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Complementary control of sensory
adaptation by two types of cortical
interneurons
Ryan G Natan1, John J Briguglio1, Laetitia Mwilambwe-Tshilobo1, Sara I Jones1,
Mark Aizenberg1, Ethan M Goldberg2,3, Maria Neimark Geffen1*

1Department of Otorhinolaryngology Head and Neck Surgery, Perelman School of
Medicine, University of Pennsylvania, Philadelphia, United States; 2Department of
Neurology, University of Pennsylvania, Philadelphia, United States; 3Division of
Neurology, The Children’s Hospital of Philadelphia, Philadelphia, United States

Abstract Reliably detecting unexpected sounds is important for environmental awareness and

survival. By selectively reducing responses to frequently, but not rarely, occurring sounds, auditory

cortical neurons are thought to enhance the brain’s ability to detect unexpected events through

stimulus-specific adaptation (SSA). The majority of neurons in the primary auditory cortex exhibit

SSA, yet little is known about the underlying cortical circuits. We found that two types of cortical

interneurons differentially amplify SSA in putative excitatory neurons. Parvalbumin-positive

interneurons (PVs) amplify SSA by providing non-specific inhibition: optogenetic suppression of PVs

led to an equal increase in responses to frequent and rare tones. In contrast, somatostatin-positive

interneurons (SOMs) selectively reduce excitatory responses to frequent tones: suppression of SOMs

led to an increase in responses to frequent, but not to rare tones. A mutually coupled excitatory-

inhibitory network model accounts for distinct mechanisms by which cortical inhibitory neurons

enhance the brain’s sensitivity to unexpected sounds.

DOI: 10.7554/eLife.09868.001

Introduction
Across sensory modalities, cortical neurons exhibit adaptation, attenuating their responses to

redundant stimuli (Das and Gilbert, 1999; Ulanovsky et al., 2003; Garcia-Lazaro et al., 2007; Asari

and Zador, 2009; Khatri et al., 2009). Adaptation to stimulus context is thought to increase efficiency

of sensory coding under the constraints of limited resources (Barlow, 1961). Yet, the neuronal-circuit

mechanisms that facilitate adaptation in the cortex remain poorly understood. In the primary auditory

cortex (A1), the vast majority of neurons exhibit stimulus-specific adaptation (SSA, Figure 1). When

presented with a sequence of two tones, one of which occurs frequently (termed ‘standard’) and

another rarely (termed ‘deviant’), the neuron’s response to the standard tone becomes weaker, but

the response to the deviant tone remains strong (Ulanovsky et al., 2003; Szymanski et al., 2009;

Farley et al., 2010; Fishman and Steinschneider, 2012). Whereas SSA has also been found in sub-

cortical structures e.g. in the auditory midbrain (Malmierca et al., 2009; Zhao et al., 2011; Thomas

et al., 2012) and the auditory thalamus (Kraus et al., 1994; Anderson et al., 2009; Antunes et al.,

2010; Bauerle et al., 2011), it is weak in the lemniscal areas of the auditory pathway, which project to

A1, and stronger in those non-lemniscal areas which receive feedback from A1 (Ulanovsky et al.,

2004, Perez-Gonzalez et al., 2005, Duque et al., 2012). Therefore, cortical circuits are proposed to

contribute to and amplify SSA in A1 (Ulanovsky et al., 2003, Szymanski et al., 2009, Bauerle et al.,

2011, Fishman and Steinschneider, 2012, Escera and Malmierca, 2014), through a combination of

plastic modulation of thalamocortical inputs and intra-cortical inhibitory circuits, which would allow for
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selective suppression of neuronal responses to specific stimuli (Nelken, 2014). Our study tests

whether and how inhibitory neurons contribute to cortical SSA.

Auditory cortex, like other sensory cortices, contains morphologically and physiologically

diverse inhibitory interneurons, which form dense interconnected networks with excitatory

neurons (DeFelipe, 2002; Douglas and Martin, 2004). While different interneuron types have

been hypothesized to carry out specialized complementary functions in sensory processing

(DeFelipe, 2002; Markram et al., 2004; Isaacson and Scanziani, 2011; Kepecs and Fishell,

2014; Marlin et al., 2015), their function in driving changes in dynamic auditory processing has

not been previously established. We hypothesized that the two most common types of

interneurons in the cortex, parvalbumin- (PVs) and somatostatin-positive interneurons (SOMs)

(Xu et al., 2010; Rudy et al., 2011), facilitate SSA in excitatory neurons of A1 in a

complementary fashion. PVs, a subset of which receive direct thalamic inputs (Staiger et al.,

1996), may amplify SSA in excitatory neurons by providing a constant inhibitory drive; equally

strong inhibitory drive would attenuate the weak response to standard tones relatively more than

the strong response to deviant tones, leading to a greater differential between standard vs

deviant tone spiking response. SOMs, which target distal dendrites of pyramidal cells (McGarry

et al., 2010; Gentet et al., 2012), have excitatory synapses that exhibit facilitation upon

repetitive stimulation (Reyes et al., 1998; Silberberg and Markram, 2007). Therefore, inputs

from SOMs may exert a stimulus-specific increase in suppression of excitatory neurons that is

selective to the standard tone and does not generalize to the deviant tone. Alternatively, they

may contribute to selective adaptation in excitatory neurons through differential post-synaptic

integration.

To tease apart the function of different inhibitory types in SSA, we tested whether optogenetic

suppression of either PV or SOM interneurons during sound presentation reduced SSA in putative

excitatory neurons in the auditory cortex (Hamilton et al., 2013; Pi et al., 2013; Weible et al., 2014).

We found that both types of interneurons contribute to SSA in the cortex, with PVs providing constant

inhibition, and SOMs increasing their effect with repeated tones.

eLife digest In everyday life, we are often exposed to a mix of different sounds. An essential

task for our brain is to separate the important sounds from the unimportant ones. For example,

stepping out onto a busy street, you may at first be very aware of the noise of traffic. Later, you may

start to ignore the din and instead only notice sounds that break the monotony: a honking car horn or

maybe a stranger’s voice. This is because the neurons in the auditory pathway respond differently to

common and rare sounds. In particular, excitatory neurons in the region termed the ‘auditory cortex’

send fewer nerve impulses in response to frequent sounds, but respond vigorously to rare sounds.

This phenomenon is called ‘stimulus-specific adaptation’, but it is not known exactly which neurons in

this brain region enable this process to occur.

Now, Natan et al. have combined different cutting-edge neuroscience techniques to identify the

circuit of brain cells that drives this stimulus specific adaptation. A technique called optogenetics was

used to effectively ‘turn off’ each of two kinds of inhibitory neuron in the auditory cortex of mice, by

exposing the brain to colored light from a laser.

Natan et al. found that both kinds of inhibitory neuron amplified stimulus-specific adaptation, but

via different mechanisms. One of these neuron types, called ‘parvalbumin-positive interneurons’,

exerted a general effect on excitatory neurons and suppressed responses to both frequent and rare

sounds As the responses to rare sounds started off greater than the responses to frequent sounds,

suppressing both by an equal amount actually led to an increase in the relative difference between

them. On the other hand, the second kind of inhibitory neuron, called ‘somatostatin-positive

interneurons’, only reduced the excitatory neurons’ responses to frequent sounds; these neurons

had no effect on responses to rare noises.

Future studies will test how specific adaptation in different contexts can help us to behaviorally

detect rare sounds while ignoring common ones, and search for the circuits beyond the auditory

cortex that support hearing in complex sound environments.

DOI: 10.7554/eLife.09868.002
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Figure 1. Nearly all recorded A1 neurons exhibit stimulus-specific adaptation. (A) Diagrams of oddball stimuli;

oddball stimuli are composed of a 2.5-Hz train of 100-ms long sine-wave tone pips separated by 300 ms of silence

(gray and red dots). Each tone pip is at one of two frequencies, tone A or B. In oddball stimulus 1, 10% of all pips are

tone A and 90% of pips are tone B. In oddball stimulus 2, the tone probabilities are reversed. The less frequent tone

is referred to as the deviant tone (red dots). The more frequent tone is referred to as the standard (gray dots).

(B) Left: diagram of recording. Electrode was lowered perpendicular to the brain surface. Virus was injected in A1.

Right: the frequencies of tones A and B (dashed black and gray lines) are selected based on the frequency response

functions of neurons of interest. Mean firing rate (FR) of five co-tuned neurons (colored lines) recorded

simultaneously in a single session in response to 65 dB tone pips at 50 frequencies logarithmically spaced from 1 to

80 kHz. FR is normalized to the peak response of each neuron. (C) A representative neuron exhibited suppressed

responses to a tone presented as a standard (gray raster and PSTH) compared to the same tone presented as a

deviant (red raster and PSTH). Left: responses to tone A, presented as a deviant in oddball stimulus 1, and a

standard in oddball stimulus 2. Right: responses to tone B. Shaded regions indicate standard (gray) and deviant (red)

tones trials. Gray dashed lines indicate tone onset and offset times. (D) Population histogram of stimulus-specific

adaptation (SSA) index exhibited by all neurons included in the analysis. Gray and white bars indicate neurons

expressing significant and non-significant SSA, respectively. Spike count for response to deviant tones was

significantly greater than for response to standard tones (Wilcoxon rank sum test, one tail, p < 0.05). The black

marker indicates the population average SSA index. (E) Left: diagram of electrode spanning A1. Right:

representative peri-stimulus current source density (CSD). Top: mean response to deviant tones. Bottom: mean

response to standard tones. Gray dashed lines indicate tone onset and offset. Green dashed lines indicate the

location of the granular layer. Negative CSD values (blue) indicate current sinks, while positive CSD values (red)

Figure 1. continued on next page

Natan et al. eLife 2015;4:e09868. DOI: 10.7554/eLife.09868 3 of 27

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.09868


Results

Nearly all neurons in A1 exhibit SSA
We recorded spiking activity of neurons as well as local field potentials (LFPs) in A1 in head-fixed mice

under light isoflurane anesthesia. SSA was measured from the firing rate (FR) of neurons in response to

tones presented as a series of ‘oddball’ stimuli. Each oddball stimulus consisted of a sequence of tone

pips at one of two frequencies (tones A and B). In each oddball stimulus, one tone was presented as

the rare (deviant) tone, while the other was presented as the frequent (standard) tone (A to B ratio of

90:10 or 10:90, Figure 1A). A third stimulus was also presented (equal stimulus), with tones A and B

being presented equally often (50:50). The frequencies of tone A and B were selected at 0.39 octave

intervals, narrower than the typical tuning bandwidth of A1 neurons (Hackett et al., 2011; Guo et al.,

2012; Kanold et al., 2014), such that they activated the majority of recorded neurons on each session

(Figure 1B).

As expected, for a representative neuron recorded in A1, the mean FR in response to a tone was

lower when the tone was presented as the standard than as the deviant (Figure 1C), exhibiting SSA.

To quantify the level of adaptation for each neuron, we computed the index of the change in FR to the

same tone when it was presented as the deviant vs the standard (SSA index). SSA index is 1 when

adaptation is complete (i.e., no response to the standard, and significant response to the deviant), and

0 when there is no adaptation (i.e., the response to the standard and deviant is equal). Almost all

neurons recorded in A1 exhibited significant SSA (Figure 1D, standard tone-evoked FR significantly

lower than the deviant tone-evoked FR in N = 138 out of 147 neurons, Wilcoxon rank sum test p

< 0.05).

Contribution of thalamocortical inputs to SSA
We first tested whether SSA is present in inputs from the thalamus. Current source density (CSD)

analysis has been extensively used to quantify inputs from the thalamus (Metherate and Cruikshank,

1999; Kaur et al., 2005; Szymanski et al., 2009; Happel et al., 2014). We used a linear probe to

record LFPs using electrodes spaced 50 microns apart inserted perpendicularly to brain surface in the

primary auditory cortex. The multi-electrode probe is 775-μm long, spanning layers 1–6 of mouse A1.

CSD is computed as the second spatial derivative of the LFPs across the depth of the cortex

(Figure 1E, Figure 1—figure supplement 1A, 20 sessions, 15 mice). Typically, in response to tones,

CSD exhibits a negative basin, termed sink, within a short delay of tone onset, localized to electrodes

in thalamo-recipient layer (Figure 1F, Figure 1—figure supplement 1B) (Kaur et al., 2005;

Szymanski et al., 2009). The amplitude of current in the sink was taken as a measure of the combined

strength of post-synaptic inputs onto layer 4 neurons, which should reflect the strength of the thalamic

inputs to the cortex (Metherate and Cruikshank, 1999; Kaur et al., 2005; Szymanski et al., 2009;

Happel et al., 2014).

We compared the amplitude of the CSD sink for each tone when presented as a deviant or

standard, and computed their ratio (Figure 1F). The sink amplitude was lower for the standard as

compared to the deviant tones (Figure 1F,G), suggesting that excitatory signals produced by

thalamo-cortical inputs exhibit SSA, consistent with previous findings (Szymanski et al., 2009). This

finding supports the ‘adaptation in narrowly tuned inputs’ model, which postulates that SSA in

broadly tuned neurons in A1 reflects adaptation in either thalamocortical inputs or at the stage of

integration of thalamocortical inputs, specific to inputs tuned to the standard tone (Mill et al., 2011;

Figure 1. Continued

indicate current sources. (F) Mean CSD collected from the thalamo-recipient layer, in response to standard (gray)

and deviant (red) tones. Gray dashed lines indicate tone onset and offset. (G) Mean SSA index across sessions

measured from thalamo-recipient granular layer CSD, infra- and supra-granular layer cortical CSD and mean

neuronal spiking activity SSA index averaged over sessions.

DOI: 10.7554/eLife.09868.003

The following figure supplement is available for figure 1:

Figure supplement 1. Local field potentials recorded in A1 exhibit SSA.

DOI: 10.7554/eLife.09868.004
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Taaseh et al., 2011; Nelken, 2014). Importantly, across sessions, the SSA index of the granular layer

CSD sinks was significantly lower than that of either the non-thalamo-recipient layers (Δ = −28%,

p-value from one-sided test after correction (p1) = 6e−4, z = −3.4, Bonferroni corrected for two tests

(C = 2)) or the SSA index of the mean spiking activity of A1 neurons (Δ = 23%, p1 = 0.029, z = −2.1,
C = 2) in each session (N = 20 sessions in 15 mice, Figure 1G), suggesting that additional intra-cortical

mechanisms may contribute to SSA in the cortex.

Suppression of either PVs or SOMs decreases SSA in putative excitatory
neurons
We next tested whether cortical inhibitory interneurons may contribute to SSA. Since different

inhibitory neuronal subtypes can differentially affect sensory responses of putative excitatory

neurons (Lee et al., 2012; Wilson et al., 2012; Cottam et al., 2013), we separately tested the role

of PVs and SOMs. We used targeted viral delivery in the auditory cortex of mice to drive

Archaerhodopsin (Arch) expression, which hyperpolarizes neurons when stimulated by light, in

either PVs or SOMs (Chow et al., 2010). A modified adeno-associated virus (AAV) encoding anti-

sense code for Arch and a fluorescent reporter, under the FLEX cassette, was injected into PV-Cre

or SOM-Cre mice (Boyden et al., 2005; Sohal et al., 2009; Cardin et al., 2010; Zhang et al.,

2010; Deisseroth, 2011) (Figure 2A). 2 weeks following virus injection, Arch was expressed

selectively in PVs or SOMs in auditory cortex at expected levels (Kvitsiani et al., 2013)

(Figure 2B,C PV-Cre: N = 250 neurons in 4 mice, specificity = 92 ± 1%, efficiency = 73 ± 5%. SOM-

Cre: N = 149 neurons in 5 mice, specificity = 95 ± 2%, efficiency = 86 ± 5%). To activate Arch, a

light guide was positioned to cast 180 mW/mm 532-nm light onto A1 surface, perpendiular to

cortical layers. In vitro intracellular recordings from optically identified PVs or SOMs

(Figure 2—figure supplement 1, Figure 2—figure supplement 2) demonstrate that light cast

over the auditory cortex in vitro drives a strong suppressive current (Figure 2D, Figure 2—figure

supplements 1C,D, 2C,D) and hyperpolarizes the membrane potential in these neurons

(Figure 2—figure supplements 1B, 2B). Assuming a 100-fold attenuation of light over 1 mm of

brain tissue (Aravanis et al., 2007), the estimated irradiance in the deepest cortical layer (1.8

mW/mm2) was strong enough to induce hyperpolarizing current in neurons in vitro (Figure 2D). In

vivo, in both PV-Cre and SOM-Cre mice, illuminating the auditory cortex suppressed spiking

activity in a small subset of recorded neurons (Figure 2E,F, left, putative inhibitory neurons) and

increased activity in a great majority of recorded neurons (Figure 2E,F right, putative excitatory

neurons). Shining light over A1 increased spontaneous neuronal activity in the majority of the

recorded neurons in both PV-Cre mice (N = 115 neurons, 102 increased, 0 decreased, in 10 mice)

(Figure 2G) and SOM-Cre mice (N = 104 neurons, 61 increased, 3 decreased, in 9 mice)

(Figure 2H). These measurements demonstrate that casting light over A1 selectively and

effectively suppresses the activity of either PVs or SOMs.

To test the function of PVs and SOMs in SSA, their activity was suppressed during every fifth tone

of the oddball stimulus by illuminating A1 (Figure 3A). To directly test the effect of interneuron

suppression, we computed the SSA index separately on light-on and light-off trials for neurons

responsive to both tones A and B (SSA was found in 63 out of 67 tone-responsive neurons in PV-Cre

mice, 42 out of 43 tone-responsive neurons in SOM-Cre mice). Photosuppression of either PVs or

SOMs affected the responses of neurons to the tones (Figure 3B,C), resulting in a significant

reduction in SSA index across the population (Figure 3E,F, PV-Cre: Δ = −41%, p1 = 1e−12, t(66) = 8.6.

SOM-Cre: Δ = −25%, p1 = 2e−6, t(42) = 5.4). Photo-manipulation-affected responses only to the tone

during which it was presented, but not to subsequent tones (Figure 3—figure supplement 1).

Additionally, photo-manipulation was limited to cortex since it did not affect thalamo-recipient layer

CSD tone responses and SSA (Figure 3—figure supplement 2). In a control group of PV-Cre or SOM-

Cre mice (6 mice), we injected a modified AAV, which encoded anti-sense fluorescent reporter alone

under the FLEX cassette, and computed the effect of casting light on SSA (SSA was found in 33 out of

37 tone-responsive neurons in control mice). In this control group, SSA was not affected by light

(Figure 3D,G, p > 0.05, t(36) = −2.0), confirming that Arch expression was required for the effect of

the light. Therefore, the effects of interneurons are specific to intra-cortical mechanisms. These results

demonstrate that both types of interneurons contribute to the reduction of the response of the

neuron to the stimulus during SSA.
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Figure 2. Cell type-specific optogenetic suppression of parvalbumin-positive and somatostatin-positive neurons. (A) Optogenetic methods diagram. Top:

A1 was injected with AAV-FLEX-Arch-GFP. During experiments, an optic fiber was positioned to target A1 and neuronal activity was recorded using a

multichannel silicon probe in A1. Bottom: green light (532 nm) suppresses PVs in PV-Cre mice or SOMs in SOM-Cre mice. (B) Transfection of interneurons

with Archaerhodopsin (Arch). Immunohistochemistry demonstrating co-expression of the Arch and an interneuron-type reporter in A1. Top: PV-Cre mouse

A1. Red: anti-body stain for parvalbumin. Green: Arch-GFP. Merge; co-expression of Arch and parvalbumin. Bottom: SOM-Cre mouse A1. Red: anti-body

stain for somatostatin. Green: Arch-GFP. Merge; co-expression of Arch and somatostatin. Scale Bar = 25 μm. (C) Efficiency and specificity of transfection of

interneurons with Arch. Bar Plots: efficiency (Ef) and specificity (Sp) of visual transfection of PVs (top) and SOMs (bottom) with Arch. Ef, percent of labeled

interneurons expressing Arch. Sp, percent of Arch-expressing cells, which are also labeled interneurons. (D) Mean Arch-mediated outward current evoked

in response to increasing photostimulation power, recorded in vitro by whole-cell patch recording in putative excitatory neurons from PV-Cre (blue, N = 5)

and Som-Cre (orange, N = 5) mice. The gray dashed line indicates the level of irradiance expected in in vivo experiments at the deepest recording sites, in

cortical layer 6. (E, F) Tone responses of representative neurons, which are suppressed (left) or activated (right) by photostimulation, from PV-Cre (E) and

Figure 2. continued on next page
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PVs and SOMs differentially suppress putative excitatory neuron
responses to standard and deviant tones
A decrease in the SSA index may be due to several factors: (1) an increase in response to the standard

only, (2) a decrease in response to the deviant, or (3) an increase in response both to the standard and

the deviant, but with a relatively greater increase for the standard. Therefore, we next investigated the

effect of interneuron photosuppression on FR of putative excitatory neurons evoked by the standard

and deviant tones separately. The effects of PVs and SOMs diverged; in addition to increasing

spontaneous activity (Δ = 185%, p-value from one-sided t-test after correction (p2) = 3e−11, t(159) =
−7.2), suppressing PVs led to increased FR to both the standard (Δ = 102%, p2 = 3e−11, t(159) = −7.2)
and deviant (Δ = 56%, p2 = 9e−12, t(159) = −7.4) tones (N = 160, Figure 4A–C, Figure 4—figure

supplement 1A). 83% of neurons exhibited greater FR to the standard and 46% to the deviant during

PV suppression (Figure 4—figure supplement 1B). The difference in FR due to suppression of PVs

was not significantly different between the standard and deviant tones (p2 > 0.05, t(159) = −0.1, C = 2)

but both were greater than the difference in the spontaneous FR (standard: Δ = 25%, p2 = 0.001,

t(159) = −3.6, C = 2. Deviant: Δ = 26%, p2 = 0.039, t(159) = −2.4, C = 2), indicating that the change in

tone-evoked FR was similar regardless of tone probability (Figure 4B, bottom panel). Because an

equal increase in the FR produces a weaker relative effect on the response to the deviant (which is

higher than to the standard), PV inactivation decreases SSA index (Figure 3E).

By contrast, suppressing SOMs led to an increase in FR for spontaneous activity (Δ = 46%, p2 = 2e−9,

t(113) = −6.5) and during the standard (Δ = 29%, p2 = 2e−8, t(113) = −6.1) but not deviant (p2 > 0.05,

t(113) = −0.8) tone (N = 114, Figure 4D–F, Figure 4—figure supplement 1C). 52% of neurons

exhibited greater FR to the standard and only 11% to the deviant during PV suppression

(Figure 4—figure supplement 1D). The increase in FR for spontaneous activity was not different

than that during the standard tone (p2 > 0.05, t(113) = 0.2, C = 2) and the differences in FR due to

suppression of SOMs were stronger for spontaneous activity and the standard tone than the deviant

tone (spontaneous: Δ = 390%, p2 = 0.004, t(113) = 3.1. Standard: Δ = 378%, p2 = 0.005, t(113) = 3.1)

(Figure 4E, bottom panel), thereby accounting for the change in SSA with SOM inactivation

(Figure 3F). Responses to the equal stimulus evoked consistent, yet weaker effects (Figure 4—figure

supplement 2).

PVs and SOMs differ in their density among different layers of the cortex and in laminar sources

and targets of their inputs and outputs (Markram et al., 2004; Xu and Callaway, 2009; Fino et al.,

2013). The effects of PV and SOM suppression on SSA had differential laminar distribution

(Figure 4—figure supplement 3). The effect of PVs on SSA was equally strong in the supra-granular

and infra-granular layers, but stronger in the granular layer, that is, the thalamo-recipient layer. This

differential effect is consistent with the relative proportion of cortical interneurons that are PVs, which

is higher in granular than either in infra- or supra-granular layers (Lee et al., 2010; Xu et al., 2010;

Ouellet and de Villers-Sidani, 2014). In contrast, suppressing SOMs reduced SSA in the granular and

infra-granular, but not supra-granular layers. The relative proportion of cortical interneurons that are

SOMs is greatest in the granular and infra-granular layers, but still present in supra-granular layers

(Lee et al., 2010; Xu et al., 2010; Ouellet and de Villers-Sidani, 2014). As some SOMs

predominantly target the distal dendrites of pyramidal neurons (Markram et al., 2004), the effect

of suppressing SOMs in supra-granular layers may be evident in recordings of pyramidal neurons with

Figure 2. Continued

SOM-Cre (F) mice. Raster plot of spike times (bottom) and PSTH (top) of a single neuron response to a 100-ms long tone (gray dashed lines, shaded

region) on light-on (overlapping 250-ms light pulse, green shading) and light-off trials. Light-on trials: green. Light-off trials: black. (G, H) Modulation of

spontaneous FR by interneuron photosuppression recorded in PV-Cre (G) and SOM-Cre (H) mice. Each neuron is represented by a circle that is filled for

those with significantly increased (green) or decreased (red) FR or unfilled for those without significant modulation. Gray dashed line, identity line.

DOI: 10.7554/eLife.09868.005

The following figure supplements are available for figure 2:

Figure supplement 1. Optogenetic control of PVs in mouse primary auditory cortex via photostimulation of Arch in acute slices.

DOI: 10.7554/eLife.09868.006

Figure supplement 2. Optogenetic control of SOMs in mouse primary auditory cortex via photostimulation of Arch in acute slices.

DOI: 10.7554/eLife.09868.007
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Figure 3. Optogenetic suppression of either PVs or SOMs reduces SSA in putative excitatory neurons in the auditory cortex. (A) Diagram of oddball

stimuli with light; two oddball stimuli are presented (as in Figure 1A), with 250-ms light pulses (green bars) delivered during every fifth tone,

starting 100 ms before tone onset. (B–D) Representative neuron PSTH in response to tone A (left) and B (right) as a standard (gray) or deviant (red)

on light-on (light colors) and light-off trials (dark colors). Neurons recorded in PV-Cre (B, E), SOM-Cre (C, F), and control (D, G) mice. (E–G) Effect of

interneuron photosuppression on SSA. Left: SSA index on light-on vs light-off trials. Each neuron is represented by a circle that is filled if the neuron

exhibits significant SSA, that is, its FR in response to deviant tones is greater than that to standard tones. The respective representative neuron in B,

C, and D is indicated by a red circle. Gray dashed line, identity line. Right: mean SSA index on light-on (green) and light-off (gray) trials over

neuronal population.

DOI: 10.7554/eLife.09868.008

Figure 3. continued on next page
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cell bodies in deeper layers, supporting our results. In addition, cortical extracellular recordings may

be biased toward neurons in granular and infra-granular layers, precluding adequate sampling of

activity in superficial layers. In controls, we did not observe a difference in the effect of light on SSA

across layers, demonstrating that the differences are not due to differential artifact of light stimulation.

Our results indicate that both PVs and SOMs affect SSA, but in different ways: (1) the increase in

the FR of putative excitatory neurons due to PV suppression is constant, either during presentation of

the standard or the deviant, and greater than changes in spontaneous activity. Thus, PVs amplify SSA

in excitatory neurons by exerting a relatively stronger inhibitory drive for the standard than for the

deviant. (2) Suppression of SOMs leads to increased putative excitatory neuron activity only during the

spontaneous firing or the presentation of the standard, but not for the deviant. This suggests that the

strength of SOM-mediated inhibitory drive is not significant in response to the deviant but increases

with repeated presentations of the standard.

In neurons exhibiting SSA, responses to the deviant are stronger than to the standard. This

difference might lead to a ‘ceiling’ effect, reducing the effect of PV photosuppression on FR to the

deviant, but not standard (Olsen et al., 2012). However, restricting the analysis to two subpopulations

of neurons, which have matched mean and standard deviation of FR to the standard vs the deviant

tones (Ulanovsky et al., 2004; Rust and Dicarlo, 2010), preserved the observed effects of

photosuppression (Figure 4—figure supplement 4). Suppressing PVs led to an equal increase in FR

to both the standard and the deviant tone (N = 54—standard: Δ = 62%, p2 = 6e−8, t(53) = 6.3.

Deviant: Δ = 55%, p2 = 3e−5, t(53) = 4.5. Standard vs deviant: p2 > 0.05, t(53) = 0.5). In contrast,

suppressing SOMs led to a significant increase in FR to the standard, but no change in FR to the

deviant (N = 44—standard: Δ = 30%, p2 = 7e−6, t(43) = 5.1. Deviant: p2 > 0.19, t(43) = 1.3. Standard

vs deviant: Δ = 382%, p2 = 6e−4, t(43) = 3.7).

For neurons that responded more strongly to one of the tones (‘strong’ vs ‘weak’ tone), a ceiling

effect would predict that the effect of interneuron suppression would be stronger for the weak than

the strong tone. However, PV and SOM suppression exhibited a similar effect on responses to the

strong and the weak tones in neurons that exhibited differential responses to two tones

(Figure 4—figure supplements 5, 6). Suppressing PVs led to similar increases in tone-evoked FR

between weak and strong tones for both deviant (N = 51, p2 > 0.05, t(50) = 1.0) and standard tones

(p2 > 0.05, t(50) = −1.9). Suppressing SOMs also led to similar differential effects between strong and

weak tones; standard tone-evoked FR increased equally (N = 34, p2 > 0.05, t(33) = 1.1) and deviant

tone-evoked FR was equally unchanged (p2 = 0.05, t(33) = −0.1). Combined, these analyses

demonstrate that the effect of PV photosuppression on SSA cannot be explained by the ceiling effect

for either PVs or SOMs.

Although Arch drove strong currents in both SOM and PV neurons (Figure 2D, Figure 2—figure

supplements 1, 2), there might be a difference in expression level or efficacy of Arch between SOM-

Cre and PV-Cre mice, leading to a stronger effect of photosuppression in PV-Cre than in SOM-Cre

mice on tone-evoked FRs (Figure 4B,E). Alternatively, the difference might be attributable to the

morphological or functional differences between SOMs and PVs. To address this confound, we

selected tone responses that exhibited matched difference in standard tone-evoked FR between

light-on and light-off trials (N = 66, Figure 4—figure supplement 7). Within these matched

subpopulations, PV and SOM photosuppression exhibited differential effects similar to those of the

whole population. The change in FR due to PV suppression was not significantly different between

responses to the standard and deviant (p2 > 0.05, t(65) = −0.3, C = 3). By contrast, the change in

deviant tone-evoked FR due to SOM suppression was significantly weaker than that for the standard

tone (Δ = −78%, p2 = 0.003, t(3.5), C = 3). By the design of the analysis, the effect of PV or SOM

suppression on standard tone-evoked FR was nearly identical (p1 > 0.05, t(65) = −0.1, C = 3).

Figure 3. Continued

The following figure supplements are available for figure 3:

Figure supplement 1. Photostimulation during standard tone does not affect SSA during subsequent tones on light-off trials.

DOI: 10.7554/eLife.09868.009

Figure supplement 2. Interneuron photosuppression does not affect thalamocortical responses to standard or deviant.

DOI: 10.7554/eLife.09868.010
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Figure 4. PVs and SOMs differentially affect response to standard and deviant tones. (A, D) Top: mean response to deviant (left, red) and

standard (right, black) tones, during light-on (light colors) and light-off trials (dark colors). Bottom: mean of the difference between responses

on light-on and light-off trials for each neuron for deviant (left, red) and standard (right, black) tone. Each trace is a population average of

putative excitatory neuron PSTHs normalized to each neuron’s maximum deviant tone-evoked FR on light-off trials. Shaded regions around

traces indicate standard error (SE). Dashed lines indicate light onset (green) and tone onset and offset (gray). Neurons recorded in PV-Cre (A),

SOM-Cre (D) mice. (B, E) (Top) Mean population FR on light-on and light-off trials; (bottom) mean population FR difference between light-on

and light-off conditions for deviant (red) and standard (gray) tones and spontaneous activity (blue). Normalization as in A. Neurons recorded in

PV-Cre (B), SOM-Cre (E) mice. (C, F) Modulation of PV-Cre mouse putative excitatory neuron FR response to tones by interneuron

photosuppression. Neuronal responses to each tone are represented by two circles, one for standard (black) and one for deviant (red) tone

Figure 4. continued on next page
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However, the change in deviant tone-evoked FR was greater for PV photosuppression than SOM

photosuppression (Δ = 404%, p1 = 0.029, t(65) = 2.4, C = 3). Since the observed differential effects of

PV and SOM suppression persisted in subsets of neurons that were matched for photosuppression-

induced change in standard tone-evoked FR, these differences are unlikely due to differential

expression or efficacy of Arch in the PV-Cre and SOM-Cre mice, but rather reflect functional

differences between the two types of interneurons.

SOM-mediated suppression of putative excitatory neurons increases
with repeated presentations of the standard tone, whereas PV-mediated
suppression remains stable
Within the oddball sequence, after the presentation of the deviant tone, SSA takes several repeats of

the standard tone to reach an adapted state (Ulanovsky et al., 2004). Consistent with previous

findings (Ulanovsky et al., 2004), presentation of the deviant tone temporarily reduced SSA without

photosuppression (Figure 5A–C, dark color bars); following the deviant tone (T0), the first two

standard tones (T1 and T2) evoked elevated FRs compared to the fourth standard tone (T4) (PV-Cre,

Figure 5B—N = 148, T1: Δ = 60%, p2 = 3e−8, t(146) = 6.3, C = 11, T2: Δ = 26%, p2 = 0.043, t(146) =
2.9, C = 11. SOM-Cre, Figure 5C—N = 102, T1: Δ = 72%, p2 = 1e−5, t(101) = 5.2, C = 11, T2: Δ = 31%,

p2 = 0.013, t(101) = 3.3, C = 11). The third standard tone (T3) and the tone prior to the deviant tone

(T−1) evoked responses similar to T4 (PV-Cre, Figure 5B—T−1 and T3: p2 > 0.05, t(146) < 2.5, C = 11.

SOM-Cre, Figure 5C—T−1 and T3: p2 > 0.05, t(101) < 2.9, C = 11). Neurons in which response to T0
did not produce spikes were excluded. Suppressing PVs led to a significant and equal increase in FR to

four consecutive presentations of the standard following the deviant (Figure 5B, left, for each tone, T−1
through T4, with light-on compared to T4 with light-off: Δ > 132%, p2 < 2e−9, t(146) ≥ 6.8, C = 11.

Figure 5B, right, change in FR between light-on and light-off responses to each T−1 through T3 as

compared to T4: p > 0.05, t(146) < 1.8, C = 5). In contrast with PVs, suppressing SOMs led to a

progressively increasing effect on FR to consecutive presentations of the standard tone following the

deviant (Figure 5C, left, for each standard tone, T−1 through T4, with light-on compared to T4 with

light-off: Δ > 64%, p2 < 9e−4, t(101) ≥ 4.1, C = 11. Figure 5C, right, difference between FR change in

T1 and T4 with light-on: p = 0.008, t(101) = −3.2, C = 5. Repeated measures ANOVA with tone number

(T1 through T4) as a factor: F(3, 300) = 4.30, p = 0.0054). These results are consistent with the

Figure 4. Continued

responses. Filled circles represent significantly increased (gray, pink) or decreased (black, red) response; unfilled circles: responses without

significant modulation. Gray dashed line, identity line. Neurons recorded in PV-Cre (C), SOM-Cre (F) mice.

DOI: 10.7554/eLife.09868.011

The following figure supplements are available for figure 4:

Figure supplement 1. PVs and SOMs differentially affect response to standard and deviant tones.

DOI: 10.7554/eLife.09868.012

Figure supplement 2. Consistent effects of PV and SOM suppression in response to equal probability tones.

DOI: 10.7554/eLife.09868.013

Figure supplement 3. PVs and SOMs have differential effects on SSA across different layers of cortex.

DOI: 10.7554/eLife.09868.014

Figure supplement 4. Differences between PV and SOM effects on standard and deviant tones are preserved for subsets of neurons matched for FR.

DOI: 10.7554/eLife.09868.015

Figure supplement 5. Effects of PV suppression are identical for tones that evoke strong or weak responses in putative excitatory neurons.

DOI: 10.7554/eLife.09868.016

Figure supplement 6. Effects of SOM suppression are identical for tones that evoke strong or weak responses in putative excitatory neurons.

DOI: 10.7554/eLife.09868.017

Figure supplement 7. Differences between PV and SOM effects on standard and deviant tones are preserved for subsets of neurons matched for strength

of laser effects on standard tones.

DOI: 10.7554/eLife.09868.018

Figure supplement 8. Differences between PV and SOM effects on standard and deviant tone responses are preserved when FRs are normalized by the

mean onset response.

DOI: 10.7554/eLife.09868.019
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interpretation that the inhibitory drive from PVs is constant throughout the stimulus regardless of tone

history, whereas the effect of SOM modulation increases with repeated presentations of the standard

tone.

The time course of the effect of interneuron photosuppression on FR of the putative excitatory

neurons at the beginning of each oddball sequence exhibited similar differences between PVs and

SOMs. After the onset of each oddball sequence, SSA develops over the course of several

standard tone presentations (Ulanovsky, 2004). As expected, on light-off trials, FR decreased in

response to the standard tone over the first 20 repetitions of the tone (Figure 5—figure

supplement 1). For PV-Cre mice, the difference in FR to the standard tone between light-on and

light-off trials did not change over this time and stayed positive for the remainder of the oddball

stimulus (Figure 5—figure supplement 1A). Over the first 20 trials, FR adapted with a similar time

course for both the light-on and light-off trials, so the change due to PV photosuppression in FR to

standard stayed constant (Figure 5—figure supplement 1A,B). In contrast, for SOM-Cre mice, FR

on light-on trials increased over the first 40 trials, whereas on light-off trials, it decreased

(Figure 5—figure supplement 1A). As a result, the difference due to photo-manipulation in FR to

the standard tone increased over the first 40 trials and then stayed consistently positive

throughout the stimulus presentation (Figure 5—figure supplement 1C). These results

demonstrate that the PV-mediated effect on putative excitatory neuronal responses did not

change with repeated presentations of the standard tone, whereas the SOM-mediated effect

increased with the repeated stimulus.

Figure 5. Post-deviant time course of interneuron-mediated effect on SSA. (A) Diagram of oddball stimuli illustrating post-deviant tone number used in

subsequent analysis; Tones and light pulses are as indicated in Figure 3A. Numbers indicate each tone position relative to deviant tones. Responses to

any standard tones following light-on standards were excluded from the analysis. (B, C) Left: mean population FR in response to standard tones (gray)

subsequent to deviant tones (red) within the oddball sequence on light-off (dark colors) and light-on (light colors) trials. All responses are normalized to

the response to the fourth post-deviant standard tone on light-off trials (green dashed line). Right: difference between FR on light-on and light-off trials in

response to standard (gray) and deviant (red) tones. (B): PV-Cre mice. (C): SOM-Cre mice.

DOI: 10.7554/eLife.09868.020

The following figure supplement is available for figure 5:

Figure supplement 1. Initial time course of interneuron-mediated effect on SSA.

DOI: 10.7554/eLife.09868.021
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PVs and SOMs exhibit SSA
In order to understand how PVs and SOMs exert differential control of SSA in putative excitatory

neurons, we used optogenetic tagging to identify the specific interneurons and to quantify whether

PVs and SOMs exhibited SSA (Lima et al., 2009). Through targeted viral delivery to AC, we drove

Channelrhodopsin-2 (ChR2) expression, which depolarizes neurons when stimulated by light, in either

PVs or SOMs (Chow et al., 2010) (Figure 6A,D, Figure 6—figure supplement 1A). A modified AAV

encoding anti-sense code for ChR2 and a fluorescent reporter, under the FLEX cassette, was injected

into PV-Cre or SOM-Cre mice (Boyden et al., 2005; Sohal et al., 2009; Cardin et al., 2010; Zhang

et al., 2010; Deisseroth, 2011) and resulted in specific expression of ChR2, localized to PVs or SOMs

(Figure 6—figure supplement 1B, c PV-Cre; N = 183 neurons in 3 mice, specificity = 67 ± 1%,

efficiency = 76 ± 5%. SOM-Cre: N = 202 neurons in 4 mice, specificity = 90 ± 3%, efficiency = 81 ±
4%). Neurons were identified as PVs or SOMs if they responded to brief (5 ms) flashes of light with

spikes within 1.5–4.5 ms of laser pulse onset (Figure 6A,D).

Both PVs and SOMs exhibited SSA, evidenced by a significant reduction in standard tone-evoked

FR compared to the deviant tone response (Figure 6B,C,E,F, PV: N = 16, Δ = −32%, p2 = 0.023, z =
−2.5, C = 2. SOM: N = 28, Δ = −41%, p2 = 0.002, z = −3.3, C = 2. Signed-rank test). The SSA index

was not significantly different between PVs and SOMs (Figure 6G, neurons responsive to both tones A

and B—PV: N = 5, SOM: N = 12. PV and SOM: p2 > 0.05, C = 2. Rank sum test) and both were similar

to the mean SSA index in putative excitatory neurons (Figure 6G—Exc: N = 67. Exc vs PV: p > 0.05, z

= 0.7, C = 2. Exc vs SOM: p > 0.05, z = 0.4, C = 2). PVs and SOMs exhibited some differences in

relative response changes between the deviant, the standard, and the equal tones (Figure 6,

Figure 6—figure supplement 2B,D); PVs’ response to the equal tones did not decrease significantly

as compared to deviant tones (N = 16 p2 > 0.05, z = −1.7, C = 2), whereas SOMs adapted in their

response to equal tones (Δ = −36%, p2 = 0.049, z = −2.3, C = 2), and then further to standard tones

(N = 28, Δ = −49%, p2 = 0.022, z = −2.6, C = 2). These results suggest that SOMs may adapt at a

faster time scale than PVs with repeated presentation of tones.

Adapting inhibitory interneurons facilitate SSA in excitatory neurons in a
cortical network model
Our results of recordings from PVs and SOMs present a surprising finding that PVs and SOMs adapt in

response to repeated tones, countering our initial hypothesis that SOMs saturate in responses to the

deviant, or facilitate with repeated presentation of a tone. How can an adapting interneuron

contribute to added adaptation in excitatory neurons? To address this question, we next developed a

model of coupled excitatory–inhibitory neuronal populations. Excitatory and inhibitory neurons form

tight mutually coupled networks in A1, and we hypothesized that through differential post-synaptic

integration by excitatory neurons, interneurons can amplify adaptation in excitatory neurons.

As a proof-of-principle that would account for our findings that PVs and SOMs exhibit similar

magnitude of SSA, yet have a differential effect on SSA in putative excitatory neurons, we constructed

a simplified model of mutually coupled inhibitory–excitatory neuronal populations. We tested how

responses of the model putative excitatory neurons are affected by manipulation of activity of PVs or

SOMs (Figure 7A). Thalamocortical tone-evoked inputs were modeled including an adaptation term

and resulted in reduced responses of excitatory, PV, and SOM populations to repeated tones

(Figure 7—figure supplement 1A,B). The model replicated the differential effects of manipulation of

PV and SOM activity on responses to standard and deviant tones in putative excitatory neurons

(Figure 7B–E): when PVs were suppressed optogenetically, the responses to both the standard and

the deviant tones increased (Figure 7B,C). By contrast, when SOMs were suppressed, although the

spontaneous FR and standard tone-evoked FR were elevated, the responses to the deviant tone

remained constant, whereas the responses to the standard tone increased (Figure 7D,E). SOMs have

been shown to inhibit PVs (Cottam et al., 2013; Pfeffer et al., 2013; Sturgill and Isaacson, 2015).

Including inhibition between SOMs and PVs did not affect the model outcome, with suppression of

PVs resulting in suppression of excitatory responses to both the standard and the deviant, and

suppression of SOMs driving specific suppression of excitatory responses to the standard, but not the

deviant (Figure 7—figure supplement 2).

An explanation for the difference of the effects of PVs and SOMs can be provided by examining the

combined transfer function between pre-synaptic inputs and post-synaptic activity of excitatory
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neurons separately for PVs and SOM suppression (Figure 7A, insets): light-driven modulation of PV

activity has the same effect on excitatory neuron responses at spontaneous, standard tone-evoked,

and deviant tone-evoked activity (Figure 7A, left inset). Spontaneous, standard, and deviant input

levels all fall within the linear portion of the transfer function between inputs and change in the

excitatory neuron activity. On the other hand, for SOMs, modulation of their activity in the deviant

Figure 6. PV and SOM interneurons exhibit SSA. (A, D) Optogenetic methods. A1 was injected with AAV-FLEX-ChR2-tdTomato. During experiments, an

optic fiber was positioned to target A1 and neuronal activity was recorded using a multichannel silicon probe in A1. Top diagram: blue light (473 nm)

excites PVs in PV-Cre mice or SOMs in SOM-Cre mice. Bottom: peri-stimulus spike raster of a representative optogenetically identified PV (top) or SOM

(bottom). Shaded region, blue light on. (A) PV-Cre. (D) SOM-Cre. (B, E) PSTH of PVs (B) or SOMs (E) FR response to deviant (red) and standard (black)

tones. Normalization and dashed lines as in Figure 4A,B. (C, F) Mean PVs (C) or SOMs (F) FR response over the 100 ms of deviant (red) and standard tones

(gray), and 100 ms of spontaneous activity prior to tone onset (blue). Each line represents a single neuron’s response to each conditions, and its color

indicates the magnitude of significant differences between two conditions; pink, gray, blue, and dashed black lines indicate a greater response to deviant

tone, standard tone, silence and no significant change, respectively. (G) Mean SSA index of putative excitatory neurons, PVs, and SOMs. Circles represent

SSA index values of individual neurons.

DOI: 10.7554/eLife.09868.022

The following figure supplements are available for figure 6:

Figure supplement 1. Optical tagging of PVs and SOMs.

DOI: 10.7554/eLife.09868.023

Figure supplement 2. PVs and SOMs have different adaptation profiles for equal probability tones.

DOI: 10.7554/eLife.09868.024
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Figure 7. Mutually coupled excitatory-PV-SOM neuronal model accounts for differential effects of PVs and SOMs on SSA in putative excitatory neurons.

(A) Center: diagram of coupled network model. Excitatory (Exc) and two types of inhibitory interneurons (PV and SOM) receive tone-evoked inputs. They

make reciprocal connections on each other; Exc makes excitatory synapses on PV or SOM; PV and SOM inhibit Exc. Closed circles: excitatory synapses.

Open circles: inhibitory synapses. Orange outlines: excitatory input–output pathway. Purple outlines: PV input–output pathway. Green outlines: SOM

input–output pathway. The effect of optogenetic modulation was modeled as an additional input current delivered to inhibitory neuronal populations.

Adaptation was modeled as decaying synaptic coefficient with slow adaptation. Left and right inset plots: combined input–output transfer function that

represents the transformation between synaptic inputs and the activity of excitatory neurons. The values of inputs are depicted by arrows for the

spontaneous and tone-evoked activity in response to deviant and standard tones under light-off (dark color) and light-on (light color) conditions, with

Figure 7. continued on next page
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tone-evoked regime drives small to no changes in excitatory neuronal activity, whereas modulation of

SOM activity in the spontaneous and standard tone-evoked regime drives significant changes in

excitatory neuronal activity (Figure 7A, right inset). The deviant tone-evoked activity falls on the

saturating part of the input–output transfer function, whereas the standard tone-evoked and

spontaneous inputs fall on the linear part of the transfer function. Then, shifts in SOM inputs due to

photosuppression evoke small changes during deviant tone responses, but larger changes during

either standard or spontaneous activity. Either PV or SOM manipulation would result in reduction of

combined SSA of excitatory neurons.

Discussion
The majority of neurons in the auditory cortex selectively reduce their responses to frequent, but not

rare sounds, exhibiting SSA. However, the cortical mechanisms involved in the production and

stimulus-specificity of SSA within the auditory cortex are not well understood. Here, we found that, in

addition to adaptation at the level of thalamocortical inputs, two distinct types of interneurons, PVs

and SOMs, differentially contributed to SSA in the primary auditory cortex. Optogenetic suppression

of either PVs or SOMs led to a reduction in SSA in putative excitatory neurons (Figure 3). Suppression

of PVs led to an equal increase in the FR of the putative excitatory neurons in response to the standard

tone and the deviant tone (Figure 4). By contrast, suppression of SOMs significantly increased the

response to the standard tone but lacked a significant effect on the response to the deviant tone

(Figure 4). This series of findings expands on the ‘adaptation in narrowly tuned units’ model, which

proposes that repeated presentation of the standard stimulus drives adaptation within more narrowly

tuned inputs, such as thalamocortical inputs (Mill et al., 2011; Taaseh et al., 2011; Nelken, 2014).

Our data indicate dual effects of cortical inhibition on SSA: (1) PVs contribute to SSA by providing a

constant level of inhibition, resulting in a relatively higher inhibitory drive during the presentation of

the standard, as compared to the deviant. Taking into account the non-linear synaptic input to FR

output function of a typical pyramidal neuron, the constant inhibition amplifies the effect of

thalamocortical depression in suppressing the response of the neuron to repeated stimulus

(Figure 7A). (2) The selective increase of the inhibitory drive from SOMs for standard stimulus as

compared to the deviant stimulus responses might be explained by a shift in the non-linear transfer

function between inputs to SOMs and their outputs to excitatory neurons, possibly due to facilitation

of SOM-to-excitatory neuron synapses (Beierlein et al., 2003; Silberberg and Markram, 2007)

(Figure 7A).

Surprisingly, we found that, despite the differential effect of PV and SOM suppression on tone-

evoked responses in putative excitatory neurons, both PVs and SOMs exhibit SSA. This finding is

consistent with previous results that found that thalamocortical synapses onto inhibitory neurons

and synapses from inhibitory neurons to excitatory cells can be depressing (Tan et al., 2008; Ma

et al., 2012). How does suppression of these interneurons result in differential reduction in SSA in

excitatory neurons? Our model provides an intuition for this effect: the mutually coupled

excitatory–inhibitory network model demonstrates that the observed differential effects of PV and

SOM suppression may be due to their differential action on excitatory neuronal responses in the

Figure 7. Continued

change due to light highlighted by light green arrows. (B, D) Tone-evoked responses of model neuronal excitatory population to deviant (red) and

standard tones (gray), that is, the first and fourth consecutive tone presented, under light-off (dark colors) and light-on (light colors) conditions. Dashed

lines indicate light onset and offset (green) and tone onset and offset (gray). (B) Light suppresses PVs. (D) Light suppresses SOMs. (C, E) Left: spontaneous

FR (blue) and standard (black) and deviant (red) tone-evoked FRs on light-off (dark colors) and light-on (light colors) conditions. Right: mean difference

between responses on light-on and light-off conditions. (C) Light suppresses PVs. (E) Light suppresses SOMs.

DOI: 10.7554/eLife.09868.025

The following figure supplements are available for figure 7:

Figure supplement 1. Adaptation to repeated tones in model excitatory and inhibitory neurons.

DOI: 10.7554/eLife.09868.026

Figure supplement 2. Excitatory–inhibitory model with inhibitory inputs from SOM to PV population accounts for differential effects of PVs and SOMs on

SSA in putative excitatory neurons.

DOI: 10.7554/eLife.09868.027
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unadapted and adapted state (Figure 7). Tone-evoked responses of PVs would fall on the linear

portion of the transfer function between PV activity and excitatory neuron depolarization, while

the same tones maximally affect inputs from SOMs onto excitatory neurons, with SSA shifting the

inputs to the linear, more sensitive range of inputs from SOMs. Thus, SSA may serve an additional

function: to adjust the responses of neurons in a range that is more sensitive to small changes in

the inputs from both excitatory and inhibitory neuronal populations. More generally, the

simulation demonstrates that a circuit element, such as PVs or SOMs, that itself adapts may

further amplify adaptation in the excitatory neurons.

To estimate the differential contribution of PVs or SOMs inputs to the excitatory neurons, we

measured the difference in the FR of neurons due to optogenetic partial suppression of their firing.

This measurement provides an estimate of the change in the FR of the putative excitatory neurons

with the change in combined inputs to the inhibitory neurons, thereby allowing estimation of the

synaptic transfer function (Figure 7A, insets). A simple biologically plausible network incorporating

these transfer functions can reproduce the observed responses (Figure 7). There are several caveats

to this interpretation. First, the FR may not linearly translate onto synaptic input strength because of

the spiking non-linear rectification between the inputs and outputs of the putative excitatory neuron: a

small change in FR in the low-FR regime might correspond to a greater change in the synaptic drive

than a similar-sized change in FR in the high-FR regime. However, our findings would still hold were

this the case: in examining the effect of SOM suppression on response to the deviant, the actual

difference in the synaptic drive between the deviant and the standard would then be even greater

than observed. At the other end of the non-linearity, the analysis of neuronal responses sorted based

on their FR to the standard tone and the deviant tone revealed that the ‘ceiling effect’ would not

contribute to a decreased effect of photostimulation on the response to the deviant in SOM-Cre mice

(Figure 4—figure supplements 4–7). Second, PVs and SOMs may inhibit not only the excitatory

neurons, but also each other. SOMs make synapses onto PVs (Isaacson and Scanziani, 2011; Ma

et al., 2012; Cottam et al., 2013), thereby potentially suppressing them with repeated presentation

of the standard. Therefore, when SOMs are suppressed, some PVs may be disinhibited and provide a

stronger suppression of excitatory neurons. The null effect on responses to the deviant tone during

SOM suppression could result from a combination of increase in inhibition from disinhibited PVs in

addition to reduced inhibition of SOMs onto excitatory neurons. Including inhibition from SOMs to

PVs in the proof-of-principle model supported experimental findings (Figure 7—figure supplement 2).

Third, other interneuron types, such as vasopressin-positive interneuron may be involved in the circuit (Pi

et al., 2013), and the changes that we observe may reflect several inhibitory stages of processing.

One must be cautious in translating the data from our experiments as a strict description of

neuronal activity in awake animals, as our results were based on recordings from mice under light

isoflurane anesthesia. Other forms of anesthesia, such as pentobarbital-based (Cheung et al., 2001;

Gaese and Ostwald, 2001), ketamine (Otazu et al., 2009) and high concentrations of isoflurane

(Cheung et al., 2001; Ter-Mikaelian et al., 2007), can affect multiple aspects of sound-evoked

responses in the auditory cortex. Nonetheless, our results are likely to extend for awake mice, since

isoflurane anesthesia-induced effects on neuronal activity decrease as the concentration of isoflurane

is reduced to the levels used in our recordings (Land et al., 2012). In addition, all recordings and

manipulations were performed under identical anesthetic conditions, and our conclusions are based

on the relative comparison of the effects of suppressing PVs and SOMs, which are expected to hold

under awake conditions (Centanni et al., 2013).

While not demonstrated directly, SSA has been linked to detection of deviant sounds (Ulanovsky

et al., 2003), which may be facilitated by a relatively enhanced neuronal response to a change in the

ongoing sound (Nelken et al., 2003; Winkler et al., 2009; Grimm and Escera, 2012). By suppressing

the responses to a frequently presented tone, the responses of neurons to a rare stimulus become

relatively enhanced. However, whether and how modulating SSA in the auditory cortex affects

auditory behavior has not yet been tested. Inhibitory interneurons may prove to have a

complementary role in shaping auditory perception in addition to receptive field reorganization

driven by synaptic plasticity (Froemke et al., 2013). The use of optogenetic methods to test the

function of inhibitory interneurons in SSA overcomes the limitations of lesion or pharmacological

studies (Elliott and Trahiotis, 1972; Duque et al., 2014), which only allow for prolonged, non-

selective inactivation (Moore et al., 2001). By combining optogenetic manipulation of interneuron

activity with behavioral measurements, future experiments will explore whether interneuron-mediated
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SSA indeed affects the auditory behavior of the subject, such as enhanced ability to detect

unexpected events.

Materials and methods

In vivo experimental preparation

Animals
All experiments were performed in adult male mice (Jackson Laboratories, Bar Harbor, ME, United

States; age, 12–15 weeks; weight, 22–32 g; PV-Cre mice, strain: B6;129P2-Pvalbtm1(cre)Arbr/J; SOM-

Cre: Ssttm2.1(cre)Zjh/J) housed at 28˚C on a 12-hr light:dark cycle with water and food provided ad

libitum. In PV-Cre mice, Cre recombinase (Cre) is expressed in parvalbumin-positive interneurons; in

SOM-Cre mice, Cre is expressed in somatostatin-positive interneurons (Taniguchi et al., 2011). This

study was performed in strict accordance with the recommendations in the Guide for the Care and

Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled

according to a protocol approved by the Institutional Animal Care and Use Committee of the

University of Pennsylvania (Protocol Number: 803266). All surgery was performed under isoflurane

anesthesia, and every effort was made to minimize suffering.

Viral vectors
Modified AAVs were obtained from Penn Vector Core (Philadelphia, PA, United States). Modified

AAV encoding Arch under FLEX promoter was used for selective suppression of PVs or SOMs (catalog

number AV-9-PV2432, AAV9.CBA.Flex.Arch-GFP.WPRE.SV40, Addgene22222, serotype 2/9) (Chow

et al., 2010). Modified AAV encoding GFP alone under FLEX promoter was used as a control for the

specific action of Arch on the neuronal populations (catalog number AV-9-ALL854, AAV9.CAG.Flex.

eGFP.WPRE.bGH, Allen Institute 854, serotype 2/9). Modified AAV encoding ChR2 under FLEX

promoter was used for selective excitation of PVs or SOMs (catalog number AV-9-18917P, AAV9.

CAGGS.Flex.ChR2-tdTomato.WPRE.SV40, Addgene18917, serotype 2/9).

Virus injection
2–3 weeks prior to the start of experimental recordings, a 0.5-mm diameter craniotomy was drilled

over primary auditory cortex (2.6 mm caudal and 4.1 mm lateral from bregma) under aseptic

conditions while the mouse was anesthetized with isoflurane. A 750 nl bolus of AAV in water was

injected into A1 (1 mm ventral from pia mater) using a stereotaxic syringe pump (Pump 11 Elite

Nanomite, Havard Apparatus, Holliston, MA, United States). The craniotomy was covered with bone

wax and a small custom head-post was secured to the skull with dental acrylic.

Electrophysiological recordings
All recordings were carried out inside a double-walled acoustic isolation booth (Industrial

Acoustics, Bronx, NY, United States). Electrodes were targeted to A1 on the basis of stereotaxic

coordinates and in relation to blood vessels. In electrophysiological recordings, the location was

confirmed by examining the click and tone-pip responses of the recorded units for characteristic

responses of neurons in core auditory areas, as described previously by our group in the rat

(Carruthers et al., 2013) and by other groups in the mouse (Linden and Schreiner, 2003; Guo

et al., 2012; Marlin et al., 2015). While the electrodes were targeted to A1, some recordings may

include data from the anterior auditory field, adjacent to A1 (Linden et al., 2003). Mice were

placed in the recording chamber, anesthetized with isoflurane, and the headpost secured to a

custom base, immobilizing the head. After drilling a craniotomy and creating a durotomy

exposing auditory cortex, a silicon multi-channel probe (A1x32-Poly2-5mm-50s-177 [Poly-2] or

A1x32-tri-5mm-91-121-A32 [Triode], Neuronexus Ann Arbor, MI, United States) was slowly

lowered to between 750 μm and 1 mm into the cortex, perpendicular to the cortical surface and

used to record electrical activity. Raw signals from 32 channels were bandpass filtered at

600–6000 Hz and thresholded for spike analysis, or at 10–300 Hz for LFP and CSD analysis (Poly-2

probe only), digitized at 32 kHz and stored for offline analysis (Neuralynx, Bozeman, MT, United

States). Common-mode noise was removed by referencing a probe inserted in the brain outside

the auditory cortex. On the Poly-2 probe, two rows of 16 electrodes each on a single shank were

arranged such that each electrode site was 50 μm away from all three closest neighbors. This

arrangement allowed us to record densely across depth, that is, one electrode for every 25 μm in
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depth. On the triode, electrodes were arranged in groups of three equidistant sites, forming an

equilateral triangle (25-μm separation). The triodes were separated vertically by 91-μm center-to-

center distance, spanning 1 mm, with two additional single sites, one on each end.

Unit identification
Spike sorting was performed using commercial software (Offline Sorter, Plexon, Dallas, TX, United

States) (Carruthers et al., 2013). In order to improve isolation of single units from recordings using

low-impedance probes, spiking activity was sorted across three (triode, 25-μm separation) or four

(poly-2, 50-μm separation) adjacent electrode sites (Niell and Stryker, 2008; Olsen et al., 2012). We

used a stringent set of criteria to isolate single units from multiunit clusters (Otazu et al., 2009; Bizley

et al., 2010; Brasselet et al., 2012; Durand et al., 2012; Carruthers et al., 2013; Picard et al., 2014;

Carruthers et al., 2015). Single-unit clusters contained <1% of spikes within a 1.0-ms interspike

interval, and the spike waveforms across 3 or 4 channels had to form a visually identifiable distinct

cluster in a projection onto a three-dimensional subspace. Putative excitatory neurons were identified

based on their expected response patterns to sounds and the lack of significant suppression of the

spontaneous FR due to light (Lima et al., 2009; Moore and Wehr, 2013). While this subpopulation

may still contain inhibitory neurons, only 2% of all recorded neurons were significantly photosup-

pressed at baseline (one-sided paired t-test, significance taken at p < 0.05). The low impedance of the

extracellular probes precluded us from conducting a more detailed analysis of cortical subpopulations

based on the spike waveform (Bartho et al., 2004; Moore and Wehr, 2013).

Acoustic stimulus
Stimuli were delivered via a magnetic speaker (Tucker-David Technologies, Alachua, FL, United

States), directed toward the mouse’s head. Speakers were calibrated prior to the experiments to ±3
dB over frequencies between 1 and 40 kHz, by placing a microphone (Brüel and Kjaer, Denmark) in the

location of the ear contralateral to the recorded A1 hemisphere, recording speaker output and

filtering stimuli to compensate for acoustic aberrations (Carruthers et al., 2013). First, to measure

tuning, a train of 50 pure tones of frequencies spaced logarithmically between 1 and 80 kHz, at 65-dB

sound pressure level (SPL) relative to 20 μPa, in pseudorandom order, was presented 20 times. Each

tone was 100-ms long, with an inter-stimulus interval (ISI) of 300 ms. Frequency response functions

were calculated online for several multiunits, and two frequencies (separated by 0.39 octaves), which

elicited spiking responses of similar strength, were selected as tone A and B. Next, a series of stimuli

composed of tones A and B were presented in interleaved blocks, repeated four times. Each oddball

stimulus consisted of a train of 653 A and B tones (100-ms long, 300-ms ISI, 65-dB SPL). In oddball

stimulus 1, 90% of the tones were A (standard), while 10% of the tones were B (deviant). We used a

frozen sequence of standard and deviant tones in pseudorandom order and counterbalanced with

respect to the number of standard tones preceding each deviant. In oddball 2, the probabilities of

tones A and B were reversed so that tone B was the standard and A the deviant. In the equal

probability stimulus, A and B each comprised 50% of tones.

Light presentation
An optic fiber was use to direct 532-nm laser light (Shanghai Laser & Optics Century, China). After

positioning the silicon probe, an optic fiber was placed over the surface of auditory cortex. To limit

Becquerel effect artifacts due to light-striking electrodes, we positioned the optical fiber parallel to

the silicon probe (Han et al., 2009; Kvitsiani et al., 2013). During every fifth tone of the oddball and

equal probability stimuli, light was cast over A1 to suppress interneurons. The light onset was 100 ms

prior to tone onset, and lasted for 250 ms. At 180 mW/mm2, light pulses were intense enough to

significantly modulate multiunit activity throughout all cortical layers. The effect of optical stimulation

was not significant for responses to subsequent tones (Figure 3—figure supplement 1).

Immunohistochemistry
Brains were post-fixed in paraformaldehyde (4%, PFA) and cryoprotected in 30% sucrose. Coronal

sections (40 μm) were cut using a cryostat (CM1860, Leica, Allendale, NJ, United States), washed in

PBS containing 0.1% Triton X-100 (PBST; three washes, 5 min), incubated at room temperature in

blocking solution (for PV, 10% normal goat serum and 5% bovine serum albumin in PBST; for SOM,

10% normal goat serum with 0.1% sodium azide and 2% cold water fish gelatin in PBS; 3 hr), and then

incubated in primary antibody diluted in blocking solution overnight at 4˚C. The following primary

antibodies were used: anti-PV (PV 25 rabbit polyclonal, 1:500, Swant, Switzerland) or anti-SOM
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(AB5494 rabbit polyclonal, 1:200, Millipore, Billerica, MA, United States). After incubation, sections

were washed in blocking solution (three washes, 5 min), incubated for 2 hr at room temperature with

secondary antibodies (Alexa 594 goat anti-rabbit IgG; for PV 1:1000 and SOM 1:400), and then

washed in PBS (three washes, 5 min each). Sections were mounted using Fluoromount-G (Southern

Biotech, Birmingham, AL, United States) and confocal images were acquired (Leica SP5). Cells were

identified in independent fluorescent channels and subsequently scored for co-localization by hand

using ImageJ’s cell counter plug-in. Transfection efficiency is the percent of antibody-labeled neurons,

which are co-labeled with GFP. Transfection specificity is the percent of GFP-expressing neurons,

which are co-labeled with the antibody.

In vitro experimental preparation

Slice preparation
Acute brain slices were prepared from mice using standard techniques essentially as previously

described (Goldberg et al., 2011). Mice were anesthetized via inhaled isoflurane and then

transcardially perfused with 10 ml of oxygenated, ice-cold artificial cerebrospinal fluid (ACSF) at a

rate of 5 ml/min, that contained, in mM: 87 NaCl, 75 sucrose, 2.5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 10

glucose, 0.5 CaCl2, 4 MgSO4. Slices (300-μm thick) were cut on a Leica VT1200S and incubated in

cutting solution in a holding chamber at 32˚C for approximately 30 min followed by continued

incubation at room temperature prior to electrophysiological recording, at which point slices were

transferred to a submersion-type recording chamber attached to the microscope stage. ACSF used

for recording contained, in mM: 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 10 glucose, 2 CaCl2,

and 1 MgSO4. The solution was continuously bubbled with 95% O2 and 5% CO2 throughout cutting,

slice incubation, and recording, so as to maintain a pH of approximately 7.4.

Electrophysiology
Cells were identified via GFP expression under epifluorescence microscopy and subsequently

visualized using a 40×, 0.8 NA water-immersion objective (Olympus, Center Valley, PA, United States)

on an Olympus BX-61 upright microscope equipped with infrared differential interference contrast

optics. Recordings were performed using the whole-cell patch clamp technique. Access resistance

(Ra) was <25 MΩ upon break-in; data obtained from a given cell were rejected if Ra changed by >20%
during the course of the experiment. Internal solution contained, in mM: potassium gluconate, 130;

potassium chloride, 6.3; EGTA, 0.5; MgCl2, 1.0; HEPES, 10; Mg-ATP, 4; Na-GTP, 0.3; biocytin, 0.1%.

Osmolarity was adjusted to 285–290 mOsm using 30% sucrose. Voltage was recorded using a

MultiClamp 700B amplifier (Molecular Devices, Union City, CA, United States), lowpass filtered at

10 kHz, digitized at 16-bit resolution (Digidata 1550, Axon Instruments, Sunnyvale, CA, United States),

and sampled at 20 kHz. pCLAMP 10 software was used for data acquisition, and analysis was

performed using the Clampfit module of pCLAMP.

Optogenetics
Cells were illuminated with a 561-nm solid state laser (Coherent, Santa Clara, CA, United States)

routed to the standard X-Y galvanometer of a two-photon microscope (Bruker Corporation, Billerica,

MA, United States) via a single-mode fiber. Illuminance at the specimen was estimated using a 10-μm
pinhole aperture (Edmund Optics, Barrington, NJ, United States) and a photodiode power sensor

(Thorlabs, Newton, NJ, United States).

In vivo neuronal response analysis

Tone response FR
For each putative excitatory neuron, the spontaneous FR and tone-evoked FRs were measured as the

mean FR over 50 ms pre- and post-tone onset, respectively. For each identified interneuron, FRs were

measured 100 ms pre- and post-tone onset. FR was measured separately for each tone, A and B, as

standard, deviant, and equal probabilities, and for light-off and light-on trials. FR normalization was

carried out separately for each tone, A and B, for each neuron by dividing the response under all

conditions by the maximum FR (across 5-ms bins) of the deviant tone, light-off condition. Performing

this normalization by dividing response in all conditions by the mean, rather than maximum FR of the

deviant tone, light-off condition did not alter significant results (Figure 4—figure supplement 8). For

all FR analyses, each neuron’s responses to tones A and B were treated separately, and each was only

Natan et al. eLife 2015;4:e09868. DOI: 10.7554/eLife.09868 20 of 27

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.09868


included if the light-off deviant tone-evoked FR was significantly greater than the spontaneous FR

(Wilcoxon signed-rank test p < 0.05). Further, tone responses were only included in analysis if the

neuronal FR during each oddball stimulus exceeded 0.02 Hz, and the neuron was significantly tuned to

the tone. Tuning was considered significant if the spike count in response to a tone (A or B) was

significantly higher than the pool of spike counts across all tones outside one octave band centered on

tones A and B (N = 42, t-test, p1 < 0.05). Population responses in each condition were measured as

the mean and standard error of FRs across tone responses in each experimental group.

SSA index
For each neuron, SSA index is a measure of the strength of SSA based on its mean FR with respect to

tone probability. FRs to tones A and B were summed according to their standard or deviant

probability within each oddball stimulus (Ulanovsky et al., 2003). Thus, SSA index was computed as:

SSA Index=
ðDA +DBÞ− ðSA + SBÞ
DA +DB + SA + SB

;

where S and D indicate the mean FR for standard and deviant trials, respectively, and their subscripts

indicate the tone frequency condition. SSA index was computed separately for light-off and light-on

conditions. Population SSA indices were measured as the mean and standard error of SSA indices

across all neurons of each population. Criteria for inclusion in the analysis were the same as in tone

response FR analysis described above, with the added criterion that the deviant tone-evoked FR must

be greater than spontaneous FR for each of tones A and B (Wilcoxon signed-rank test p < 0.05).

Localization of cortical layers and CSD
To calculate the CSD, the net current density moving through cortical tissue at 32 positions along

the cortical axis was calculated based on LFPs of responses to tones recorded on each electrode, by

using the second order central finite difference to calculate the second spatial derivative across the

LFPs over the vertically arranged electrodes (Szymanski et al., 2009). Across the CSD profile, the

deepest current sink corresponds to the thalamo-recipient granular layer (Kaur et al., 2005;

Szymanski et al., 2009) allowing us to reconstruct the laminar location of recorded neurons.

Neurons recorded on electrodes falling within the deepest sink were assigned to the granular layer,

while those superior and inferior were assigned to the supra-granular and infra-granular layers

(Figure 1E,F, Figure 4—figure supplement 3). The tone-evoked amplitude of the CSD was

measured by first calculating root mean square of each channel during the first 50-ms post-tone

onset, and then calculating the mean across all electrodes determined to fall within either the

deepest short latency sink (granular layer) or pooled across all electrodes either above (supra-

granular layer) or below (infra-granular layer). For each session, the granular layer CSD amplitude for

all tone conditions was normalized across conditions by the deviant tone, light-off condition, and

the mean across sessions was statistically analyzed. The SSA index was calculated as described in

SSA index on the basis of the amplitude.

Statistical tests
For all statistical tests in which N ≥ 30, we applied the Student’s t-test (Matlab, Mathworks, Natick,

MA, United States) unless specified otherwise, and reported the p-value, degrees of freedom, and

t-statistic. For all tests with N < 30, sample variance was tested for normality using the

Komogorov–Smirnov test. If any group’s variance was non-normal, we applied a non-parametric

test, for example, Wilcoxon sign rank or rank sum test (Matlab), and provided the z-statistic for any

group with a normal distribution. For all tests, Bonferroni correction was applied for multiple

comparisons and reported as ‘C = X’ where X is the factor by which the p-value was adjusted.

Statistical tests were single-tailed if there was a reasonable prior expectation about the direction of

the difference between samples. p1 refers to one-sided, and p2 refers to two-sided statistics set. In all

figures, single, double, and triple stars indicate p < 0.05, 0.01, and 0.001, respectively. Error bars in all

figures represent the standard error of the mean, unless otherwise noted.

Excitatory–inhibitory network model
We constructed models of the excitatory–inhibitory neuronal circuit to understand the coupling of

excitatory interneurons with PV and SOM interneurons. We constructed firing-rate models based on

Wilson–Cowan dynamics (Staiger et al., 1996; Xu et al., 2010, Rudy et al., 2011). The parameters
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were chosen in order to achieve a match to experimental data. The mean activity level of each

population was modeled as:

dE
dt

=
1
τE

½−EðtÞ+ ðk− rÞSðjEToneðtÞ+SinhðjIEIðtÞÞÞ�;

dI
dt
=
1
τI
½−IðtÞ+ ðk− rÞSðjinhðtÞ+ jIToneðtÞ+ jEIEðtÞÞ�;

where E(t) is the activity of the excitatory population; I(t) is the activity of the inhibitory population; S(x)

is the transfer function between the combined ‘synaptic’ input and the neuronal FR. S(x) is linear with

respect to intermediate inputs, but imposes a minimum and maximum activation limits. Sinh(x) is the

transfer function between the inhibitory FR and excitatory post-synaptic current; jEI and jIE are

excitatory–inhibitory and inhibitory–excitatory synaptic weights (0.2 and −1.0 for PVs, 0.05 and −0.39
for SOMs, respectively); jETone(t) and jITone(t) are tone-evoked input currents to excitatory and

inhibitory neurons, respectively, modeled as 50-ms long exponentially decaying inputs of maximum

amplitude 3 (delayed by 7 ms for SOMs, which do not receive direct thalamic inputs, relative to PVs,

which receive direct thalamic inputs); τE (10 ms) and τI (10 ms) are synaptic time constants for

excitatory and inhibitory neurons; k and r represent the maximum and minimum FR of neurons,

respectively, (k = 15, r = 1); jinh(t) is the negative input to inhibitory neurons due to Arch. The

optogenetic modulation was modeled as a unitary 250-ms pulse. To capture the differences in inputs

due to repeated tone exposures, we modeled thalamic inputs reflecting the tone inputs with synaptic

depression. We modeled the conductance of the thalamic projections, gInp, as changing according to

the equation:

dgInp
dt

=
�
g0 − gInp

��
Tg −

�
gInpr

��
Tr;

where g0 is the maximum conductance (g0 = 1), r is the gating coefficient representing tone-evoked

thalamic input, Tg is the time scale for replenishment (Tg = 3 s), Tr is the time scale for depletion (Tr =
80 ms). We took r to be a step function with an exponential decay (with 40-ms time constant and

amplitude of 3). The full input to auditory cortical neural populations is then equal to gInpr. In a train of

four tones, the first tone-evoked response was taken as the deviant tone, and the fourth tone as the

standard tone.

For the inhibitory-to-excitatory inputs, we used a sigmoidal transfer function and showed the

existence of parameter regimes consistent with our results. For PVs, we used a sigmoid of the form:

SPVðrPVÞ =
1

1+ exp½−pðrPV − θÞ�;

where p = 0.3 and θ = 9. This gives a facilitating response at low input levels and a linear response at

high input levels. For SOMs, we used a hyperbolic tangent that provided a saturating non-linearity:

SSOMðrSOMÞ= 1− exp½−2rSOM=s�
1+ exp½−2rSOM=s�;

where s = 3. For visualization, the baseline FR of neurons was removed and the peak response to a

‘deviant’ tone without optogenetic manipulation normalized to 1.

We also constructed a model with additional coupling between the PV and SOM interneurons

using a generalization of the above dynamics, which may be written as:

dNi

dt
=

1
Ti

�
−Ni + ðk− rÞS

�
jtone;iðtÞ+ jext;iðtÞ+ ∑

k
jki*SkðNkÞ

��
;

where Ni is the FR of the ith population (EXC, PV, SOM), Ti = 10 ms is the time constant for each

population, k = 15, r = 1, S has different maximum and minimum values for each population (xmin,E =
−1, xmax,E = 1.75, xmin,PV = −0.5, xmax,PV = 4, xmin,SOM = 0, xmax,SOM = 3). SE(x) = x, and SSOM and SPV
use the definitions above. jE,E = jSOM,SOM = jPV,PV = jPV,SOM = 0, jE,SOM = 0.25, jSOM,E = −0.25, jE,PV =
0.4, jPV,E = −1, and jSOM,PV = −0.1. jext,PV = 1.5, jext,SOM = 1. Tone inputs are the same as described

above.
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