65 research outputs found
Recovery Signals of Rhodoliths Beds since Bottom Trawling Ban in the SCI Menorca Channel (Western Mediterranean)
One of the objectives of the LIFE IP INTEMARES project is to assess the impact of bottom trawling on the vulnerable benthic habitats of the circalittoral bottoms of the Menorca Channel (western Mediterranean), designated a Site of Community Importance (SCI) within the Natura 2000 network. The present study compares the epibenthic communities of four areas, subjected to different bottom trawl fishing intensity levels. The assignment of fishing effort levels was based on the fishing effort distribution in the area calculated from Vessel Monitoring System (VMS) data and the existence of two Fishing Protected Zones in the Menorca Channel. Biological samples were collected from 39 beam trawl stations, sampled during a scientific survey on April 2019. We compare the diversity, composition, and density of the epibenthic flora and fauna, together with the rhodoliths coverage and the morphology of the main species of rhodoliths of four areas subjected to different levels of bottom trawl fishing effort, including one that has never been impacted by trawling. Our results have shown negative impacts of bottom trawling on rhodoliths beds and the first signals of their recovery in areas recently closed to this fishery, which indicate that this is an effective measure for the conservation of this habitat of special interest and must be included in the management plan required to declare the Menorca Channel as a Special Area of Conservation.En prens
Temporal differences in microbial composition of Époisses cheese rinds during ripening and storage
International audienceÉpoisses is a protected designation of origin smear-ripened cheese from the Burgundy region in France. It has an orange color and a strong flavor, both of which are generated by surface microorganisms. The objective of the present study was to investigate the microbial dynamics at the surface of Époisses cheese during ripening and postmanufacturing storage at low temperatures. Rind samples were analyzed by enumeration on agar plates and by 16S rRNA gene and internal transcribed spacer amplicon sequencing. During most of the ripening process, the counts of yeasts, which corresponded to the species Debaryomyces hansenii and Geotrichum candidum, were higher than those of the aerobic acid-sensitive bacteria. Debaryomyces hansenii reached a level of about 3 × 108 cfu/cm2, and its viability strongly decreased in the late stage of ripening and during storage at 4°C. Two of the inoculated bacterial species, Brevibacterium aurantiacum and Staphylococcus xylosus, did not establish themselves at the cheese surface. At the end of ripening, among the 18 most abundant bacterial species detected by amplicon sequencing, 14 were gram-negative, mainly from genera Psychrobacter, Vibrio, Halomonas, and Mesonia. It was hypothesized that the high moisture level of the Époisses rinds, due the humid atmosphere of the ripening rooms and to the frequent washings of the curds, favored growth of these gram-negative species. These species may be of interest for the development of efficient ripening cultures. In addition, because the orange color of Époisses cheeses could not be attributed to the growth of Brevibacterium, it would be interesting to investigate the type and origin of the pigments that confer color to this cheese
Investigation of Associations of Yarrowia lipolytica, Staphylococcus xylosus, and Lactococcus lactis in Culture as a First Step in Microbial Interaction Analysisâ–ż â€
The interactions that may occur between microorganisms in different ecosystems have not been adequately studied yet. We investigated yeast-bacterium interactions in a synthetic medium using different culture associations involving the yeast Yarrowia lipolytica 1E07 and two bacteria, Staphylococcus xylosus C2a and Lactococcus lactis LD61. The growth and biochemical characteristics of each microorganism in the different culture associations were studied. The expression of genes related to glucose, lactate, and amino acid catabolism was analyzed by reverse transcription followed by quantitative PCR. Our results show that the growth of Y. lipolytica 1E07 is dramatically reduced by the presence of S. xylosus C2a. As a result of a low amino acid concentration in the medium, the expression of Y. lipolytica genes involved in amino acid catabolism was downregulated in the presence of S. xylosus C2a, even when L. lactis was present in the culture. Furthermore, the production of lactate by both bacteria had an impact on the lactate dehydrogenase gene expression of the yeast, which increased up to 30-fold in the three-species culture compared to the Y. lipolytica 1E07 pure culture. S. xylosus C2a growth dramatically decreased in the presence of Y. lipolytica 1E07. The growth of lactic acid bacteria was not affected by the presence of S. xylosus C2a or Y. lipolytica 1E07, although the study of gene expression showed significant variations
Safety assessment of Gram-negative bacteria associated with traditional French cheeses
International audienceTwenty Gram-negative bacterial (GNB) strains were selected based on the biodiversity previously observed in French traditional cheeses and their safety was assessed considering various safety criteria. For the majority of tested GNB strains, only gastric stress at pH 2 (vs pH 4) resulted in low survival and no regrowth after an additional simulated gastro-intestinal stress. Presence of milk was shown to be rarely protective. The majority of strains was resistant to human serum and had a low level of adherence to Caco-2 cells. When tested for virulence in Galleria mellonella larvae, GNB strains had LD 50 values similar to that of safe controls. However, four strains, Hafnia paralvei 920, Proteus sp. (close to P. hauseri) UCMA 3780, Providencia heimbachae GR4, and Morganella morganii 3A2A were highly toxic to the larvae, which suggests the presence of potential virulent factors in these strains. Noteworthy, to our knowledge, no foodborne intoxication or outbreak has been reported so far for any of the GNB belonging to the genera/species associated with the tested strains. The role of multiple dynamic interactions between cheese microbiota and GIT barriers could be key factors explaining safe consumption of the corresponding cheeses
MetaPDOcheese : investigation of the drivers of microbial communities from French PDO milks and cheeses
International audienceProtected Designation of Origin (PDO) cheeses are generally considered as high quality, non-standardised fermented products whose sensory richness arises from a variety of milk production and processing conditions. These practices would contribute to shaping microbial communities that have adapted to the dairy environment. In this most comprehensive study ever conducted on French PDO cheeses, our objective was to characterise the drivers of microbial communities in milks and the associated cheeses, and their relationships to biogeography, herd management and cheese processing practices. Thanks to the contribution of PDO cheese stakeholders, we sampled 1,145 PDO cheeses (each for rind and core) and 390 milks covering the diversity of the 44 French ripened PDO cheeses and collected detailed data on their production conditions. We characterised the bacterial and fungal communities of milks and cheeses using 16S rRNA and ITS2 gene sequencing. A total of 1,230 bacterial species and 1,367 fungal species were identified from the milk samples, with variations according to the dairy species. A total of 820 bacterial species and 333 fungal species were identified in cheeses. The core microbiome in cheese was limited to one fungal species (Geotrichum candidum) at 100% prevalence. The cheese’s microbiota differed in terms of richness and composition between the seven cheese families and within families, according to PDO labels. Secondary structuring factors, as the dairy species, the geographical area and cheese ripening practices, were also highlighted across cheese families, demonstrating a contribution of biogeography and PDO-specific know-how in shaping the cheese microbiota
- …