares: Source power in reverberation rooms 683



19M. Schröder, “Die statistichen Parameter der Frequenzkurven von grossen
Räumen �Statistical parameters of the frequency response curves of large
rooms�,” Acustica 4, 594–600 �1954�.

20S. Gade, N. Møller, J. Hald, and L. Alkestrup, “The use of volume veloc-
ity source in transfer measurements,” in Proceedings of Inter-Noise 2004,
Prague, Czech Republic �2004�.

21Y. Luan and F. Jacobsen, “A method of measuring the Green’s function in
an enclosure,” J. Acoust. Soc. Am. 123, 4044–4046 �2008�.

22F. J. Fahy, Sound Intensity, 2nd ed. �E & FN Spon, London, 1995�.
23F. Jacobsen, “Sound field indicators: Useful tools,” Noise Control Eng. J.

35, 37–46 �1990�.
24J. Y. Chung and D. A. Blaser, “Transfer function method of measuring

in-duct acoustic properties. I. Theory,” J. Acoust. Soc. Am. 68, 907–913
�1980�.

25P. M. Morse and K. U. Ingard, Theoretical Acoustics �McGraw-Hill, New
York, 1968�, Sec. 7.3.

684 J. Acoust. Soc. Am., Vol. 126, No. 2, August 2009 F. Jacobsen and A. R. Molares: Source power in reverberation rooms


