19 research outputs found

    Implementation of Convolutional Neural Networks for Batik Image Dataset

    Get PDF
    One method of image recognition that can be used is a convolutional neural network (CNN). However, the training model of CNN is not an easy thing; it takes tuning parameters that take a long time in the training process. This research will do Batik pattern recognition by using CNN. From the experiment that we conducted, the result shows that the feature extraction, selection, and reduction give the accuracy more significant than raw image dataset. The feature selection and reduction also can improve the execution time. Parameters value that gave best accuracy are: epoch = 200, batch_size = 20, optimizer = adam, learning_rate = 0.01, network weight initialization = lecun_uniform, neuron activation function = linear

    Note on the Measures of Dependence in Terms of Copulas

    Get PDF
    AbstractThe dependence structure among each risk factors has been an important topic for researches both from theoretical and applied standpoints. To measure such dependence, several characteristic quantities have been already introduced and widely employed, which include, for instance, the population version of Kendall's tau (τ) and/or Spearman's rho (ρ). Copulas, on the other hand, are well known tools for understanding the dependence relation among random variables, and the above τ and ρ are expressed in terms of copulas. In this note, we generalize these expressions. We also compute the extended formula for the Archimedean copulas as well as its generalized copulas, and pursue the possibility of its applications

    Determining the Number of Batik Motif Object based on Hierarchical Symmetry Detection Approach

    Get PDF
    In certain conditions, symmetry can be used to describe objects in the batik motif efficiently. Symmetry can be defined based on three linear transformations of dimension n in Euclidian space in the form of translation and rotation. This concept is useful for detecting objects and recognising batik motifs. In this study, we conducted a study of the symmetry effect to determine the number of batik motif objects in an image using symmetry algorithm through a hierarchical approach. The process focuses on determining the intersection line of the batik motif object. Furthermore, by utilising intersection line information for bilateral and rotational symmetry, the number of objects carried out recursively is determined. The results obtained are numbers of batik motif objects through symmetry detection. This information will be used as a reference for batik motif detection. Based on the experimental results, there are some errors caused by the axis of the symmetry line that is not appropriate due to the characteristics of batik motifs. The problem is solved by adding several rules to detect symmetry line and to determine the number of objects. The additional rules increase the average accuracy of the number of object detection from 66.21% to 86.19% (19.99% increase)

    Hospital quality classification based on quality indicator data during the COVID-19 pandemic

    Get PDF
    This research aim is to propose a machine learning approach to automatically evaluate or categories hospital quality status using quality indicator data. This research was divided into six stages: data collection, pre-processing, feature engineering, data training, data testing, and evaluation. In 2020, we collected 5,542 data values for quality indicators from 658 Indonesian hospitals. However, we analyzed data from only 275 hospitals due to inadequate submission. We employed methods of machine learning such as decision tree (DT), gaussian naïve Bayes (GNB), logistic regression (LR), k-nearest neighbors (KNN), support vector machine (SVM), linear discriminant analysis (LDA) and neural network (NN) for research archive purposes. Logistic regression achieved a 70% accuracy rate, SVM a 68% accuracy rate, and neural network a 59.34% of accuracy. Moreover, K-nearest neighbors achieved a 54% of accuracy and decision tree a 41% accuracy. Gaussian-NB achieved a 32% accuracy rate. The linear discriminant analysis achieved the highest accuracy with 71%. It can be concluded that linear discriminant analysis is the algorithm suitable for hospital quality data in this research.</p
    corecore