18 research outputs found

    Intraspecfic variation in cold-temperature metabolic phenotypes of Arabidopsis lyrata ssp petraea

    Get PDF
    Atmospheric temperature is a key factor in determining the distribution of a plant species. Alongside this, plant populations growing at the margin of their range may exhibit traits that indicate genetic differentiation and adaptation to their local abiotic environment. We investigated whether geographically separated marginal populations of Arabidopsis lyrata ssp. petraea have distinct metabolic phenotypes associated with exposure to cold temperatures. Seeds of A. petraea were obtained from populations along a latitudinal gradient, namely Wales, Sweden and Iceland and grown in a controlled cabinet environment. Mannose, glucose, fructose, sucrose and raffinose concentrations were different between cold treatments and populations, especially in the Welsh population, but polyhydric alcohol concentrations were not. The free amino acid compositions were population specific, with fold differences in most amino acids, especially in the Icelandic populations, with gross changes in amino acids, particularly those associated with glutamine metabolism. Metabolic fingerprints and profiles were obtained. Principal component analysis (PCA) of metabolite fingerprints revealed metabolic characteristic phenotypes for each population and temperature. It is suggested that amino acids and carbohydrates were responsible for discriminating populations within the PCA. Metabolite fingerprinting and profiling has proved to be sufficiently sensitive to identify metabolic differences between plant populations at different atmospheric temperatures. These findings show that there is significant natural variation in cold metabolism among populations of A. l. petraea which may signify plant adaptation to local climates

    Impact of soluble sugar concentrations on the acquisition of freezing tolerance in accessions of Arabidopsis thaliana with contrasting cold adaptation - evidence for a role of raffinose in cold acclimation

    No full text
    In the present study the cold acclimation potential of two accessions of Arabidopsis thaliana was investigated. Significant variation was found for basic tolerance as well as the capacity to acclimate to freezing temperatures. During cold acclimation, levels of soluble sugars increased in both genotypes, but raffinose accumulation discriminated the more tolerant accession Col-0 from C24. Concentrations of other compatible solutes such as proline and glutamine were also higher in cold-acclimated Col-0 than C24 plants. Changes of invertase activity during cold exposure corresponded to changes in sucrose and fructose, but not glucose concentrations and were consistent with an initial chilling response and a later decline in hexose metabolization. When vacuolar invertase was suppressed by siRNA expression, reduced sucrolytic activity resulted in elevated leaf sucrose concentration, whereas the fructose content was strongly reduced. This led to elevated freezing tolerance in the cold-tolerant genotype Col-0, but not in C24. The most pronounced metabolic changes in invertase-inhibited Col-0 plants occurred for proline and glutamine concentrations, indicating indirect metabolic effects of altered sugar concentrations
    corecore