900 research outputs found

    Air data measurement system for space shuttle

    Get PDF
    It is concluded that air data measurements of angle of attack and sideslip are needed to control the space shuttle vehicles. The basis for this conclusion, along with recommended sensor design and implementation, are described

    Production and isolation of 72As from proton irradiation of enriched 72GeO2 for the development of targeted PET/MRI agents

    Get PDF
    Introduction Two current major research topics in nuclear medicine are in the development of long-lived positron-emitting nuclides for imaging tracers with long biological half-lives and in theranostics, imaging nuclides which have a chemically analogous therapy isotope. As shown in TABLE 1, the radioisotopes of arsenic (As) are well suited for both of these tasks with several imaging and therapy isotopes of a variety of biologically relevant half-lives accessible through the use of small medical cyclotrons. The five naturally abundant isotopes of germanium are both a boon and challenge for the medical nuclear chemist. They are beneficial in that they facilitate a wide array of producible radioarsenic isotopes. They are a challenge as monoisotopic radioarsenic production requires isotopically-enriched targets that are expensive and of limited availability. This makes it highly desirable that the germanium target material is reclaimed from arsenic isolation chemistry. One major factor which has limited the development of radioarsenic has been difficulties in its incorporation into biologically relevant targeting vectors. Previous studies have labeled antibodies and polymers through covalent bonding of arsenite (As(III)) with the sulfydryl group1,2,3. Recent work in our group has shown the facile synthesis and utility of superparamagnetic iron oxide nanoparticle- (SPION-)bound radioarsenic as a dual modality positron emission tomography (PET)/magnetic resonance imaging (MRI) agent4. Presently, we have built upon previous studies producing, isolating, and labeling untargeted SPION with radioarsenic4,5. We have incorp-rated the use of isotopically-enriched 72GeO2 for the production of radioisotopically pure 72As. The bulk of the 72GeO2 target material was re-claimed from the arsenic isolation chemical procedure for reuse in future irradiations. The 72As was used for ongoing development toward the synthesis of targeted, As-SPION-based, dual-modality PET/MRI agents. Material and Methods Targets of ~100 mg of isotopically-enriched 72GeO2 (96.6% 72Ge, 2.86% 73Ge, 0.35% 70Ge, 0.2% 74Ge, 0.01% 76Ge, Isoflex USA) were pressed into a niobium beam stop at 225 MPa, covered with a 25 µm HAVAR containment foil, attached to a water-cooling target port, and irradiated with 3 µA of 16.1 MeV protons for 2–3 hours using a GE PETtrace cyclotron. After irradiation, the target and beam stop were assembled into a PTFE dissolution apparatus, where the 72GeO2 target material was dissolved with the addition of 2 mL of 4 M NaOH and subsequent stirring. After dissolution was completed, the clear, colorless solution was transferred to a fritted glass column and the bulk 72GeO2 was reprecipitated by neutralizing the solution with the addition of 630 µL [HCl]conc, filtered, and rinsed with 1 mL [HCl]conc. To the combined 72As-containing filtrates, 100 µL 30% H2O2 was added to ensure that 72As was in the nonvolatile As(V) oxidation state. The ~3 mL solution was then evaporated at 115 ˚C while the vessel was purged with argon, followed by a second addition of 100 µL H2O2 after the volume was reduced to 1 mL. When the filtrate volume was ~0.3 mL, the vessel was removed from heat, allowed to cool with argon flow, and the arsenic reconstituted in 1 mL [HCl]conc and loaded onto a 1.5 mL bed volume Bio-Rad AG 1×8, 200–400 mesh anion exchange column preconditioned with 10 M HCl. The radioarsenic was eluted in 10 M HCl in the next ~10 mL, with 90% of the activity eluting in a 4 mL fraction. The column was then eluted with 5 mL 1 M HCl. The 72As-rich 10 M HCl fraction was reduced to As(III) with the addition of ~100 mg CuCl, and heating to 60 ˚C for 1 hour. The resulting AsCl3 was then extracted twice into 4 mL cyclohexane, which were combined and back extracted into 500 µL of water as As(OH)3. This solution of 72As in H2O was then used directly to label SPION and for subsequent experiments conjugating 72As-SPION with TRC105, an angiogenesis-marking monoclonal antibody (MAb) targeting endoglin/CD105. Several methods were initially attempted involving directly conjugating the surface-modified SPION to the MAb through a polyethylene glycol (PEG) linker. More recent studies have investigated the radioarsenic labeling of SPION encapsulated in hollow mesoporous silica nanoparticles (SPION@HMSN) and its subsequent conjugation to TRC105. Results and Conclusion Irradiation of pressed, isotopically-enriched 72GeO2 resulted in a production yield for 72As of 17 ± 2 mCi/(µA·hr·g) and for 71As of 0.37 ± 0.04 mCi/(µA·hr·g), which are 64 % and 33 %, of those predicted from literature6, respectively. However, these production yields are in agreement with those scaled from observed production yields using analagous natGeO2 targets. The end-of-bombardment 72As radionuclidic purity can be improved by minimizing the 72Ge(p,2n)71As reaction by degrading the beam energy. A 125 µm Nb containment foil would degrade impinging protons to 14.1 MeV and is predicted to reduce 71As yield by a factor of three, while only reducing 72As yield by 1 %6, improving end-of-bombardment radionuclidic purity from 98 % to greater than 99 %. Overall decay-corrected radiochemical yield of the 72As isolation procedure from 72GeO2 were 51 ± 2 % (n = 3) in agreement with those observed with natGeO2 57 ± 7 % (n = 14). The beam current was limited to 3 µA as higher cur-rents 4–5 µA exhibited inconsistent dissolution and reprecipitation steps, resulting in an overall yield of 44 ± 21 % (n = 6). Dissolution time also played an important role in overall yield with at least one hour necessary to minimize losses in these first two steps. The separation procedure effectively removed all radiochemical contaminants and resulted in 72As(OH)3 isolated in a small volume, pH~4.5 water solution. Over the course of minutes to hours after back extraction, rapid auto-oxidation to 72AsO4H3 was observed. The bulk 72GeO2 target material, which was reclaimed from the isolation procedure, is being collected for future use. The synthesis of a targeted PET/MRI agent based on the functionalization of 72As-SPION has proved to be a difficult task. Experiments conjugating 72As-SPION to TRC105 through a PEG linker were unsuccessful, despite the investigation of a variety bioconjugation procedures. Current work is investigating the use of SPION@HMSN, which have a similar affinity for 72As as unencapsulated SPION. This new class of 72As-labeled SPION@HMSN has a hollow cavity for potential anti-cancer drug loading, as well as the mesoporous silica surface, which may facilitate the efficient conjugation of TRC105 using a well-developed bioconjugation technique. In summary, radioarsenic holds potential in the field of diagnostic and therapeutic nuclear medicine. However, this potential remains locked behind challenges related to its production and useful in vivo targeting. The present work strives to address several of these challenges through the use of enriched 72GeO2 target material, a chemical isolation procedure that reclaims the bulk of the target material, and the investigation of new targeted nanoparticle-based PET/MRI agents

    Production of [11C]cyanide for the synthesis of indole-3-[1-11C]acetic acid and PET imaging of auxin transport in living plants: Production of [11C]cyanide for the synthesis of indole-3-[1-11C]acetic acid and PET imaging of auxin transport in living plants

    Get PDF
    Introduction Since its development by Al Wolf and colleagues in the 1970s1, [11C]cyanide has been a useful synthon for a wide variety of reactions, most notably those producing [1-11C]-labeled amino acids2. However, despite its position as rote gas-phase product, the catalytic synthesis is difficult to optimize and often only perfunctorily dis-cussed in the radiochemical literature. Recently, [11C]CN– has been used in the synthesis of indole-3-[1-11C]acetic acid ([11C]IAA), the principal phytohormone responsible for a wide variety of growth and development functions in plants3. The University of Wisconsin has expertise in cyclotron production and radiochemistry of 11C and previous experience in the PET imaging of plants4,5. In this abstract, we present work on optimizing [11C]CN– production for the synthesis of [11C]IAA and the PET imaging of auxin transport in living plants. Material and Methods [11C]CH4 was produced by irradiating 270 psi of 90% N2, 10% H2 with 30 µA of 16.1 MeV protons from a GE PETtrace cyclotron. After irradiation, the [11C]CH4 was converted to [11C]CN– by passing through a quartz tube containing 3.0 g of Pt wire and powder between quartz wool frits inside a 800–1000 ˚C Carbolite tube furnace. The constituents and flow rate of the [11C]CH4 carrier gas were varied in an effort to optimize the oven\'s catalytic production of [11C]CN– from CH4 and NH3. The following conditions were investigated: i. Directly flowing irradiated target gas versus trapping, purging and releasing [11C]CH4 from a −178 ˚C HayeSep D column in He through the Pt furnace. ii. Varying the amount of anhydrous NH3 (99.995%) mixed with the [11C]CH4 carrier gas prior to the Pt furnace. Amounts varied from zero to 35 % of gas flow. iii. Varying the purity of the added NH3 gas with the addition of a hydride gas purifier (Entegris model 35KF), reducing O2 and H2O impurities to < 12 ppb. iv. Varying the flow rate of He gas carrying trapped, purged and released [11C]CH4. After flowing through the Pt furnace, the gas stream was bubbled through 300 µL of DMSO containing IAA precursor gramine (1 mg), then passed through a 60×5 cm column containing ascarite to absorb [11C]CO2, followed by a −178˚C Porapak Q column to trap [11C]CH4 and [11C]CO. After bubbling, the DMSO/gramine vial was heated to 140 ˚C to react the gramine with [11C]CN–, forming the intermediate indole-3-[1-11C]acetonitrile ([11C]IAN), which was subsequently purified by solid phase extraction (SPE). The reaction mixture was diluted into 20 mL water and loaded onto a Waters Sep-Pak light C18 cartridge, followed by rinsing with 5 mL of 0.1% HCl : acetonitrile (99 : 1) and 10 mL of the same mixture in ratio 95 : 5, and finally eluted with 0.5 mL of diethyl ether. The ether was subsequently evaporated under argon flow, followed by the hydrolysis of [11C]IAN to [11C]IAA with the addition of 300 µL 1 M NaOH and heating to 140 ˚C for 5 minutes. After hydrolysis, the solution was neutralized with 300 µL 1 M HCl and purified using preparative high-performance liquid chromatography (HPLC) using a Phenomenex Luna C18 (10μ, 250×10mm) column with a mobile phase acetonitrile : 0.1% formic acid in H2O (35 : 65) at flow rate of 3 mL/min. The [11C]IAA peak, eluting at 12 minutes, was collected and rotary evaporated to dryness, then again after the addition of 5 mL acetonitrile, followed by its reconstitution in 50 µL of water. Analytical HPLC was performed on the [11C]IAA before and after this evaporation procedure using a Phenomenex Kinetex C18 (2.6μ, 75× 4.6 mm) column with a linear gradient elution over 20 minutes of 10 : 90–30 : 70 (acetonitrile : 0.1% formic acid) at a 1 mL/min flow rate, eluting at 7.6 minutes. The transport of [11C]IAA was monitored following administration through the severed petiole of rapid cycling Brassica oleracea (rcBo) using a Siemens microPET P4 scanner. Transport was compared following administration to the first true leaf versus the final fully formed leaf in plants with and without exposure to the polar auxin transport inhibitor naphthylphthalamic acid (NPA). Results and Conclusion Optimization of the [11C]CN– gas phase chemistry was performed using two key metrics for measuring conversion yield. First is the fraction of total produced radioactivity that trapped in the DMSO/gramine solution (denoted %DMSO), and second, the fraction of DMSO/gramine-trapped activity that was able to react with gramine to form [11C]IAN (denoted %CN–). Under certain conditions, the former of these metrics experienced significant losses due to unconverted [11C]CH4 or through combustion, forming [11C]CO2 or [11C]CO. The latter metric experienced losses due to production of incomplete oxidation products of the CH4-NH3 reaction, such as methylamine. Total [11C]CH4 to [11C]CN– con-version yields is reported by the product of the two metrics. It was initially hypothesized that the irradiation of a 90% N2, 10% H2 target gas would produce sufficient in-target-hot-atom-produced NH3 to convert [11C]CH4 to [11C]CN– in the Pt furnace. However, conversion yields were found to be low and highly variable, with 13 ± 8 % trapping in DMSO/gramine, 9 ± 9 % of which reacted as CN– (n = 15). While in disagreement with previous reports1, this is likely as a result the batch irradiation conditions resulting ammonia losses in the target chamber and along the tubing walls. Yields and reproducibility were improved when combining the target gas with a stream of anhydrous NH3 gas flow with conversion yields reported in TABLE 1. However, these yields remained undesirably low, potentially as a result of the 10% H2 carrier gas having an adverse effect on the oxidative conversion of [11C]CH4 to [11C]CN–. To remedy this, the irradiated target gas was trapped, purged, released in He and combined with NH3 gas before flowing through the Pt furnace. Initial experiments using 99.995% anhydrous NH3 gas resulted in very poor (< 0.1%) [11C]CN– yields as a result of nearly quantitative combustion forming [11C]CO2. Installation of a hydride gas purifier to reduce O2 and H2O impurities in NH3 improved yields for CH4 in He, but did not significantly affect those from [11C]CH4 in N2/H2 target gas. In disagreement with previous reports2, conversion yields were found to be highly sensitive to overall carrier gas flow rate, with lower flow rates giving the best yields, as shown in TABLE 1. Optimization experiments are continuing. The total decay-corrected yield for the 1 hour synthesis of [11C]IAA in 50 µL of water is 2.3 ± 0.7 %, based on the total produced [11C]CH4 with a specific activity ranging from 1–100 GBq/µmol. The principal radiochemical impurity was determined to be indole-3-carboxylic acid. The SPE procedure isolating the [11C]IAN intermediate product was optimized to minimize this impurity in the final sample. After a rapid distribution of the administered [11C]IAA through the cut petiole and throughout the rcBO plant, upward vascular transport of auxin and downward polar auxin transport was visualized through time-activity curves (TACs) of regions of interest along the shoot. Comparison of these TACS with and without exposure to NPA yields insight into the fundamental physiological process of polar auxin transport in plants. In conclusion, the Pt-catalyzed oxidative conversion of [11C]CH4 and NH3 to [11C]CN– is a challenging process to optimize and highly sensitive to carrier gas composition and flow rate. Optimization for our experimental conditions yielded several results which disagreed with previous reports. [11C]IAA produced using [11C]CN– is well suited for PET imaging of polar auxin transport in living plants

    Control biológico de Rosellinia sp. causante de la muerte súbita en macadamia (Macadamia integrifolia) con aislados de Trichoderma spp.

    Get PDF
    Para evaluar la eficiencia del control biológico ejercido por aislados nativos de Trichoderma spp. sobre Rosellinia sp. causante de la muerte de plantas de macadamia, se realizaron dos experimentos en el Laboratorio de Fitopatología de la FCA-UNA, San Lorenzo, Central y en el vivero San Joaquín, Caraguatay, Cordillera. Para las pruebas in vitro se obtuvieron 19 aislados de Trichoderma spp. de parcelas productoras de macadamia del Paraguay y se enfrentaron en cultivo pareado con Rosellinia sp. para medir su capacidad antagónica, utilizando el Diseño Completamente al Azar (DCA) con cinco repeticiones. Los resultados obtenidos permitieron seleccionar a los aislados GS18 (Itapuá), GS13 (Central), GS10 (Cordillera) para su evaluación in vivo. Para el segundo experimento en condiciones in vivo se utilizó el DCA, los tratamientos consistieron en T1: Testigo (sólo el patógeno), T2: Mezcla de aislados de Trichoderma spp. y T3: Carbendazim al 0,1%, con cinco repeticiones. Las plantas de macadamia de 12 meses fueron tratadas con los aislados de Trichoderma spp.. Transcurridas 2 semanas se infestó el sustrato de todas las plantas con propágulos de Rosellinia spp.. Se aguardaron otras 2 semanas que permitieron el establecimiento del patógeno y se aplicó Carbendazim al 0,1%. En las plantas testigo se constató 53% de incidencia de la enfermedad, en las tratadas con Trichoderma spp. 26%, y en las plantas tratadas con Carbendazim se verificó 7%. Se concluye que los aislados nativos Trichoderma spp. presentan potencial como agentes biocontroladores de Rosellinia sp. al reducir la incidencia de la enfermedad en condiciones in vivo

    Efficacy of Two Licensed Avian Influenza H5 Vaccines Against Challenge with a 2015 U.S. H5N2 clade 2.3.4.4 Highly Pathogenic Avian Influenza Virus in Domestic Ducks

    Get PDF
    Highly pathogenic avian influenza (HPAI) clade 2.3.4.4 viruses from the H5 goose/Guangdong lineage caused a major outbreak in poultry in the United States in 2015. Although the outbreak was controlled, vaccines were considered as an alternative control method, and new vaccines were approved and purchased by the U.S. Department of Agriculture National Veterinary Stockpile for emergency use. In this study, we evaluated the efficacy of two of these vaccines in protecting Pekin ducks (Anas platyrhynchos var. domestica) against challenge with a H5N2 HPAI poultry isolate. A recombinant alphavirus-based vaccine and an inactivated adjuvanted reverse genetics vaccine, both expressing the hemagglutinin gene of a U.S. H5 clade 2.3.4.4 isolate (A/Gyrfalcon/Washington/41088-6/2014 H5N8), were used to immunize the ducks. The vaccines were given either as single vaccination at 2 days of age or in a prime-boost strategy at 2 and 15 days of age. At 32 days of age, all ducks were challenged with A/turkey/Minnesota/12582/15 H5N2 HPAI virus clade 2.3.4.4. All ducks from the nonvaccinated challenge control group became infected and shed virus; one duck in this group presented mild ataxia, and a second duck died. No mortality or clinical signs were observed in vaccinated and challenged ducks, with the exception of one duck presenting with mild ataxia. Both vaccines, regardless of the vaccination strategy used, were immunogenic in ducks and reduced or prevented virus shedding after challenge. In conclusion, good protection against H5Nx infection was achieved in ducks vaccinated with the vaccines examined, which were homologous to the challenge virus, with prime-boost strategies conferring the best protection against infection.info:eu-repo/semantics/publishedVersio

    Pyronaridine exerts potent cytotoxicity on human breast and hematological cancer cells through induction of apoptosis

    Full text link
    The potent antimalarial drug pyronaridine (PND) was tested for its potential as an anticancer drug. After exposing cancerous (17) and non-cancerous (2) cells to PND for 72 hr, PND was found to exhibit consistent and potent cytotoxic activity at low micromolar (μM) concentrations that ranged from 1.6 μM to 9.4 μM. Moreover, PND exerted a significant selective cytotoxicity index (SCI) on five out of seven breast cancer cell lines tested, with favorable values of 2.5 to 4.4, as compared with the non-cancerous breast MCF-10A cell line. By using the same comparison, PND exhibited a significant SCI on three out of four leukemia/lymphoma cell lines with promising values of 3.3 to 3.5. One breast cancer and one leukemia cell line were tested further in order to determine the likely mode of action of PND. PND was found to consistently elicit phosphatidylserine externalization, mitochondrial depolarization, and DNA fragmentation, in both the triple negative MDA-MB-231 breast cancer and HL-60 leukemia cell lines. In addition, PND treatment altered cell cycle progression in both cancer cells. Subsequent DNA mobility-shift assays, UV-Visible spectroscopic titrations, and circular dichroism (CD) experiments revealed that PND intercalates with DNA. The findings presented in this study indicates that PND induces apoptosis and interfered with cell cycle progression of cancer cell lines and these results indicate that this drug has the potential as a repurposed drug for cancer therapy

    The TgsGP gene is essential for resistance to human serum in Trypanosoma brucei gambiense

    Get PDF
    Trypanosoma brucei gambiense causes 97% of all cases of African sleeping sickness, a fatal disease of sub-Saharan Africa. Most species of trypanosome, such as T. b. brucei, are unable to infect humans due to the trypanolytic serum protein apolipoprotein-L1 (APOL1) delivered via two trypanosome lytic factors (TLF-1 and TLF-2). Understanding how T. b. gambiense overcomes these factors and infects humans is of major importance in the fight against this disease. Previous work indicated that a failure to take up TLF-1 in T. b. gambiense contributes to resistance to TLF-1, although another mechanism is required to overcome TLF-2. Here, we have examined a T. b. gambiense specific gene, TgsGP, which had previously been suggested, but not shown, to be involved in serum resistance. We show that TgsGP is essential for resistance to lysis as deletion of TgsGP in T. b. gambiense renders the parasites sensitive to human serum and recombinant APOL1. Deletion of TgsGP in T. b. gambiense modified to uptake TLF-1 showed sensitivity to TLF-1, APOL1 and human serum. Reintroducing TgsGP into knockout parasite lines restored resistance. We conclude that TgsGP is essential for human serum resistance in T. b. gambiense

    Cataclysmic Variables in the First Year of the Zwicky Transient Facility

    Get PDF
    Using selection criteria based on amplitude, time, and color, we have identified 329 objects as known or candidate cataclysmic variables (CVs) during the first year of testing and operation of the Zwicky Transient Facility. Of these, 90 are previously confirmed CVs, 218 are strong candidates based on the shape and color of their light curves obtained during 3–562 days of observation, and the remaining 21 are possible CVs but with too few data points to be listed as good candidates. Almost half of the strong candidates are within 10 deg of the galactic plane, in contrast to most other large surveys that have avoided crowded fields. The available Gaia parallaxes are consistent with sampling the low mass transfer CVs, as predicted by population models. Our follow-up spectra have confirmed Balmer/helium emission lines in 27 objects, with four showing high-excitation He ii emission, including candidates for an AM CVn, a polar, and an intermediate polar. Our results demonstrate that a complete survey of the Galactic plane is needed to accomplish an accurate determination of the number of CVs existing in the Milky Way
    • …
    corecore