888 research outputs found
Tip timing techniques for turbomachinery HCF condition monitoring
High Cycle Fatigue (HCF) has been established as the major common failure mode in the US Air Force large fleet of aero-engines. Corrective measures for this failure mode in themselves deliver additional technical, managerial and cost pressures. Two responses are in place to address this problem; risk mitigation through accelerated engine development fixes and technology transition through targeted and focussed R&D studies. It is the latter that is of interests and is discussed in this paper. Aero-engine blade vibrations of sufficient amplitude cause High Cycle Fatigue, which reduces blade life. In order to observe this vibration a non-intrusive monitoring system is sought. The vibration can be detected by measuring blade tip timing since in the presence of vibration the blade timing will differ slightly from the passing time calculated from rotor speed. Work done to investigate the suitability of a commercially available capacitance probe tip clearance measurement system for application as a non-intrusive turbomachinery blade tip timing measurement device is reported. Capacitance probe results are correlated with simultaneously measure strain gauge results and the performance of the capacitance system in measuring blade vibration is analysed. The growing interest in blade high cycle fatigue within the aerospace industry, and an approach to monitoring their condition are discussed as an extension to the above study. The suggested approach is based upon the tip-timing method, using non-contact optical probes located around the engine’s casing. Two current tip-timing techniques are suggested for the purpose. The techniques are summarised, the experimental validation of both methods outlined, and the approach taken to investigate the potential use as a condition monitoring tool described. The paper is concluded with a discussion of the future use of tiptiming as a condition monitoring tool
The Effects of Exposure to Endophyte-Infected Tall Fescue Seed on Faecal and Urine Concentrations of Ergovaline and Lysergic Acid in Mature Gelding Horses
Despite the good nutritive value of endophyte-infected tall fescue, consumption by livestock results in a decrease in both reproductive and growth performance due to ergot alkaloids produced by an endophytic fungus (Cross et al., 1995). Little research has investigated the metabolic fate of ergot alkaloids and/or their metabolites in grazing horses. Thus, the objectives of this experiment were: a) to determine concentrations of ergovaline (EV) and lysergic acid (LA) in the faeces and urine of geldings exposed to tall fescue seed over a time course experiment and b) to measure the effects of alkaloid-containing tall fescue on nutrient digestibility and serum clinical enzyme profiles
Predicting peak daily maximum 8 h ozone and linkages to emissions and meteorology in Southern California using machine learning methods (SoCAB-8HR V1.0)
The growing abundance of data is conducive to using numerical
methods to relate air quality, meteorology and emissions to address which
factors impact pollutant concentrations. Often, it is the extreme values
that are of interest for health and regulatory purposes (e.g., the National
Ambient Air Quality Standard for ozone uses the annual maximum daily
fourth highest 8 h average (MDA8) ozone), though such values are the
most challenging to predict using empirical models. We developed four
different computational models, including the generalized additive model
(GAM), multivariate adaptive regression splines, random forest, and
support vector regression, to develop observation-based relationships
between the fourth highest MDA8 ozone in the South Coast Air Basin and
precursor emissions, meteorological factors and large-scale climate
patterns. All models had similar predictive performance, though the GAM
showed a relatively higher R2 value (0.96) with a lower root mean
square error and mean bias.</p
Finite-gap Solutions of the Vortex Filament Equation: Isoperiodic Deformations
We study the topology of quasiperiodic solutions of the vortex filament
equation in a neighborhood of multiply covered circles. We construct these
solutions by means of a sequence of isoperiodic deformations, at each step of
which a real double point is "unpinched" to produce a new pair of branch points
and therefore a solution of higher genus. We prove that every step in this
process corresponds to a cabling operation on the previous curve, and we
provide a labelling scheme that matches the deformation data with the knot type
of the resulting filament.Comment: 33 pages, 5 figures; submitted to Journal of Nonlinear Scienc
Conservation laws for vacuum tetrad gravity
Ten conservation laws in useful polynomial form are derived from a Cartan
form and Exterior Differential System (EDS) for the tetrad equations of vacuum
relativity. The Noether construction of conservation laws for well posed EDS is
introduced first, and an illustration given, deriving 15 conservation laws of
the free field Maxwell Equations from symmetries of its EDS. The Maxwell EDS
and tetrad gravity EDS have parallel structures, with their numbers of
dependent variables, numbers of generating 2-forms and generating 3-forms, and
Cartan character tables all in the ratio of 1 to 4. They have 10 corresponding
symmetries with the same Lorentz algebra, and 10 corresponding conservation
laws.Comment: Final version with additional reference
Confronting Grand Challenges in Environmental Fluid Dynamics
Environmental fluid dynamics underlies a wealth of natural, industrial and, by extension, societal challenges. In the coming decades, as we strive towards a more sustainable planet, there are a wide range of grand challenge problems that need to be tackled, ranging from fundamental advances in understanding and modeling of stratified turbulence and consequent mixing, to applied studies of pollution transport in the ocean, atmosphere and urban environments. A workshop was organized in the Les Houches School of Physics in France in January 2019 with the objective of gathering leading figures in the field to produce a road map for the scientific community. Five subject areas were addressed: multiphase flow, stratified flow, ocean transport, atmospheric and urban transport, and weather and climate prediction. This article summarizes the discussions and outcomes of the meeting, with the intent of providing a resource for the community going forward
Confronting Grand Challenges in environmental fluid mechanics
Environmental fluid mechanics underlies a wealth of natural, industrial and,
by extension, societal challenges. In the coming decades, as we strive towards
a more sustainable planet, there are a wide range of grand challenge problems
that need to be tackled, ranging from fundamental advances in understanding and
modeling of stratified turbulence and consequent mixing, to applied studies of
pollution transport in the ocean, atmosphere and urban environments. A workshop
was organized in the Les Houches School of Physics in France in January 2019
with the objective of gathering leading figures in the field to produce a road
map for the scientific community. Five subject areas were addressed: multiphase
flow, stratified flow, ocean transport, atmospheric and urban transport, and
weather and climate prediction. This article summarizes the discussions and
outcomes of the meeting, with the intent of providing a resource for the
community going forward
Classical and Quantum Integrability of 2D Dilaton Gravities in Euclidean space
Euclidean dilaton gravity in two dimensions is studied exploiting its
representation as a complexified first order gravity model. All local classical
solutions are obtained. A global discussion reveals that for a given model only
a restricted class of topologies is consistent with the metric and the dilaton.
A particular case of string motivated Liouville gravity is studied in detail.
Path integral quantisation in generic Euclidean dilaton gravity is performed
non-perturbatively by analogy to the Minkowskian case.Comment: 27 p., LaTeX, v2: included new refs. and a footnot
High-Speed PLIF Imaging of Hypersonic Transition over Discrete Cylindrical Roughness
In two separate test entries, advanced laser-based instrumentation has been developed and applied to visualize the hypersonic flow over cylindrical protrusions on a flat plate. Upstream of these trips, trace quantities of nitric oxide (NO) were seeded into the boundary layer. The protuberances were sized to force laminar-to-turbulent boundary layer transition. In the first test, a 10-Hz nitric oxide planar laser-induced fluorescence (NO PLIF) flow visualization system was used to provide wide-field-of-view, high-resolution images of the flowfield. The images had sub-microsecond time resolution. However these images, obtained with a time separation of 0.1 sec, were uncorrelated with each other. Fluorescent oil-flow visualizations were also obtained during this test. In the second experiment, a laser and camera system capable of acquiring NO PLIF measurements at 1 million frames per second (1 MHz) was used. This system had lower spatial resolution, and a smaller field of view, but the images were time correlated so that the development of the flow structures could be observed in time
- …