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Institut Galilee, URA 742, Unï ersite Paris Nord, 93430 Villetaneuse, France´ ´

Communicated by Robert E. O’Malley, Jr.

Received July 5, 1995

1. INTRODUCTION

The duck phenomenon concerns certain ‘‘overstable’’ solutions of non-
Žstandard slow]fast dynamical systems especially ordinary differential

.equations , mostly in a context of bifurcation; in this case the values of the
bifurcation parameter for which such solutions exist are called duck ¨alues,
the overstable solutions being called duck solutions. The classical domains
closely related to this theory are singular perturbations and matched

Ž w x.asymptotic expansions cf. 3 . This article presents a new method to
obtain shadow-expansions for duck parameters and duck solutions.

Until recently, the methods used to prove the existence of and calculate
such expansions were based upon the differentiability of the duck branches
appearing in the successive scales given by appropriate nonstandard trans-

Ž .formations so-called microscopes .
Ž w x. `The first papers on the subject such as 1, 6, 8, 13 assumed a CC

equation with a Morse point bifurcation, which has been shown to imply
w x Ž .the existence of infinite expansions. In our paper 11 with V. Gautheron

we assumed only finite differentiability for a slow]fast differential equa-
tion of the type

« y s F x , y q a, 1Ž . Ž .˙

F being standard and having a nondegenerate saddle point. We stated up
to what order the algebraic method yields «-expansions of the duck-values
of a and Taylor expansions for the terms of the «-expansion of the duck
solutions. We showed how a computation of those expansions can be

Žobtained by using only polynomial operations once given a Taylor expan-
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NONSMOOTH DUCKS 15

.sion of the ‘‘duck branch’’ , and gave an appropriate algorithm. In the
current article, such expansions will be called algebraic expansions, as
opposed to the transcendental expansions that we present here. In the
previous paper we gave examples of equations for which the algebraic
method fails after a few steps, and in one case we proved that no further
«-expansion exists.

w xA new idea, introduced by M. Diener 9 to deal with critical points
other than Morse points, consists of applying an appropriate linear magni-
fication around the critical point, in order to obtain a near-standard
equation. The slow solutions of the initial equation which come infinitely
close to the critical point were shown to appear in the new scale as
near-standard solutions whose shadows have polynomial growth at infinity,
i.e., rï ers of the corresponding standard equation. Duck solutions can exist
only if some rivers at y` and at q` are connected, which gives a
condition on the parameter involved. Those ideas clarify the close connec-

Žtion between the theory of ducks about the local behaviour of solutions of
. Žslow]fast equations and the theory of rivers about the behavior at

w x .infinity of solutions of standard equations}cf. 10, 12 , for example .
ŽOur contribution is to show the existence of expansions in often

.fractional powers of « for duck solutions and duck parameters, even in
many ‘‘nonsmooth’’ and ‘‘non-Morse’’ cases. To do so, we combine M.
Diener’s techniques with a study of regular perturbations of a standard
equation with river solutions; we state some results about the expandabil-
ity of some solutions of the perturbed equation which stay close to a given
river of the unperturbed equation; we also give induction formulas to

Žcompute these expansions analogous to those given for algebraic expan-
w x.sions in 13, 2 . Even when the classical method applies, ours yields an

algorithm to compute those expansions which is more efficient than
Ž w x.former ones such as we gave in 11 .

We must point out that, independently, Delcroix used a partial version
of our Theorem 2, in order to study solutions of a slow]fast equation in
the halo of a fold point of the slow curve. In that context he put forth the
idea that ‘‘rivers are the good special functions’’ in the sense that they are

w xthe universal terms in which ‘‘interesting’’ solutions can be expanded 5 .
Because it is well adapted and widely used in differential equations, the

version of nonstandard analysis we adopt here is the formulation of Nelson
Ž . w x}the so-called internal set theory IST . For a general reference, see 7 ,

for example. The reader unfamiliar with that formalism will find below
some indications which, hopefully, can help him to understand the results
and proofs of this paper.

I thank Professors R. E. O’Malley, M. Diener, and F. Weissler for their
useful suggestions about the exposition of that paper, and for correcting
my English.
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1.1. Notations

As usual in IST, we shall denote x , y for ‘‘x infinitely close to y,’’
x Q y for ‘‘x - y or x , y,’’ x © y for ‘‘x - y and not x , y,’’ and similarly

] ]x R y and x ª y. We use the symbol £ to denote a limited value, f for an
] ] Žinfinitesimal one roughly speaking, if « , 0 the notations £« and f« are

Ž . Ž ..the nonstandard equivalent of O « and o « ; we use @ for an apprecia-
Ž .ble i.e., limited but not infinitesimal value and 8x for the standard part of

Ž .x when x is limited .
If A is a point or a subset of a metric space, we denote the halo of A,

1 Ž .i.e., the external set of all points infinitely close to A, by hal A , so x , 0
Ž .is equivalent to x g hal 0 .

When F and G are real-valued functions, we write F ; G for
Ž . Ž . Ž .‘‘F X rG X ª 1’’ as X tends to some finite or infinite value , F < G

Ž . Ž . Ž . Ž .for ‘‘F X rG X ª 0’’ and F 4 G for ‘‘G X rF X ª 0.’’ By ‘‘F is a
Ž .function of polynomial growth’’ at `, for instance we mean that there

Ž . 5 5 p Žexists some integer p such that F X < X as X ª ` if X is
.multidimensional, we shall make precise the nature of the limit .

1.2. How to Understand This Paper in Classical Terms

First we recall some basic definitions about nonstandard differential
equations. Consider an ODE

« y9 s f x , y , « , a , 1Ž . Ž .

Ž 1.where f is a standard function at least CC and « and a are nonstandard
Ž .real parameters, with « , 0, « ) 0, and a , a a a standard real .0 0

Ž . Ž .Denote by G the curve f x, y, 0, a s 0. If the point x, y is not infinitely0
Ž .close to G, the field determined by 1 is ‘‘almost vertical’’ with infinitely

Žlarge module, and somewhere within the halo of G i.e., infinitely close to
. Ž .it the field is limited. That is why 1 is called a slow]fast equation and G

Ž .is the slow cur̈ e of 1 .
Suppose that for x g I, a standard interval of R, a branch of G is the

Ž . Žgraph of y s w x . That section of branch will be called attractï e resp.0
.repelling if there exists a standard neighborhood V of that section, such
Ž . Ž . Ž .that for x , y g V the solution y s c x of 1 with initial condition0 0

Ž . Ž . Ž . Ž . Ž Ž .x , y satisfies ; x g I x ª x « c x , w x resp. ; x g I x ©0 0 0 0] ]Ž . Ž .x « c x , w x .0 0

1The term external set emphasizes the fact that this type of ‘‘set’’ does not obey some rules
Ž .of set theory; for instance, in R, hal 0 is bounded but has no l.u.b.
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This notion has a classical translation: first, consider

« y9 s f x , y , « 2Ž . Ž .

Ž . Ž .without the parameter a ; its slow curve is G : f x, y, 0 s 0. The assertion
Ž .‘‘ for all positï e « , 0 the branch g : y s w x of G is attractï e’’ may be0

translated as: ‘‘there exist a neighborhood V of g in R2 and a neighbour-
Ž .hood U of 0 in R, such that if x , y g V and, for any positive « g U,0 0

Ž . Ž . Ž .y s c x is the solution of 1 with initial condition x , y , then when« 0 0
q � 4« ª 0 , c ª w uniformly on every compact in x g Irx ) x .’’ Now,« 0 0

introducing the parameter a, one may translate the proposition ‘‘ for all
positï e « , 0 and all a , a , g is attractï e’’ by replacing ‘‘when « ª 0’’0

Ž . Ž q .with ‘‘when « , a ª 0 , a ’’ in the above sentence.0
More generally, the behaviour of solutions for « , 0 must be inter-

preted in classical terms as a limit behaviour when « ª 0, with the
topology of convergence on every compact for the solutions.

Suppose the slow curve has a Morse point for a , a ; a duck branch of0
this slow curve is a branch attracting on the left side of the Morse point,
repelling on the right side. A duck solution is one which remains infinitely
close to the duck branch, at least on some standard open interval contain-
ing the Morse point}such a solution is ‘‘overstable’’ in the sense that,
except for a in a very narrow domain of values, all the solutions coming
from the attractive part of the branch are immediately repelled when

Žcrossing the halo of the Morse point; a duck ¨alue for the parameter or
.duck-parameter is a value of a for which there exist some duck solutions.

Ž w x. 2It has been shown cf. 1, 8 that if the equation is at least CC , then the
Ž .duck values are contained in an exponentially short interval relative to « ,

so when they are expandable in powers of « the expansion is unique.
The existence of a duck parameter with expansion Ýa « n must ben

Ž .understood as the existence of a function a « , with the same asymptotic
q Ž Ž ..expansion, such that when « ª 0 some solutions of « y9 s f x, y, a «

have a limit behaviour as described above.
We hope that this can help the reader unfamiliar with ANS to under-

stand most results of the present paper.

2. OBSTRUCTIONS TO THE «-EXPANSIONS OF DUCKS

2.1. Limitations of the Algebraic Method

When applying the algebraic method, one deals with successive slow]fast
equations with Morse points on the slow curve, where from the second
transformation one of the branches is vertical and the other is a duck
branch. If this duck branch has a nonvertical tangent at the Morse point,
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one can determine the unique possible standard part of duck parameters
for the equation appearing at that stage, which corresponds to a new term
for the «-expansion of the duck values of a. That value is obtained, for
example, by showing that duck solutions are impossible if, in a standard
neighbourhood of the Morse point, the slope of the field remains apprecia-

Ž w x.bly different from that of the duck branch cf. 11, 6 . The existence of a
finite slope for the duck branch at each scale is thus essential for that
method.

We now present two typical cases in which a stage in the construction is
reached where the duck branch of the slow curve does not have a finite
slope at the Morse point.

Ž w x.Jumping Duck cf. 11 . The equation

22 2 < <« y s y y x 1 q x q a,Ž .˙

˙Ž Ž < <..through a first microscope around the curve y s x 1 q x , yields « Y s
w Ž . Ž < <.x 22 x ysgn x q Y 1 q x q « Y q a , where a , 0; the duck branch of

Ž . Ž < <.the equation y s sgn x r 1 q x is discontinuous at the origin. This
jump may be considered as an infinite slope, so the conclusion of Proposi-

w xtion 2 of 11 is not surprising: the parameter a is not of the form « £, so
no further «-expansion can occur. We shall see that an expansion can be

'continued with powers of « .

Angular Duck. This example is perhaps more puzzling. Consider the
equation

< 3 < < 3 <x x
« y s y y y q x y q a. 3Ž .˙ ž / ž /3 3

If a , 0, it has a slow curve with a Morse point at the origin, where the
3< <duck branch y s x r3 has a horizontal tangent. So if a is a duck value of

Ž .the parameter, then a s «f i.e., a s 0 in the expansion of a . A first1
< 3 <microscope « y s y y x r3, « A s a gives1

< < 2« y s x y y x q « y q A 4Ž .Ž .1̇ 1 1

with A , 0. So, in a standard neighbourhood of the origin, the duck
Ž . < 3 < < <solutions of 3 may be written y s x r3 q « x q «f. In order to carry

Žon the expansion, one must determine the standard part of Ar« if it
.exists ; unfortunately, the usual geometric argument given above allows us

to show that this standard part exists, but not how to compute it!
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FIG. 1. Angular duck.

Ž .PROPOSITION 1. If A is a duck ¨alue of A for Eq. 4 , then

8 A
w xg y1, 1 .ž /«

Ž .Proof. The field of Eq. 4 is as in Fig. 1. The argument is the same as
w xin Theorem 1 of 11 ; were it not the case, the existence of duck solutions

would be impossible, for that solution would have to cross the branch in a
‘‘wrong’’ direction.2 Q.E.D.

ŽHowever, that standard part is certainly uniquely determined we recall
yK r«< < .that two duck values a and a must satisfy a y a - e , with K ª0 . So˜ ˜

]Ža further expansion exists, for at least one more term i.e., there exists a
2Ž ..standard a such that a s « a q f , but we must find a new method to2 2

compute it.

2.2. One Further Term

The method we shall use here to compute the value of a in the above2
Žexample is that of the so-called regularizing microscope that we shall

. w x Žabbreviate RM . It has been introduced by Diener in 9 cf. below Section
.6.2, the Union Jack equation . The idea is to make a linear change of

p q Žvariable « X s x, « Y s y, p and q being chosen according to the
w x.nature of the critical point; cf. 9 to obtain a nontrivial near-standard

2 w x < <In 6 , F. Diener uses a different reasoning, first showing that Ar« is limited, then
Ž .applying a microscope; that argument, when applied to 4 , leads exactly to the same

conclusion as ours!
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equation; in the new scale, the original duck solutions follow the halo of
river solutions of the standard part of the new equation.

1Ž .For Eq. 4 we must choose p s q s , which yields2

˙ 2< <Y s X Y y X q « Y q Ar« . 5Ž . Ž .

Since by Proposition 1 we know that Ar« is limited, the standard part
Ž .of 5 is

˙ < <Y s X Y y X q B , where B s 8 Ar« . 5Ž . Ž . Ž .

2Ž .PROPOSITION 2. If a is a duck ¨alue for 3 , then a s f« .

Proof. This is a special case of Theorem 1 below. Q.E.D.

Remark. One can check that, if B s 0, the equation of the ‘‘double
river’’ is

` 2 2Ž X yt .r2< <F X s X q e dt.Ž . H
< <X

That a s 0 is due to the symmetry of the equation.2

The following elementary standard lemma describes the river solutions
of a linear equation.

Ž .LEMMA 1. Let E be the linear equation

Ẏ s C X Y q D X , EŽ . Ž . Ž .
1 Ž .where C and D are CC . If XC X ª ` as X ª ` and D has polynomial

Ž . Ž .growth at `, then E has a unique solution Y s H X with polynomial
Ž . pgrowth at `. More precisely, if D X < X then for all s ) p q 1 one has

Ž . sH X < X and

`
W Ž X .yW Žu.H X s y D u e du,Ž . Ž .H

X

where W is a primitï e of C.

Ž .Proof. Existence: let s ) p q 1 one may assume s ) 0 and t ) 0
< Ž . Ž . <such that p q 1 - t - s . For X large enough, D X rC X s

< Ž . Ž . < t Ž .D X rW9 X - X . Defining H as above, it is a solution of E and, for
X large enough,

`
W Ž X . t yW Žu.< <H X - e u W9 u e du.Ž . Ž .H

X
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Integrating by parts,

` `
t yW Žu. t yW Ž X . ty1 yW Žu.u W9 u e du s X e q t u e du.Ž .H H

X X

1 ` t Ž .For large X, the second term of the sum is bounded by H u W9 uX2
yW Žu. Ž Ž . .e du if X is large enough, 2t - uW9 u for all u ) X , whence

< Ž . < t Ž . sH X - 2 X and H X rX ª 0.
Ž .Uniqueness: at most one solution of E can have polynomial growth at

`, since the difference between two solutions has the form KeW Ž X ., which
Žby the hypothesis on C grows faster than any power of X for every n,

yW Ž X . n .e rX has a negative derivative for X large enough, so it is bounded .
Q.E.D.

Ž .Remarks. Naturally, with analogous conditions at y`, E has a unique
solution with polynomial growth at y`, namely

X W Ž X .yW Žu.K X s D u e du.Ž . Ž .H
y`

Ž .Such solutions will be called rï er solutions or simply rï ers of the
Žlinear equation even if they do not always satisfy the more restrictive

.definition of macroscopic rï ers, that we shall recall in Section 3 .
From a nonstandard point of view, changing the scale, Lemma 1 has the

Ž .following consequences the proof is straightforward :

Ž .LEMMA 2. Let E be a standard linear ODE, satisfying Lemma 1, with
Ž r .r ) p q 1. Then for all nonlimited v, the macroscope v x s X, v y s Y

Ž .transforms E into a slow-fast equation

y s g x y q d x , eŽ . Ž . Ž .˙

Ž . Ž .where d x , 0 for limited x, and g x , q` for x ª0}so that for x ª0
] ]the x-axis is the unique slow cur̈ e, which is regularly repelling,3 and the image

Ž . Ž .of the unique rï er solutions of E is a slow solution of e , following the axis
x s 0.

The following theorem allows us to calculate one further term in the
expansion of the duck parameters, in a category of cases containing Equa-

Ž .tion 4 ; note that, even if the hypotheses seem a bit restrictive, it is often
easy to obtain them by a simple change of variables; the hypothesis of a

Ž .vertical tangent for the second branch g x, y s 0 of the slow curve can be

3 Ž .For a slow]fast equation y s p x, y , a part G of a slow curve is said to be regularly˙
Ž . Ž .Ž . Ž Ž .Ž . .repelling resp. regularly attracting if ­ pr­ y x, y , q` resp. ­ pr­ y x, y , y` for all

Ž . Ž . Ž w x.x, y g hal G . In both cases, G is said to be regular cf. 4 .
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obtained by a mere linear transformation and is always satisfied when the
Ž .‘‘angularity’’ appears after the application of one or more microscope s .

Ž . Ž .THEOREM 1. Let e « y s F x, y be a slow]fast differential equation,˙
Ž . Ž . Ž Ž . .where for limited x, y, F x, y s F x, y q « F x, y q f , with standard0 1

continuous F and F . Suppose that in a standard neighbourhood of the0 1
Ž . Ž . Ž .origin, there exist standard f and g such that F x, y s f x, y g x, y ,0

satisfying:

v
1 X XŽ . Ž . Ž . Ž . Ž .f 0, 0 s g 0, 0 s 0; g is CC and g 0, 0 / 0, g 0, 0 s 0; f x, y isx y

CC1 for all x / 0;

v Ž . Ž .f x, y s 0 is locally equï alent to y s w x , w possessing a left
semi-slope p and a right semi-slope p at the origin.y q

Ž . Ž .If e has duck solutions following the slow branch f x, y s 0, then necessar-
ily

1F 0, 0 , p q p .Ž . Ž .1 y q2

v Ž .Remarks. If, instead, the tangent to the branch g x, y s 0 at the
origin has slope r, the conclusion becomes

r p q p y 2 p pŽ .y q y q
F 0, 0 s .Ž .1 2 r y p q pŽ .y q

v Ž . Ž .If F x, y s G x, y, b , and b , 0 is a duck value for b, then
Ž . Ž . Ž Ž . . ŽF x, y, b s F x, y, b q « F x, y, b q f , where b s b q « b q0 0 1 1 0 1
.f ; then the theorem gives an implicit equation for b }of course, b must1 0

Ž .satisfy F 0, 0, b s 0.0 0

X Ž . XŽ . X Ž .Proof. We use the notations q s g 0, 0 , s s f 0, 0 , t s f 0, 0 ,x y 1 xy
X Ž . Ž .t s f 0, 0 , and l s F 0, 0 }so that p s yt rs and p s yt rs.2 xq 1 y 1 q 2' 'Ž .Applying the RM x s « X, y s « Y yields an equation whose standard
Ž .part E is

Ẏ s qX sY q t X q l for X F 0Ž .1

Ẏ s qX sY q t X q l for X G 0.Ž .2

Ž . Ž .From Lemma 1, the unique river solution of E at y` resp. q` is

X2 2qs X r2 2 yqsu r2Y s e qt u q l e duŽ .H 1
y`

`2 2qs X r2 2 yqsu r2resp. Y s y e qt u q l e du .Ž .H 2ž /X
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w x Ž .Moreover, one can show, as in 9 , that any slow solution of e for x - 0
Ž . Žresp. x ) 0 must, by the RM, stay in the halo of the river at y` resp.

. Ž . Ž .q` of E see also Lemma 2 of the present paper . So if a duck solution
Ž . Ž .of e exists, its image in E must follow both rivers, which therefore must

Žbe connected at 0. An easy calculation shows that it implies l s y t q1
.t r2 s. Q.E.D.2

A direct application of that theorem gives a partial solution to the
problem of the ‘‘angular duck.’’

Ž . Ž . ŽCOROLLARY 1. Suppose the equation « y s f x, y g x, y q a with˙
.standard f and g satisfies the following hypotheses on a standard neighbour-

Ž .hood V of 0, 0 :

v
3 2 3 �Ž .4g is CC on V and f is CC at the origin and CC on V _ 0, 0 ;

v
X X X X XŽ .at 0, 0 , f s g s 0, f ) 0 and f g y f g - 0;y x y y x

v Ž .when some duck solutions y s w x exist, their first order «-expansion
Ž .is w s w q « w q f , with w possessing semi-derï atï es a and a at0 1 1 l r

x s 0.

Then the duck parameters ha¨e the «-expansion

a q al rX 2a s «w 0 q « q f .Ž .0 ž /2

Ž .Remark. At the scale corresponding to Eq. 3 , this method gives some
Ž .information about the behaviour of the duck solutions in hal 0 ; instead of

< <y remaining at a distance £« from the slow curve y s x throughout a
Ž .standard neighborhood of x s 0 even for x , 0 , as would be the case if

Ž .the slow curve of 4 were smooth, y actually takes values of the form
'< < Žx q @ « for some x , 0. Accordingly, after one more microscope of

.magnification rate 1r« , one obtains a new slow curve with a pole at 0
Ž .cf. below Section 5.2, Flying duck .

3. PERSISTENT SOLUTIONS ALONG STANDARD RIVERS

3.1. Transcendental Expansion: Heuristic Result

Ž .Returning to the ‘‘angular duck,’’ let us consider Eq. 5 , which is a
Ž .regular perturbation of the standard linear equation 5 , taking the form

˙ 2< <Y s X Y y X q « Y q a ,Ž .
2Ž .where a , 0 now we know that a s f« .
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Diener’s theorem shows that in that scale the duck solutions of the
Ž . Žinitial equation follow the halo of the unique river Y s F X attracting at

. Ž .y`, repelling at q` of 5 . To obtain more precise information about
those solutions, it seems natural to apply a change of scale, with magnifica-

Žtion rate 1r« around the river imitating the ‘‘algebraic’’ method, with the
.river playing the role of the slow curve . The change of variables «Z s

Ž . Ž .Y y F X in 5 gives

a2 2 2Ż s XZ q F X q 2«ZF X q « Z q . 6Ž . Ž . Ž .
«

ŽOne observes that if ar« is limited i.e., if a has an expansion up to order
.3 one obtains a new near-standard equation, with linear standard part

2Ż s XZ q F X q b 6Ž . Ž .

Ž Ž ..where b s 8 ar« . According to the well-known ‘‘short shadow lemma’’
Ž w x. Ž .cf. 7 every solution of 6 starting from a limited point remains infinitely

Ž .close to a standard solution of 6 while x remains limited. From Lemma 1,
Ž .6 has a unique attracting river at y` and a unique repelling one at q`.

Ž .In the new scale, the images of some solutions of 3 follow the halo of
each of these rivers, and if one chooses a value for b such that these rivers
are connected, those solutions will follow the ‘‘double river’’ for every
limited value of X, just as the images of the duck solutions at the

Žpreceding scale. Such a choice, however, is only possible as in the proof of
.Theorem 1 for

`1 22 yt r2b s y F t e dt.Ž .H'2p 0

It is natural to conjecture that at that scale, the images of the duck
Ž . Ž Ž ..solutions of 3 and 4 still follow the halo of the river for all limited X,

which imposes the above value of b for the coefficient of « 3 in the
expansion of a, if such a solution exists. Heuristically the latter process can
be iterated without obstacle, giving a new connecting value a and a newn
river solution F for the standard part of the equation appearing at eachn
new scale.

If our method is valid, at the level of the initial scale the expansion of
the duck parameters must be Ýa « n, and the expansion of the duckn
solutions must be Ý« nF . However, that expansion is of a new type, for then
coefficients are obtained, not by algebraical operations as in the ‘‘smooth’’

Žcase, but by successive quadratures of transcendental functions more
.precise formulas will be provided later . In order to justify such a method,

Ž .we still must prove that in 6 the infinitesimal a is of the form £« , and
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that the images of the duck solutions through the RM are visible at the
Ž .new scale i.e., are functions with limited values for limited x and follow

the halo of the rivers. Moreover, we must prove that those facts remain
true at each new scale.

We shall prove these facts and give existence conditions for such
expansions and recurrence formulas to compute them.

3.2. Regular perturbations of standard rï ers

ŽStarting from a problem of ducks in a slow-fast equation i.e., a singular
.perturbation we have been led to a question concerning an infinitesimal

Ž .regular perturbation of a standard equation with river solutions. From
that point of view, the problems are the following:

1. which solutions of the perturbed equation do the following:
Ž .a follow the halo of a river of the standard equation for limited x;
Ž .b keep that property after successive microscopes around the rivers?

2. if the initial standard equation possesses a parameter and if, for
some value of that parameter, one observes a connection between a river
at y` and a river at q`, are there values of the parameter for which
that property remains true at those successive scales and do they have
«-expansions?

RIVERS: THEORETICAL BACKGROUND. The standard equations that we
deal with may contain transcendental functions, so, rather than using the
theory of F. and M. Diener and F. Blais, adapted for rational equations, we
shall work in the context of the more general theory of macroscopic rï ers,

w xdue to I. P. Van den Berg 14 . We rapidly recall the main points of that
theory which are used in the present paper:

Let v, j be two internal positive real numbers with v unlimited; we
Ž . Žshall denote the macroscope X s v x, Y s j y by MM X and Y are thev, j

.old variables, x and y the new ones ; if G is a function, with only nonzero
values for X large enough, we shall use MM for MM .v, G v , GŽv .

If F is a real-valued function, we shall note F for the image of F byv, j

Ž .MM and similarly F . A function G is called macroscopically obser̈ ablev, j v , G
Ž .in short, m.o. if for all v , `, G is S-continuous for all x ª0, withv, G ]nonzero shadow; it has been proved by Van den Berg that if such a
function G is standard, then G and 1rG have polynomial growth and Gv, G

˙Ž . Ž .has appreciable values for x ª0. If E Y s F X, Y is a standard equation
]and G is standard and macroscopically observable, G will be called

Ž Ž .macroscopically slow resp. macroscopically regular}in short m.r. with
Ž . Ž .respect to E if for all v , ` the image of E by MM is a slow]fastv, G

Žequation for which the graph of 8G is a part resp. a regular part}cf.v, G
..footnote in Lemma 2 of the slow curve.
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Ž . ŽFinally, a standard solution of E which is macroscopically slow resp.
. Ž . Žregular with respect to E will be called a macroscopic rï er resp.

. Ž .macroscopically regular rï er of E . Such a river will be called attracting
Ž . Žresp. repelling if the corresponding slow curve by the associated macro-

. Ž .scope is attracting resp. repelling . So the rivers are standard solutions of
Ž . ŽE , with polynomial growth, and in the regular repelling case at q` resp.

.the regular attracting case at y` they are locally unique and asymptoti-
Ž .cally they are exponential repellers resp. attractors .

w x ŽThe main result of 14 is an existence theorem for rivers here referred
.to as Van den Berg’s theorem : if there exists a standard function G,

Ž . Ž .macroscopically regular for E , then E has a macroscopically regular rï er
H with H ; G.

In fact, that result may be expressed in standard form, for if G is
standard the properties of being m.o. or m.r. have standard characteriza-
tions:

v G is m.o. at ` if and only if, for every function H such that
Ž . Ž Ž .. Ž . ŽH X ; X as X ª `, one has G H X ; G X that property being

.called asymptotic continuity ;

˙v Ž . Ž .G is m.r. with respect to E Y s F X, Y if and only if the five
Ž Ž . X Ž Ž ...4following conditions are satisfied noting V X s F X, G X :G Y

1. G is asymptotically continuous;
Ž Ž .. Ž . Ž .2. F X, G X < G X V X as X ª `;G

Ž .3. V X 4 1rX as X ª `;G

Ž . Ž .4. if H X ; X as X ª `, there exist A and B 0 - A - B s.t. for
Ž . Ž Ž .. Ž . ŽX large enough AV X F V H X F BV X that property of V isG G G G

w x.called order continuity in 14 ;
Ž . Ž .5. if H X ; G X as X ª `, there exist positive A and B s.t. for X

X Ž Ž .. X Ž Ž .. X Ž Ž ..large enough, AF G X F F X, H X F BF X, G X .Y Y Y

In the following, we shall refer to this set of properties as the contraction
Ž Ž ..conditions for G, with respect to E .

PERTURBATION OF A REPELLING RIVER. We shall use the two following
w x5results, the first of which is a ‘‘perturbed’’ version of Proposition 11 of 14

and has a similar proof.
1˙Ž . Ž .LEMMA 3. Let E Y s F X, Y be a CC standard equation ha¨ing a

˙ 1Ž . Ž . Ž .m.r. repelling rï er G at q`, and E Y s F X, Y q d X, Y a CC

4At q`, V is positive in the repelling case, negative in the attracting one, and the reverseG
at y`.

5 w xSee also 9, Theorem 8 .
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Ž . Ž .perturbation of E , such that d X, Y , 0 for all limited X, Y. Suppose
there exists v , q` such that for all nonlimited v F v , 8G is for all0 0 v , G

Ž .x ª0 a regular repelling part of the slow cur̈ e of the image of E by MM .v, G] Ž .Then there exists a solution F of E such that, for all nonlimited v F v0
Ž . Ž . Ž . Ž . Ž .one has F v s 1 q f G v . Moreo¨er, for all limited X, F X , G X .

When the river is unique and repelling, one gets a similar conclusion
without the assumption of regularity; in particular, it is applicable to linear
equations satisfying Lemma 1.

˙Ž . Ž .LEMMA 4. Let H Y s P X, Y be a standard equation, possessing a
˙Ž . Ž .unique solution Y s F X with polynomial growth at q`, and H Y s

Ž . Ž . Ž .P X, Y q A X, Y an infinitesimal perturbation of H . Suppose there exists
Ž .v , q` and r ª0 such that for all nonlimited v F v , the image h of0 0 v]Ž . rH under the macroscope NN : v x s X, v y s Y has the x-axis as av, r

unique slow cur̈ e for x ª0, with y , q` for y ª0 and y , y` for y ©0.˙ ˙
] ] ]Ž .Then any slow solution of h for v F v is by NN the image of a nearv 0 v , r

Ž .standard solution F of H , such that 8F s F.

3.3. The Main Theorem

˙Ž . Ž .DEFINITIONS. If E Y s F X, Y is a standard ODE and « is an
infinitesimal, we shall call an equation of the form

Ẏ s F X , Y q « A X , Y , EŽ . Ž . Ž .
with A being a near-standard function whose shadow is not identically

Ž . Ž .zero, a regular perturbation of E of order « . One has then A X, Y s
Ž . Ž . Ž .8 A X, Y q R X, Y , where for all limited X, Y, R X, Y , 0; «8 A will be

called the principal part of the perturbation, and R its «-remainder.
Ž 2 . 6 Ž 2 .We shall call GG resp. GG the principal galaxy of R resp. R ;
Ž 2 . � 4 Žfor v , `, and GG resp. GG the external set XrX s v£ resp.v v

�Ž . 4.X, Y rX s v£, Y s v£ .
ŽLet AA be an unbounded interval of R resp. an unbounded domain of

2 . Ž . Ž Ž ..R ; an internal function w X resp. f X, Y has standard polynomial
growth on AA if there exist positive standard M, p such that ;X g AA,
< Ž . < Ž < <. p Ž Ž . < Ž . < Ž < < < <. p.w X F M 1 q X resp. ; X, Y g AA f X, Y F M 1 q X q Y .

Ž .If w resp. f is standard we just say that it has polynomial growth on AA.
Ž . Ž .Finally, let F be a standard solution of E ; a solution w of E will be

Ž .called «-persistent along F at q` resp. y` if there exists an r ª0 such
]Ž . Ž . Ž . Ž y .yr y rthat w X s 1 q f F X on GG q resp. GG .« «

Ž .Remark. By the short shadow lemma, any solution w of E passing
2 Ž . Ž . Ž .through a point of GG l Graph F satisfies w X , F X for all limited

6 That is, the external set of its limited point.
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X ; a persistent solution remains ‘‘close’’ to F on a much larger domain,
i.e., up to an appreciable power of 1r« .

The following result, which plays a central part in this paper, gives
conditions for existence of persistent solutions and shows their expandabil-
ity up to order 1 at least}the expansion being computed by the method
described in the preceding section.

˙Ž . Ž .THEOREM 2. Let E Y s P X, Y be a standard continuous ODE, with
Ž .F a m.r. repelling rï er at q` resp. a m.r. attracting rï er at y` and let

˙Ž . Ž . Ž . Ž .E Y s P X, Y q « A X, Y be a continuous regular perturbation of E ,
Ž .of order « , with A s A q hR A standard, h , 0, R near-standard .0 0

Ž .Suppose that for X resp. yX large enough:

v
2 2P, ­ Pr­ Y, ­ Pr­ Y , A , and ­ A r­ Y are defined and ha¨e0 0

q Ž y .polynomial growth on R = R resp. R = R ;

v there exists a r ª0 such that R has standard polynomial growth on
]2 q Ž 2 y .yr y rGG l R = R resp. GG l R = R .« «

Ž .Then E has «-persistent solutions along F, which may be written

F X s F X q « F X q fŽ . Ž . Ž .Ž .1

Ž .for limited X, where F is the unique rï er at q` resp. y` of the equation1
Ž . Ž .obtained from E through the microscope «Z s Y y F X .

Proof. We shall only treat the case of a repelling river at q`. To begin
Žwith, let us show the existence of persistent solutions bear in mind that,

Ž ..being m.r., F satisfies the contraction conditions with respect to E . For
Ž . Ž . Ž . Ž .any v , q`, let e and e be the images of E and E through thev v

Ž . w xmacroscope MM . The case of e has been treated in 14 : for all v , `,v, F v

Ž .it is a slow]fast equation of the form a y s p x, y , where a s˙ v

Ž Ž .. Ž1r vV v , 0 and p is near-standard; the graph of 8F which isF v v

.continuous, as F is m.o. is a regularly repelling slow curve, for one has for
all x ª0, ­ p r­ y ª0 over a standard zone around the slow curve.v] ]Ž .We claim that e has the same properties, provided v is not too large;v

Ž .indeed, e may be writtenv

A v x , F v y q hR v x , F v yŽ . Ž .Ž . Ž .
a y s p x , y q « .Ž .˙ v F v V vŽ . Ž .F

As F and 1rF have polynomial growth, let r be a positive standard
yr < Ž . < rnumber such that X - F X - X for all X , `. Then if v - v s1

Ž yt yt r r . Ž . Ž Ž . 2
yrmin « , « for all limited x, y x ª0 , one has v x, F v y g GG , so«]there exist standard p and K such that, for such v, x, y, both
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Ž Ž . . Ž Ž . . Ž < < < Ž . <. pA v x, F v y and R v x, F v y are bounded by K 1 q v x q F v y ,
< Ž Ž . . Ž Ž . . < Ž1qr . pwhence A v x, F v y q hR v x, F v y s £ v . On the other hand,

Ž .by the third contraction condition 1rvV v , 0, one has alsoF

A v x , F v y q hR v x , F v yŽ . Ž .Ž . Ž .
Ž pq1.Ž rq1.s fv .

F v V vŽ . Ž .F

If we choose v - v and v - v s «y1rŽ pq1.Ž rq1., then for all v F v ,0 1 0 2 0
Ž .e is a slow]fast equation for which the graph of 8F is a repelling slowv v

curve for x ª0.
] Ž .There remains to show that this slow curve is regular; if we call q x, yv

Ž . Ž .the right-hand member of e , one must make sure that ­ q r­ yv v

Ž .x, y ª0; one checks that, if q, L are standard positive numbers such that
]<Ž .Ž . < <Ž .Ž . < Ž < < < <.q­ A r­ Y X, Y and ­ Br­ Y X, Y are bounded by L 1 q X q Y0

2 Ž y1rw1qqŽ1qr .x.yron GG , then the condition v - v s min v , v , « implies« 0 3 1 2
Ž .Ž .that for all v F v , x, y limited, x ª0, one has ­ q r­ y x, y , ­ p r­ y0 v v]and the latter is known to be positive appreciable. Now by Lemma 3 there

Ž . Ž . Ž . Ž .exists a F solution of E such that F X s 1 q f F X for all
X g Rqj GG . Finally, the different conditions imposed on v allow us tov 00

choose it of the form «y@, which completes the proof of assertion 1.
Now for assertion 2. Start with a lemma describing the equation ob-

Ž . Ž .tained from E through the microscope LL : «Z s Y y F X .«

Ž .LEMMA 5. The image of E through LL is a near-standard equation«

Ž .E , whose standard part is the linear equation,1

Ż s ZV X q A X , F X , EŽ . Ž .Ž . Ž .F 0 1

Ž .satisfying Lemma 1}so that E has a unique solution with polynomial1
growth at q`.

Proof. By application of LL , taking to account that F is a solution of«
˙Ž . Ž . Ž .E , one obtains Eq. E which can be written Z s ZV X q1 F

Ž Ž .. Ž . Ž .A X, F X q l X, Z , where l X, Z , 0 for limited X, Z. Because0
Ž . Ž Ž ..F X has polynomial growth at `, so does A X, F X , and in view of0

Ž .the contraction conditions XV X ª q` as X ª q`, Lemma 1 alsoF
Ž .applies to E . Q.E.D.1

Ž .Now let a persistent solution F of E along F be given, and let s ª01 ]Ž . Ž . Ž . Ž . s1be such that F X s 1 q f F X for all nonlimited X F v s 1r«0
}we want to show that F has a first-order expansion. For v , ` and r a

Žstandard real number, we shall denote by NN the macroscope v x sv, r
r . Ž . Ž . Ž . Ž .X, v z s Z , e and e the images of E and E through NN ,1 v , r 1 v , r 1 1 v , r

y1 Ž .and OO the transformation NN ( LL ( MM cf. Fig. 2 . The images of Fv, r v , r « v , F
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FIGURE 2

by MM and LL will be called w and F , respectively, and the image of Fv, F « 1 1
Ž .by NN or of w by OO will be called w . The proof of Lemma 6 is basedv, r v , r 1

Župon simultaneous consideration of the four scales in that diagram cf.
.Fig. 2 .

LEMMA 6. One can choose standard r ) 0 and s ) 0 such that for all
nonlimited v F v s «ys :4

Ž . Ž .i e is a slow]fast equation, for which the graph of 8F is a regularv v

repelling slow cur̈ e for x ª0, w being a slow solution for all x ª0;
] ]

Ž . Ž .ii e admits the axis y s 0 as a unique repelling slow cur̈ e for1 v , r

x ª0; for all appreciable y and x ª0; the ¨alue of y is nonlimited, with the˙
] ]same sign as y;

Ž .iii the transformation OO , which lea¨es x unchanged, is a magnifica-v, r

Ž Ž . Ž .tion in the ¨ertical direction i.e., if x, z and x, z are the images of1 2
Ž . Ž . < < < < .x, y and x, y , then y y y r z y z , 0 , whose rate is a limited1 2 1 2 1 2
power of 1r« .

Ž . ŽProof. Condition i is obtained by imposing v - v so that the4 3
. ys 1 Žgraph of 8F is a repelling slow curve and v s f« so that w is a slowv 4

.solution .
Ž .Now for condition ii . In view of Lemma 1 and Lemma 5, F is the1

Ž . Ž . Žunique river of e at q`, and if r G p 1 q r q 2 r being defined as in1
. Ž .the first part of the proof , then by Lemma 2, Eq. e will have the1 v , r

x-axis as a unique slow curve for x ª0 which will be regularly repelling. It
]
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remains to show that, by a suitable choice of v, the same will be true for
Ž . Ž .the perturbed equation e . Equation E may be written1 v , r 1

­ P
Ż s Z X , F X q A X , F XŽ . Ž .Ž . Ž .0­ Y

q « D X , Z q hR X , F X q «Z ,Ž . Ž .Ž .
1 2 2Ž . Ž Ž . . Ž Ž .where D X, Z s ­ Pr­ Y X, F X q u«Z q ­ A r­ Y X, F X q02

. Ž .u «Z , with u , u g 0, 1 . The hypotheses imply the existence of standard1 1
< Ž . < Ž < < < <.m Ž .m and M such that D X, Z - M 1 q X q Z . Applying NN to Ev, r 1

r Ž . Ž .and dividing both members by v V v gives an expression for e ,F 1 v , r

1 V v x 1Ž .F
z s z q A v x , F v xŽ .Ž .˙ 0rvV v V v v V vŽ . Ž . Ž .F F F

«
r rq D v x , v z q R v x , F v x q «v z .Ž . Ž .Ž .rv V vŽ .F

Ž Ž ..By the third contraction condition, 1r vV v , 0; from the fifth one ofF
Ž w x. Ž . Ž .those conditions one easily infers as in 14 that V v x rV v ª0 forF F ]all x ª0. Further, for appreciable x and z one easily gets

]
pŽ1qr .A v x , F v x £ v £Ž .Ž .0 s s , 0,

r pŽ1qrq2. 2v V v v V v v V vŽ . Ž . Ž .F F F

r mqr Žmy1.q1«D v x , v z £«vŽ .
mq r Žmy1.q1s s f«v ;

rv V v vV vŽ . Ž .F F

ys wthis last term is infinitesimal if one imposes v F « , with s - 1r m q
Ž . x Ž . p Ž .r m y 1 q 1 . Moreover, s - 1rr implies F v x q «v z , F v x for

limited z, so for appreciable x and z we get

«h
r pŽ1qr .R v x , F v x q «v z s f«v ,Ž .Žrv V vŽ .F

w Ž .xwhich is infinitesimal if s - 1r p 1 q r . If s and r satisfy those
Ž .conditions, e may be written1 v , r

a z s l x z q m x , z ,Ž . Ž .˙

Ž . Ž .where a , 0, l x ª0 for x ª0 and m x, z , 0 for appreciable x and z,
] ] Ž .which is enough to satisfy condition ii .

Ž . Ž .Finally, imposing s - 1r r q r also satisfies condition iii , for if
Ž . Ž . Ž . Ž .x, z and x, z are the images of x, y and x, y by OO one obtains1 2 1 2 v , r
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< < < < r Ž . r Ž . rqr Ž . ry y y s z y z «v rF v , with v rF v - v ; as F v - v and1 2 1 2
v - «ys , the magnification rate is a limited power of 1r« , which ends the
proof. Q.E.D.

Now we complete the proof of the theorem. Let some v F v and r be4
Ž .given as in the above lemma; let c be a slow solution of e , following1 1 v , r

the halo of the slow curve, say for 0 © x ©2. Lemma 4 shows that c is, by1] ]Ž .NN , the image of a solution C of E with polynomial growth}so thatv, r 1 1
Ž .8C is the unique river F of E at q`; therefore C is, by LL , the image1 1 1 1 «

Ž .of a solution C of E whose shadow is the river F, and the image of C by
Ž .MM is a solution c of e . The construction implies that c is the imagev, F v 1

of c by OO . The values of c remain limited for 0 © x ©2, andv, r 1 ] ]Ž . Ž . Ž .particularly for x s 1; we remark that by OO , 1, 1 ª 1, 0 and 1, 1v, r

Ž . Ž . Ž .belongs to the slow curve of e ; so, by condition iii of Lemma 6, c 1v

belongs to the halo of the slow curve, and, due to its repellingness, so do
Ž . Ž .the values of c x for 0 © x ©1}thus c is a slow solution of e and Cv] ]Ž .is a persistent solution of E by Lemma 3. By construction, for limited X,

C X s F X q « C X s F X q « F X q f ,Ž . Ž . Ž . Ž . Ž .1 1

so C has the required expansion.
To complete the proof it remains to show that F, the initially given

Ž . Ž .persistent solution of E , has the same expansion. By condition i of
Lemma 6, the image w of F by MM is a slow solution for all x ª0; so, asv, F ]the slow curve is regularly repelling, the slow solutions w and c satisfy
< Ž . Ž . < yk r« Žw x y c x - e , for 0 © x ©1, with k ª0 this is a well-known

] ] ]w x .result; see 4 , for example . The magnification rate of OO being a limitedv, r

Ž . Ž .power of 1r« , one has also w x , c x for 0 © x ©1, so w is a slow1 1 1] ]Ž . Ž . Ž .solution of e ; so by the same argument as for C , F X , F X for1 v , r 1 1 1
all limited X, whence the announced expansion for F. Q.E.D.

When the unperturbed equation is linear, one does not need the
complicated contraction conditions, because of the uniqueness of rivers;
replacing MM by a macroscope of the type NN : v x s X, v l y s Y, andv, F v , l

ly1 Ž .chosing l so that X rF X ª 0 as X ª q`, one proves the following.

PROPOSITION 3. The conclusion of Theorem 2 holds if one replaces the
Ž . Ž .assumptions on E the hypotheses on the perturbation remaining unchanged

by

Ẏ s C X Y q D X , EŽ . Ž . Ž .

Ž . Ž .where C and D ha¨e polynomial growth at q` resp. y` , and C X 4 1rX
Ž .as X ª q` resp. X ª y` .

This work is continued in Part II.
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