498 research outputs found

    PKS1932-46: a radio source in an interacting group?

    Get PDF
    We present the results of a multiwavelength study of the z=0.23 radio source PKS1932-46. VIMOS IFU spectroscopy is used to study the morphology, kinematics and ionisation state of the EELR surrounding this source, and also a companion galaxy at a similar redshift. Near- and far-IR imaging observations obtained using the NTT and SPITZER are used to analyse the underlying galaxy morphologies and the nature of the AGN. The host galaxy is identified as an ~M* elliptical. Combining Spitzer mid-IR with X-ray, optical and near-IR imaging observations of this source, we conclude that its AGN is underluminous for a radio source of this type, despite its status as a BLRG. However, given its relatively large [OIII] luminosity it is likely that the AGN was substantially more luminous in the recent past (<10^4 years ago). The EELR is remarkably extensive and complex, reminiscent of the systems observed around sources at higher redshifts/radio powers, and the gas is predominantly ionised by a mixture of AGN photoionisation and emission from young stars. We confirm the presence of a series of star-forming knots extending N-S from the host galaxy, with more prodigious star formation occuring in the merging companion galaxy to the northeast, which has sufficient luminosity at mid- to far-IR wavelengths to be classified as a LIRG. The most plausible explanation of our observations is that PKS1932-46 is a member of an interacting galaxy group, and that the impressive EELR is populated by star-forming, tidal debris. We suggest that the AGN itself may currently be fuelled by material associated either with the current interaction, or with a previous merger event. Surprisingly, it is the companion object, rather than the radio source host galaxy, which is undergoing the bulk of the star formation activity within the group.Comment: 15 pages, 14 figures (compressed for astro-ph, 1 colour). Accepted for publication in MNRAS. Abstract abridge

    Breastfeeding, the use of docosahexaenoic acid-fortified formulas in infancy and neuropsychological function in childhood

    Get PDF
    OBJECTIVE: To investigate the relation between breastfeeding, use of docosahexaenoic acid (DHA)-fortified formula and neuropsychological function in children. DESIGN: Prospective cohort study. SETTING: Southampton, UK. SUBJECTS: 241 children aged 4 years followed up from birth. MAIN OUTCOME MEASURES: IQ measured by the Wechsler Pre-School and Primary Scale of Intelligence (3rd edn), visual attention, visuomotor precision, sentence repetition and verbal fluency measured by the NEPSY, and visual form-constancy measured by the Test of Visual-Perceptual Skills (Non-Motor). RESULTS: In unadjusted analyses, children for whom breast milk or DHA-fortified formula was the main method of feeding throughout the first 6 months of life had higher mean full-scale and verbal IQ scores at age 4 years than those fed mainly unfortified formula. After adjustment for potential confounding factors, particularly maternal IQ and educational attainment, the differences in IQ between children in the breast milk and unfortified formula groups were severely attenuated, but children who were fed DHA-fortified formula had full-scale and verbal IQ scores that were respectively 5.62 (0.98 to 10.2) and 7.02 (1.56 to 12.4) points higher than children fed unfortified formula. However, estimated total intake of DHA in milk up to age 6 months was not associated with subsequent IQ or with score on any other test. CONCLUSIONS: Differences in children's intelligence according to type of milk fed in infancy may be due more to confounding by maternal or family characteristics than to the amount of long-chain polyunsaturated fatty acids they receive in milk

    Tuberculosis before and after the Black Death (1346 – 1353 CE) in the Hospital of St John the Evangelist in Cambridge, England

    Get PDF
    This article was published with Open Access under the Elsevier/Jisc Open Access agreement The authors would like to thank all of the members of the ‘After the Plague’ project, and the Cambridge Archaeological Unit for their help and support. We would also like to thank György Pálfi for organising the ICEPT-3 conference, at which the initial findings of this research were presented and for inviting us to contribute to this special issue. This research was funded by the Wellcome Trust (Award no 2000368/Z/15/Z) and St John's College, Cambridge.Peer reviewedPublisher PD

    Fluid‐driven tensile fracture and fracture toughness in Nash Point shale at elevated pressure

    Get PDF
    A number of key processes, both natural and anthropogenic, involve the fracture of rocks subjected to tensile stress, including vein growth and mineralization, and the extraction of hydrocarbons through hydraulic fracturing. In each case, the fundamental material property of mode‐I fracture toughness must be overcome in order for a tensile fracture to propagate. While measuring this parameter is relatively straightforward at ambient pressure, estimating fracture toughness of rocks at depth, where they experience confining pressure, is technically challenging. Here we report a new analysis that combines results from thick‐walled cylinder burst tests with quantitative acoustic emission to estimate the mode‐I fracture toughness (K_{Ic}) of Nash Point Shale at confining pressure simulating in situ conditions to approximately 1‐km depth. In the most favorable orientation, the pressure required to fracture the rock shell (injection pressure, P_{inj}) increases from 6.1 MPa at 2.2‐MPa confining pressure (P_{c}), to 34 MPa at 20‐MPa confining pressure. When fractures are forced to cross the shale bedding, the required injection pressures are 30.3 MPa (at P_{c} = 4.5MPa) and 58 MPa (P_{c} = 20 MPa), respectively. Applying the model of Abou‐Sayed et al. (1978, https://doi.org/10.1029/JB083iB06p02851) to estimate the initial flaw size, we calculate that this pressure increase equates to an increase in K_{Ic} from 0.36 to 4.05 MPa·m^{1/2} as differential fluid pressure (P_{inj} - P_{c}) increases from 3.2 to 22.0 MPa. We conclude that the increasing pressure due to depth in the Earth will have a significant influence on fracture toughness, which is also a function of the inherent anisotropy

    The heating mechanism for the warm/cool dust in powerful, radio-loud AGN

    Get PDF
    The uncertainty surrounding the nature of the heating mechanism for the dust that emits at mid- to far-IR (MFIR) wavelengths in active galaxies limits our understanding of the links between active galactic nuclei (AGN) and galaxy evolution, as well as our ability to interpret the prodigious infrared and sub-mm emission of some of the most distant galaxies in the Universe. Here we report deep Spitzer observations of a complete sample of powerful, intermediate redshift (0.05 < z < 0.7) radio galaxies and quasars. We show that AGN power, as traced by [OIII]5007 emission, is strongly correlated with both the mid-IR (24 micron) and the far-IR (70 micron) luminosities, however, with increased scatter in the 70 micron correlation. A major cause of this increased scatter is a group of objects that falls above the main correlation and displays evidence for prodigious recent star formation activity at optical wavelengths, along with relatively cool MFIR colours. These results provide evidence that illumination by the AGN is the primary heating mechanism for the dust emitting at both 24 and 70 microns, with starbursts dominating the heating of the cool dust in only 20 -- 30% of objects. This implies that powerful AGN are not always accompanied by the type of luminous starbursts that are characteristic of the peak of activity in major gas-rich mergers.Comment: 13 pages, 3 figures. Accepted for publication in astrophysical journal letter

    PKS2250-41: a case study for triggering

    Full text link
    We present the results of a multiwavelength study of the z = 0.31 radio source PKS2250-41. Integral field unit and long-slit spectroscopy obtained using VIMOS and FORS1 on the VLT, and archival HST optical imaging observations are used to study the morphology, kinematics and ionisation state of the extended emission line region (EELR) surrounding this source, and also a companion galaxy at a similar redshift. Near-infrared imaging observations obtained using the NTT are used to analyse the underlying galaxy morphologies. The EELR displays a complex variety of different gas kinematics and ionization states, consistent with a mixture of radio source shocks and AGN photoionization. The radio galaxy is likely to lie within a group environment, and is plausibly undergoing interactions with one or more other objects. The disk-like galaxy to the northeast of the radio source lies at a similar redshift to the radio galaxy itself, and has its major axis position angle aligned with the filamentary continuum and line emission extending outwards from the radio galaxy. This filamentary structure is most plausibly interpreted as a tidal structure associated with an interaction involving the radio source host galaxy and the aligned companion galaxy to the north-east; this encounter may have potentially triggered the current epoch of radio source activity. Overall, PKS2250-41 displays some of the best evidence that radio source activity can be triggered in this manner. [abridged]Comment: 16 pages, 13 figures (some colour). Accepted for publication in MNRAS. Abstract abridge

    Compact radio sources and jet-driven AGN feedback in the early Universe: Constraints from integral-field spectroscopy

    Full text link
    To investigate the impact of radio jets during the formation epoch of their massive host galaxies, we present an analysis of two massive, log(M_stel/ M_sun)~10.6 and 11.3, compact radio galaxies at z=3.5, TNJ0205+2242 and TNJ0121+1320. Their small radio sizes (R<= 10 kpc) are most likely a sign of youth. We compare their radio properties and gas dynamics with those in well extended radio galaxies at high redshift, which show strong evidence for powerful, jet-driven outflows of significant gas masses (M 10^9-10 M_sun). Our analysis combines rest-frame optical integral-field spectroscopy with existing radio imaging, CO emission line spectra, and rest-frame UV spectroscopy. [OIII]5007 line emission is compact in both galaxies and lies within the region defined by the radio lobes. For TNJ0205+2242, the Ly-alpha profile narrows significantly outside the jet radius, indicating the presence of a quiescent halo. TNJ0121+1320 has two components separated by ~10 kpc and a velocity offset of ~300 km s^-1. If motions are gravitational, this implies a dynamical mass of 2x10^11 M_sun for the more massive, radio-loud component. The dynamical mass, molecular gas mass measured from the CO line emission, and radio luminosity of these two compact radio galaxies imply that compact radio sources may well develop large-scale, energetic outflows as observed in extended radio galaxies, with the potential of removing significant fractions of the ISM from the host galaxy. The absence of luminous emission line gas extending beyond the radio emission in these sources agrees with the observed timescales and outflow rates in extended radio galaxies, and adds further evidence that the energetic, large-scale outflows observed in extended radio sources (Nesvadba et al. 2006) are indeed the result of influence of the radio jet.Comment: A&A accepte

    Mobile phone use and glioma risk: comparison of epidemiological study results with incidence trends in the United States

    Get PDF
    Objective In view of mobile phone exposure being classified as a possible human carcinogen by the International Agency for Research on Cancer (IARC), we determined the compatibility of two recent reports of glioma risk (forming the basis of the IARC’s classification) with observed incidence trends in the United States
    corecore