236 research outputs found
Umbrella sampling of proton transfer in a creatine–water system
Proton transfer reactions are among the most common processes in chemistry and
biology. Proton transfer between creatine and surrounding solvent water is
underlying the chemical exchange saturation transfer used as a contrast in
magnetic resonance imaging. The free energy barrier, determined by first-
principles umbrella sampling simulations (View the MathML sourceEaDFT 3
kcal/mol) is in the same order of magnitude as the experimentally obtained
activation energy. The underlying mechanism is a first proton transfer from
the guanidinium group to the water pool, followed by a second transition where
a proton is “transferred back” from the nearest water molecule to the
deprotonated nitrogen atom of creatine
Phosphorylation of SU(VAR)3-9 by the chromosomal kinase JIL-1
The histone methyltransferase SU(VAR)3-9 plays an important role in the formation of heterochromatin within the eukaryotic nucleus. Several studies have shown that the formation of condensed chromatin is highly regulated during development, suggesting that SU(VAR)3-9's activity is regulated as well. However, no mechanism by which this may be achieved has been reported so far. As we and others had shown previously that the N-terminus of SU(VAR)3-9 plays an important role for its activity, we purified interaction partners from Drosophila embryo nuclear extract using as bait a GST fusion protein containing the SU(VAR)3-9 N-terminus. Among several other proteins known to bind Su(VAR)3-9 we isolated the chromosomal kinase JIL-1 as a strong interactor. We show that SU(VAR)3-9 is a substrate for JIL-1 in vitro as well as in vivo and map the site of phosphorylation. These findings may provide a molecular explanation for the observed genetic interaction between SU(VAR)3-9 and JIL-1
Junctional Adhesion Molecule-C Mediates the Recruitment of Embryonic-Endothelial Progenitor Cells to the Perivascular Niche during Tumor Angiogenesis
The homing of Endothelial Progenitor Cells (EPCs) to tumor angiogenic sites has been described as a multistep process, involving adhesion, migration, incorporation and sprouting, for which the underlying molecular and cellular mechanisms are yet to be fully defined. Here, we studied the expression of Junctional Adhesion Molecule-C (JAM-C) by EPCs and its role in EPC homing to tumor angiogenic vessels. For this, we used mouse embryonic-Endothelial Progenitor Cells (e-EPCs), intravital multi-fluorescence microscopy techniques and the dorsal skin-fold chamber model. JAM-C was found to be expressed by e-EPCs and endothelial cells. Blocking JAM-C did not affect adhesion of e-EPCs to endothelial monolayers in vitro but, interestingly, it did reduce their adhesion to tumor endothelium in vivo. The most striking effect of JAM-C blocking was on tube formation on matrigel in vitro and the incorporation and sprouting of e-EPCs to tumor endothelium in vivo. Our results demonstrate that JAM-C mediates e-EPC recruitment to tumor angiogenic sites, i.e., coordinated homing of EPCs to the perivascular niche, where they cluster and interact with tumor blood vessels. This suggests that JAM-C plays a critical role in the process of vascular assembly and may represent a potential therapeutic target to control tumor angiogenesis
Global and specific responses of the histone acetylene to systematic perturbation
Regulation of histone acetylation is fundamental to the utilization of eukaryotic genomes in chromatin. Aberrant acetylation contributes to disease and can be clinically combated by inhibiting the responsible enzymes. Our knowledge of the histone acetylation system is patchy because we so far lacked themethodology to describe acetylation patterns and their genesis by integrated enzyme activities. We devised a generally applicable, mass spectrometry-based strategy to precisely and accurately quantify combinatorial modification motifs. This was applied to generate a comprehensive inventory of acetylation motifs on histones H3 and H4 in Drosophila cells. Systematic depletion of known or suspected acetyltransferases
and deacetylases revealed specific alterations of histone acetylation signatures, established enzyme-substrate relationships, and unveiled an extensive crosstalk between neighboring modifications.
Unexpectedly, overall histone acetylation levels remained remarkably constant upon depletion of individual acetyltransferases. Conceivably, the acetylation level is adjusted to maintain the global charge neutralization of chromatin and the stability of nuclei
Berufslaufbahnen und Berufsrollen in der Pflege aus der Sicht von Berufseinsteigenden
Im Zuge der Umsetzung des neuen Gesetzes zur Berufsbildung haben in der Schweiz die Ausbildungen im Pflegebereich eine grundlegende Umstrukturierung erfahren. Seither kann ein Diplom als Pflegefachfrau oder Pflegefachmann sowohl an einer Höheren Fachschule als auch an einer Fachhochschule erworben werden. Dieser Bericht zeigt die Ergebnisse der ersten schweizweiten Befragung von Absolventinnen und Absolventen eines Bildungsgangs in Pflege seit der Neugestaltung. Im Zentrum stehen die Erfahrungen beim Berufseinstieg, die Berufsrollen und die angestrebten Berufslaufbahnen
Nematic-Isotropic Spinodal Decomposition Kinetics of Rod-like Viruses
We investigate spinodal decomposition kinetics of an initially nematic
dispersion of rod-like viruses (fd virus). Quench experiments are performed
from a flow-stabilized homogeneous nematic state at high shear rate into the
two-phase isotropic-nematic coexistence region at zero shear rate. We present
experimental evidence that spinodal decomposition is driven by orientational
diffusion, in accordance with a very recent theory.Comment: 17 pages, 6 figures, accepted in Phys. Rev.
Herschel SPIRE FTS Relative Spectral Response Calibration
Herschel/SPIRE Fourier transform spectrometer (FTS) observations contain
emission from both the Herschel Telescope and the SPIRE Instrument itself, both
of which are typically orders of magnitude greater than the emission from the
astronomical source, and must be removed in order to recover the source
spectrum. The effects of the Herschel Telescope and the SPIRE Instrument are
removed during data reduction using relative spectral response calibration
curves and emission models. We present the evolution of the methods used to
derive the relative spectral response calibration curves for the SPIRE FTS. The
relationship between the calibration curves and the ultimate sensitivity of
calibrated SPIRE FTS data is discussed and the results from the derivation
methods are compared. These comparisons show that the latest derivation methods
result in calibration curves that impart a factor of between 2 and 100 less
noise to the overall error budget, which results in calibrated spectra for
individual observations whose noise is reduced by a factor of 2-3, with a gain
in the overall spectral sensitivity of 23% and 21% for the two detector bands,
respectively.Comment: 15 pages, 13 figures, accepted for publication in Experimental
Astronom
Relative pointing offset analysis of calibration targets with repeated observations with Herschel-SPIRE Fourier-Transform Spectrometer
We present a method to derive the relative pointing offsets for SPIRE
Fourier-Transform Spectrometer (FTS) solar system object (SSO) calibration
targets, which were observed regularly throughout the Herschel mission. We
construct ratios of the spectra for all observations of a given source with
respect to a reference. The reference observation is selected iteratively to be
the one with the highest observed continuum. Assuming that any pointing offset
leads to an overall shift of the continuum level, then these ratios represent
the relative flux loss due to mispointing. The mispointing effects are more
pronounced for a smaller beam, so we consider only the FTS short wavelength
array (SSW, 958-1546 GHz) to derive a pointing correction. We obtain the
relative pointing offset by comparing the ratio to a grid of expected losses
for a model source at different distances from the centre of the beam, under
the assumption that the SSW FTS beam can be well approximated by a Gaussian. In
order to avoid dependency on the point source flux conversion, which uses a
particular observation of Uranus, we use extended source flux calibrated
spectra to construct the ratios for the SSOs. In order to account for continuum
variability, due to the changing distance from the Herschel telescope, the SSO
ratios are normalised by the expected model ratios for the corresponding
observing epoch. We confirm the accuracy of the derived pointing offset by
comparing the results with a number of control observations, where the actual
pointing of Herschel is known with good precision. Using the method we derived
pointing offsets for repeated observations of Uranus (including observations
centred on off-axis detectors), Neptune, Ceres and NGC7027. The results are
used to validate and improve the point-source flux calibration of the FTS.Comment: 17 pages, 19 figures, accepted for publication in Experimental
Astronom
Site-specific acetylation of ISWI by GCN5
<p>Abstract</p> <p>Background</p> <p>The tight organisation of eukaryotic genomes as chromatin hinders the interaction of many DNA-binding regulators. The local accessibility of DNA is regulated by many chromatin modifying enzymes, among them the nucleosome remodelling factors. These enzymes couple the hydrolysis of ATP to disruption of histone-DNA interactions, which may lead to partial or complete disassembly of nucleosomes or their sliding on DNA. The diversity of nucleosome remodelling factors is reflected by a multitude of ATPase complexes with distinct subunit composition.</p> <p>Results</p> <p>We found further diversification of remodelling factors by posttranslational modification. The histone acetyltransferase GCN5 can acetylate the <it>Drosophila </it>remodelling ATPase ISWI at a single, conserved lysine, K753, <it>in vivo </it>and <it>in vitro</it>. The target sequence is strikingly similar to the N-terminus of histone H3, where the corresponding lysine, H3K14, can also be acetylated by GCN5. The acetylated form of ISWI represents a minor species presumably associated with the nucleosome remodelling factor NURF.</p> <p>Conclusion</p> <p>Acetylation of histone H3 and ISWI by GCN5 is explained by the sequence similarity between the histone and ISWI around the acetylation site. The common motif RK<sup>T</sup>/<sub>S</sub>xGx(K<sup>ac</sup>)xP<sup>R</sup>/<sub>K </sub>differs from the previously suggested GCN5/PCAF recognition motif GKxxP. This raises the possibility of co-regulation of a nucleosome remodelling factor and its nucleosome substrate through acetylation of related epitopes and suggests a direct crosstalk between two distinct nucleosome modification principles.</p
- …