1,367 research outputs found

    Camera for QUasars in EArly uNiverse (CQUEAN)

    Full text link
    We describe the overall characteristics and the performance of an optical CCD camera system, Camera for QUasars in EArly uNiverse (CQUEAN), which is being used at the 2.1 m Otto Struve Telescope of the McDonald Observatory since 2010 August. CQUEAN was developed for follow-up imaging observations of red sources such as high redshift quasar candidates (z >= 5), Gamma Ray Bursts, brown dwarfs, and young stellar objects. For efficient observations of the red objects, CQUEAN has a science camera with a deep depletion CCD chip which boasts a higher quantum efficiency at 0.7 - 1.1 um than conventional CCD chips. The camera was developed in a short time scale (~ one year), and has been working reliably. By employing an auto-guiding system and a focal reducer to enhance the field of view on the classical Cassegrain focus, we achieve a stable guiding in 20 minute exposures, an imaging quality with FWHM >= 0.6" over the whole field (4.8' * 4.8'), and a limiting magnitude of z = 23.4 AB mag at 5-sigma with one hour total integration time.Comment: Accepted for publication in PASP. 26 pages including 5 tables and 24 figure

    Evaluation of Phage Display Discovered Peptides as Ligands for Prostate-Specific Membrane Antigen (PSMA)

    Get PDF
    The aim of this study was to identify potential ligands of PSMA suitable for further development as novel PSMA-targeted peptides using phage display technology. The human PSMA protein was immobilized as a target followed by incubation with a 15-mer phage display random peptide library. After one round of prescreening and two rounds of screening, high-stringency screening at the third round of panning was performed to identify the highest affinity binders. Phages which had a specific binding activity to PSMA in human prostate cancer cells were isolated and the DNA corresponding to the 15-mers were sequenced to provide three consensus sequences: GDHSPFT, SHFSVGS and EVPRLSLLAVFL as well as other sequences that did not display consensus. Two of the peptide sequences deduced from DNA sequencing of binding phages, SHSFSVGSGDHSPFT and GRFLTGGTGRLLRIS were labeled with 5-carboxyfluorescein and shown to bind and co-internalize with PSMA on human prostate cancer cells by fluorescence microscopy. The high stringency requirements yielded peptides with affinities KD∼1 μM or greater which are suitable starting points for affinity maturation. While these values were less than anticipated, the high stringency did yield peptide sequences that apparently bound to different surfaces on PSMA. These peptide sequences could be the basis for further development of peptides for prostate cancer tumor imaging and therapy. © 2013 Shen et al

    Therapeutic DNA vaccine induces broad T cell responses in the gut and sustained protection from viral rebound and AIDS in SIV-infected rhesus macaques.

    Get PDF
    Immunotherapies that induce durable immune control of chronic HIV infection may eliminate the need for life-long dependence on drugs. We investigated a DNA vaccine formulated with a novel genetic adjuvant that stimulates immune responses in the blood and gut for the ability to improve therapy in rhesus macaques chronically infected with SIV. Using the SIV-macaque model for AIDS, we show that epidermal co-delivery of plasmids expressing SIV Gag, RT, Nef and Env, and the mucosal adjuvant, heat-labile E. coli enterotoxin (LT), during antiretroviral therapy (ART) induced a substantial 2-4-log fold reduction in mean virus burden in both the gut and blood when compared to unvaccinated controls and provided durable protection from viral rebound and disease progression after the drug was discontinued. This effect was associated with significant increases in IFN-γ T cell responses in both the blood and gut and SIV-specific CD8+ T cells with dual TNF-α and cytolytic effector functions in the blood. Importantly, a broader specificity in the T cell response seen in the gut, but not the blood, significantly correlated with a reduction in virus production in mucosal tissues and a lower virus burden in plasma. We conclude that immunizing with vaccines that induce immune responses in mucosal gut tissue could reduce residual viral reservoirs during drug therapy and improve long-term treatment of HIV infection in humans

    Measurement of the radiative decay of polarized muons in the MEG experiment

    Get PDF
    We studied the radiative muon decay μ+e+ννˉγ\mu^+ \to e^+\nu\bar{\nu}\gamma by using for the first time an almost fully polarized muon source. We identified a large sample (~13000) of these decays in a total sample of 1.8x10^14 positive muon decays collected in the MEG experiment in the years 2009--2010 and measured the branching ratio B(μ+e+ννˉγ\mu^+ \to e^+\nu\bar{\nu}\gamma) = (6.03+-0.14(stat.)+-0.53(sys.))x10^-8 for E_e > 45 MeV and E_{\gamma} > 40 MeV, consistent with the Standard Model prediction. The precise measurement of this decay mode provides a basic tool for the timing calibration, a normalization channel, and a strong quality check of the complete MEG experiment in the search for μ+e+γ\mu^+ \to e^+\gamma process.Comment: 8 pages, 7 figures. Added an introduction to NLO calculation which was recently calculated. Published versio

    Canine respiratory coronavirus employs caveolin-1-mediated pathway for internalization to HRT-18G cells

    Get PDF
    Canine respiratory coronavirus (CRCoV), identified in 2003, is a member of the Coronaviridae family. The virus is a betacoronavirus and a close relative of human coronavirus OC43 and bovine coronavirus. Here, we examined entry of CRCoV into human rectal tumor cells (HRT-18G cell line) by analyzing co-localization of single virus particles with cellular markers in the presence or absence of chemical inhibitors of pathways potentially involved in virus entry. We also targeted these pathways using siRNA. The results show that the virus hijacks caveolin-dependent endocytosis to enter cells via endocytic internalization

    High Diversity of Cryptosporidium Subgenotypes Identified in Malaysian HIV/AIDS Individuals Targeting gp60 Gene

    Get PDF
    BACKGROUND: Currently, there is a lack of vital information in the genetic makeup of Cryptosporidium especially in developing countries. The present study aimed at determining the genotypes and subgenotypes of Cryptosporidium in hospitalized Malaysian human immunodeficiency virus (HIV) positive patients. METHODOLOGY/PRINCIPAL FINDINGS: In this study, 346 faecal samples collected from Malaysian HIV positive patients were genetically analysed via PCR targeting the 60 kDa glycoprotein (gp60) gene. Eighteen (5.2% of 346) isolates were determined as Cryptosporidium positive with 72.2% (of 18) identified as Cryptosporidium parvum whilst 27.7% as Cryptosporidium hominis. Further gp60 analysis revealed C. parvum belonging to subgenotypes IIaA13G1R1 (2 isolates), IIaA13G2R1 (2 isolates), IIaA14G2R1 (3 isolates), IIaA15G2R1 (5 isolates) and IIdA15G1R1 (1 isolate). C. hominis was represented by subgenotypes IaA14R1 (2 isolates), IaA18R1 (1 isolate) and IbA10G2R2 (2 isolates). CONCLUSIONS/SIGNIFICANCE: These findings highlighted the presence of high diversity of Cryptosporidium subgenotypes among Malaysian HIV infected individuals. The predominance of the C. parvum subgenotypes signified the possibility of zoonotic as well as anthroponotic transmissions of cryptosporidiosis in HIV infected individuals

    Long Term Transcriptional Reactivation of Epigenetically Silenced Genes in Colorectal Cancer Cells Requires DNA Hypomethylation and Histone Acetylation

    Get PDF
    Epigenetic regulation of genes involves the coordination of DNA methylation and histone modifications to maintain transcriptional status. These two features are frequently disrupted in malignancy such that critical genes succumb to inactivation. 5-aza-2′-deoxycytidine (5-aza-dC) is an agent which inhibits DNA methyltransferase, and holds great potential as a treatment for cancer, yet the extent of its effectiveness varies greatly between tumour types. Previous evidence suggests expression status after 5-aza-dC exposure cannot be explained by the DNA methylation status alone. Aim: We sought to identify chromatin changes involved with short and long term gene reactivation following 5-aza-dC exposure. Two colorectal cancer cell lines, HCT116 and SW480, were treated with 5-aza-dC and then grown in drug-free media to allow DNA re-methylation. DNA methylation and chromatin modifications were assessed with bisulfite sequencing and Chromatin Immuno-Precipitation analysis. Results: Increased H3 acetylation, H3K4 tri-methylation and loss of H3K27 tri-methylation were associated with reactivation. Hypermethylated genes that did not show increased acetylation were transiently expressed with 5-aza-dC treatment before reverting to an inactive state. Three reactivated genes, CDO1, HSPC105 and MAGEA3, were still expressed 10 days post 5-aza-dC treatment and displayed localised hypomethylation at the transcriptional start site, and also an increased enrichment of histone H3 acetylation. Conclusions: These observations suggest that hypomethylation alone is insufficient to reactivate silenced genes and that increased Histone H3 acetylation in unison with localised hypomethylation allows long term reversion of these epigenetically silenced genes. This study suggests that combined DNA methyltransferase and histone deacetylase inhibitors may aid long term reactivation of silenced genes

    On the dynamics of the adenylate energy system: homeorhesis vs homeostasis.

    Get PDF
    Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for unveiling the dynamics of cellular life
    corecore