60 research outputs found

    Direct Photon Production in Au+Au Collisions at RHIC-PHENIX Experiment

    Get PDF
    Direct photons have been measured with the PHENIX experiment in Au+Au collisions at sNN\sqrt{s_\mathrm{NN}} = 200 GeV. The direct photon result obtained with PHENIX-EMCal up to 18 GeV/cc is consistent with the NLO pQCD calculation scaled by the nuclear overlap function. The measurement using internal conversion of photons into e+e−e^+e^- shows the enhancement of the yield comparing with NLO pQCD calculation.Comment: 4 pages, 5 figures. Contributed parallel talk at Hard Probes 2006, Asilomar CA USA, Jun. 9-16, 200

    Jet quenching and direct photon production

    Full text link
    Jet quenching effect has been investigated in the direct photon production, based on a realistic data-constrained (3+1) dimensional hydrodynamic description of the expanding hot and dense matter, a reasonable treatment of the propagation of partons and their energy loss in the fluid, and a systematic study of the main sources of direct photons. Our resultant \pt spectra agree with recent PHENIX data in a broad \pt range. Parton energy loss in the plasma eventually effect significantly direct photon production from fragmentation and jet photon conversion, similar to hadron suppression in central heavy ion collisions. But this only causes about 40% decrease in the total production of direct photons, due to the mixture with other direct photon sources.Comment: 6 pages and 3 figures, To appear in the proceedings of the International Conference on Strangeness in Quark matter (SQM2008), Beijing, China, Oct 6-10, 200

    Absolute Energy Measurements with Superconducting Transition-Edge Sensors for Muonic X-ray Spectroscopy at 44 keV

    Full text link
    Superconducting transition-edge sensor (TES) microcalorimeters have great utility in x-ray applications owing to their high energy resolution, good collecting efficiency and the feasibility of being multiplexed into large arrays. In this work, we develop hard x-ray TESs to measure the absolute energies of muonic-argon (Ό\mu-Ar) transition lines around 44 keV and 20 keV. TESs with sidecar absorbers of different heat capacities were fabricated and characterized for their energy resolution and calibration uncertainty. We achieved ~ 1 eV absolute energy measurement accuracy at 44 keV, and < 12 eV energy resolution at 17.5 keV

    Isotope production in proton-, deuteron-, and carbon-induced reactions on Nb 93 at 113 MeV/nucleon

    Get PDF
    Isotope-production cross sections for p-, d-, and C-induced spallation reactions on Nb93 at 113 MeV/nucleon were measured using the inverse-kinematics method employing secondary targets of CH2, CD2, and C. The measured cross sections for Mo90, Nb90, Y86,88 produced by p-induced reactions were found to be consistent with those measured by the conventional activation method. We performed benchmark tests of the reaction models INCL-4.6, JQMD, and JQMD-2.0 implemented in the Particle and Heavy Ion Transport code System (PHITS) and of the nuclear data libraries JENDL-4.0/HE, TENDL-2017, and ENDF/B-VIII.0. The model calculations also showed generally good agreement with the measured isotope-production cross sections for p-, d-, and C-induced reactions. It also turns out that, among the three nuclear data libraries, JENDL-4.0/HE provides the best agreement with the measured data for the p-induced reactions. We compared the present Nb93 data with the Zr93 data, that were measured previously by the same inverse kinematics method (Kawase et al., Prog. Theor. Exp. Phys. 2017, 093D03 (2017)2050-391110.1093/ptep/ptx110), with particular attention to the effect of neutron-shell closure on isotope production in p- and d-induced spallation reactions. The isotopic distributions of the measured production cross sections in the Zr93 data showed noticeable jumps at neutron number N=50 in the isotopic chains of ΔZ=0 and -1, whereas no such jump appeared in isotopic chain of ΔZ=0 in the Nb93 data. From INCL-4.6 + GEM calculations, we found that the jump formed in the evaporation process is smeared out by the intranuclear cascade component in Nb91 produced by the Nb93(p,p2n) and (d,d2n) reactions on Nb93. Moreover, for Nb93, the distribution of the element-production cross sections as a function of the change in proton number ΔZ is shifted to smaller ΔZ than for Zr93, because the excited Nb prefragments generated by the cascade process are more likely to emit protons than the excited Zr prefragments, due to the smaller proton-separation energies of the Nb isotopes

    Coulomb breakup reactions of 93,94 Zr in inverse kinematics

    Get PDF
    Coulomb breakup reactions of 93,94 Zr have been studied in inverse kinematics at incident beam energies of about 200 MeV/nucleon in order to evaluate neutron capture reaction methods. The 93 Zr(n,γ) 94 Zr reaction is particularly important as a candidate nuclear transmutation reaction for the long-lived fission product 93 Zr in nuclear power plants. One- and two-neutron removal cross sections on Pb and C targets were measured to deduce the inclusive Coulomb breakup cross sections, 375 ± 29 (stat.) ± 30 (syst.) and 403 ± 26 (stat.) ± 31 (syst.) mb for 93 Zr and 94 Zr, respectively. The results are compared with estimates using the standard Lorentzian model and microscopic calculations. The results reveal a possible contribution of the pygmy dipole resonance or giant quadrupole resonance in the Coulomb breakup reactions of 94 Zr
    • 

    corecore