1,658 research outputs found

    Encoding folding paths of RNA switches

    Get PDF
    RNA co-transcriptional folding has long been suspected to play an active role in helping proper native folding of ribozymes and structured regulatory motifs in mRNA untranslated regions. Yet, the underlying mechanisms and coding requirements for efficient co-transcriptional folding remain unclear. Traditional approaches have intrinsic limitations to dissect RNA folding paths, as they rely on sequence mutations or circular permutations that typically perturb both RNA folding paths and equilibrium structures. Here, we show that exploiting sequence symmetries instead of mutations can circumvent this problem by essentially decoupling folding paths from equilibrium structures of designed RNA sequences. Using bistable RNA switches with symmetrical helices conserved under sequence reversal, we demonstrate experimentally that native and transiently formed helices can guide efficient co-transcriptional folding into either long-lived structure of these RNA switches. Their folding path is controlled by the order of helix nucleations and subsequent exchanges during transcription, and may also be redirected by transient antisense interactions. Hence, transient intra- and intermolecular base pair interactions can effectively regulate the folding of nascent RNA molecules into different native structures, provided limited coding requirements, as discussed from an information theory perspective. This constitutive coupling between RNA synthesis and RNA folding regulation may have enabled the early emergence of autonomous RNA-based regulation networks.Comment: 9 pages, 6 figure

    Commercial Applications of Microalgae

    Get PDF
    The first use of microalgae by humans dates back 2000 years to the Chinese, who used Nostoc to survive during famine. However, microalgal biotechnology only really began to develop in the middle of the last century. Nowadays, there are numerous commercial applications of microalgae. For example, (1) microalgae can be used to enhance the nutritional value of food and animal feed owing to their chemical composition, (2) they play a crucial role in aquaculture and (3) they can be incorporated into cosmetics. Moreover, they are cultivated as a source of highly valuable molecules. For example, polyunsaturated fatty acid oils are added to infant formulas and nutritional supplements and pigments are important as natural dyes. Stable isotope biochemicals help in structural determination and metabolic studies. Future research should focus on the improvement of production systems and the genetic modification of strains. Microalgal products would in that way become even more diversified and economically competitive

    Nonsmooth Ducks and Regular Perturbations of Rivers, I

    Get PDF

    Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots

    Get PDF
    The Kinefold web server provides a web interface for stochastic folding simulations of nucleic acids on second to minute molecular time scales. Renaturation or co-transcriptional folding paths are simulated at the level of helix formation and dissociation in agreement with the seminal experimental results. Pseudoknots and topologically ‘entangled’ helices (i.e. knots) are efficiently predicted taking into account simple geometrical and topological constraints. To encourage interactivity, simulations launched as immediate jobs are automatically stopped after a few seconds and return adapted recommendations. Users can then choose to continue incomplete simulations using the batch queuing system or go back and modify suggested options in their initial query. Detailed output provide (i) a series of low free energy structures, (ii) an online animated folding path and (iii) a programmable trajectory plot focusing on a few helices of interest to each user. The service can be accessed at

    Probing complex RNA structures by mechanical force

    Full text link
    RNA secondary structures of increasing complexity are probed combining single molecule stretching experiments and stochastic unfolding/refolding simulations. We find that force-induced unfolding pathways cannot usually be interpretated by solely invoking successive openings of native helices. Indeed, typical force-extension responses of complex RNA molecules are largely shaped by stretching-induced, long-lived intermediates including non-native helices. This is first shown for a set of generic structural motifs found in larger RNA structures, and then for Escherichia coli's 1540-base long 16S ribosomal RNA, which exhibits a surprisingly well-structured and reproducible unfolding pathway under mechanical stretching. Using out-of-equilibrium stochastic simulations, we demonstrate that these experimental results reflect the slow relaxation of RNA structural rearrangements. Hence, micromanipulations of single RNA molecules probe both their native structures and long-lived intermediates, so-called "kinetic traps", thereby capturing -at the single molecular level- the hallmark of RNA folding/unfolding dynamics.Comment: 9 pages, 9 figure
    • …
    corecore