2,020 research outputs found

    Film dynamics and lubricant depletion by droplets moving on lubricated surfaces

    Full text link
    Lubricated surfaces have shown promise in numerous applications where impinging foreign droplets must be removed easily; however, before they can be widely adopted, the problem of lubricant depletion, which eventually leads to decreased performance, must be solved. Despite recent progress, a quantitative mechanistic explanation for lubricant depletion is still lacking. Here, we first explained the shape of a droplet on a lubricated surface by balancing the Laplace pressures across interfaces. We then showed that the lubricant film thicknesses beneath, behind, and wrapping around a moving droplet change dynamically with droplet's speed---analogous to the classical Landau-Levich-Derjaguin problem. The interconnected lubricant dynamics results in the growth of the wetting ridge around the droplet, which is the dominant source of lubricant depletion. We then developed an analytic expression for the maximum amount of lubricant that can be depleted by a single droplet. Counter-intuitively, faster moving droplets subjected to higher driving forces deplete less lubricant than their slower moving counterparts. The insights developed in this work will inform future work and the design of longer-lasting lubricated surfaces

    Self-assembly of amorphous calcium carbonate microlens arrays

    Get PDF
    Biological materials are often based on simple constituents and grown by the principle of self-assembly under ambient conditions. In particular, biomineralization approaches exploit efficient pathways of inorganic material synthesis. There is still a large gap between the complexity of natural systems and the practical utilization of bioinspired formation mechanisms. Here we describe a simple self-assembly route leading to a CaCO3 microlens array, somewhat reminiscent of the brittlestars' microlenses, with uniform size and focal length, by using a minimum number of components and equipment at ambient conditions. The formation mechanism of the amorphous CaCO3 microlens arrays was elucidated by confocal Raman spectroscopic imaging to be a two-step growth process mediated by the organic surfactant. CaCO3 microlens arrays are easy to fabricate, biocompatible and functional in amorphous or more stable crystalline forms. This shows that advanced optical materials can be generated by a simple mineral precipitation

    Changes in interest group access in times of crisis: no pain, no (lobby) gain

    Get PDF
    The outbreak of Covid-19 provoked a massive shock for political institutions and societal groups. A crucial question is how such an external event affects the balance of access to political gatekeepers. In particular: Are organizations, which are highly affected by the crisis, able to increase their political voice? To address this, we focus on changes in lobbying access to key venues of public policy: government, parliament, the bureaucracy, and the media across 10 European democracies. Based on novel survey data, we assess changes in access shortly after the outbreak of Covid-19. Our findings show that affectedness is an important driver of changes in access to all venues. We interpret this as good news for the functioning of European systems of interest representation, and the ability of gatekeepers to open their doors to affected groups. However, we also show that the effect of affectedness varies considerably for economic and non-economic interests

    Magnification relations in gravitational lensing via multidimensional residue integrals

    Get PDF
    We investigate the so-called magnification relations of gravitational lensing models. We show that multidimensional residue integrals provide a simple explanation for the existence of these relations, and an effective method of computation. We illustrate the method with several examples, thereby deriving new magnification relations for galaxy lens models and microlensing (point mass lensing).Comment: 16 pages, uses revtex4, submitted to Journal of Mathematical Physic

    Bio-inspired band-gap tunable elastic optical multilayer fibers.

    Get PDF
    The concentrically-layered photonic structure found in the tropical fruit Margaritaria nobilis serves as inspiration for photonic fibers with mechanically tunable band-gap. The fibers show the spectral filtering capabilities of a planar Bragg stack while the microscopic curvature decreases the strong directional chromaticity associated with flat multilayers. Elongation of the elastic fibers results in a shift of the reflection of over 200 nm.Financial support from the US Air Force Offi ce of Scientifi c Research Multidisciplinary University Research Initiative under award numbers FA9550-09-1-0669-DOD35CAP, FA9550-10-1-0020 and the UK Engineering and Physical Sciences Research Council EP/G060649/1 is gratefully acknowledged. M.Ko. acknowledges the fi nancial support from the Alexander von Humboldt Foundation in form of a Feodor Lynen postdoctoral research fellowship. This work was performed in part at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF award no. ECS-0335765. CNS is part of Harvard University

    Complementary Control of Sensory Adaptation by Two Types of Cortical Interneurons

    Get PDF
    Reliably detecting unexpected sounds is important for environmental awareness and survival. By selectively reducing responses to frequently, but not rarely, occurring sounds, auditory cortical neurons are thought to enhance the brain\u27s ability to detect unexpected events through stimulus-specific adaptation (SSA). The majority of neurons in the primary auditory cortex exhibit SSA, yet little is known about the underlying cortical circuits. We found that two types of cortical interneurons differentially amplify SSA in putative excitatory neurons. Parvalbumin-positive interneurons (PVs) amplify SSA by providing non-specific inhibition: optogenetic suppression of PVs led to an equal increase in responses to frequent and rare tones. In contrast, somatostatin-positive interneurons (SOMs) selectively reduce excitatory responses to frequent tones: suppression of SOMs led to an increase in responses to frequent, but not to rare tones. A mutually coupled excitatory-inhibitory network model accounts for distinct mechanisms by which cortical inhibitory neurons enhance the brain\u27s sensitivity to unexpected sounds

    On the Classification of Residues of the Grassmannian

    Get PDF
    We study leading singularities of scattering amplitudes which are obtained as residues of an integral over a Grassmannian manifold. We recursively do the transformation from twistors to momentum twistors and obtain an iterative formula for Yangian invariants that involves a succession of dualized twistor variables. This turns out to be useful in addressing the problem of classifying the residues of the Grassmannian. The iterative formula leads naturally to new coordinates on the Grassmannian in terms of which both composite and non-composite residues appear on an equal footing. We write down residue theorems in these new variables and classify the independent residues for some simple examples. These variables also explicitly exhibit the distinct solutions one expects to find for a given set of vanishing minors from Schubert calculus.Comment: 20 page
    • …
    corecore