184 research outputs found

    A New Advanced Backcross Tomato Population Enables High Resolution Leaf QTL Mapping and Gene Identification.

    Get PDF
    Quantitative Trait Loci (QTL) mapping is a powerful technique for dissecting the genetic basis of traits and species differences. Established tomato mapping populations between domesticated tomato (Solanum lycopersicum) and its more distant interfertile relatives typically follow a near isogenic line (NIL) design, such as the S. pennellii Introgression Line (IL) population, with a single wild introgression per line in an otherwise domesticated genetic background. Here, we report on a new advanced backcross QTL mapping resource for tomato, derived from a cross between the M82 tomato cultivar and S. pennellii This so-called Backcrossed Inbred Line (BIL) population is comprised of a mix of BC2 and BC3 lines, with domesticated tomato as the recurrent parent. The BIL population is complementary to the existing S. pennellii IL population, with which it shares parents. Using the BILs, we mapped traits for leaf complexity, leaflet shape, and flowering time. We demonstrate the utility of the BILs for fine-mapping QTL, particularly QTL initially mapped in the ILs, by fine-mapping several QTL to single or few candidate genes. Moreover, we confirm the value of a backcrossed population with multiple introgressions per line, such as the BILs, for epistatic QTL mapping. Our work was further enabled by the development of our own statistical inference and visualization tools, namely a heterogeneous hidden Markov model for genotyping the lines, and by using state-of-the-art sparse regression techniques for QTL mapping

    東海丘陵要素トウカイコモウセンゴケとその両親種モウセンゴケとコモウセンゴケの系統学的位置づけ

    Get PDF
    東海地方には東海丘陵要素として知られる特徴的な植生がある。この東海丘陵要素のひとつである交雑起源種トウカイコモウセンゴケ(Drosera tokaiensis)とその両親種であるモウセンゴケ(D. rotundifolia)及びコモウセンゴケ(D. spatulata)のモウセンゴケ属内での系統学的位置づけを明らかにするため,葉緑体DNA を用いた分子系統解析を行った。その結果,4 つの領域(petB 遺伝子イントロン,rbcL 遺伝子,rpl 16-rpl 14 遺伝子間領域及びtrnW-trnP 遺伝子間領域)において,トウカイコモウセンゴケとコモウセンゴケのDNA 配列が一致した。このことは,コモウセンゴケがトウカイコモウセンゴケの唯一の母親種であることを示唆する。また,rbcL 遺伝子配列を用いたベイズ法による系統解析を行い,現在のモウセンゴケ属の分布域を反映した系統樹を構築することができた。この系統樹から,トウカイコモウセンゴケの両親種であるモウセンゴケとコモウセンゴケは同じ単一系統群に属し,モウセンゴケ属内で近縁な関係であることが明らかになった。以上から,トウカイコモウセンゴケは遺伝的に近縁な両親種から起源したと考えられる

    The leucine-rich repeat receptor kinase QSK1 is a novel regulator of PRR-RBOHD complex and is employed by the bacterial effector HopF2Pto_{Pto} to modulate plant immunity

    Get PDF
    Plants detect pathogens using cell-surface pattern recognition receptors (PRRs) like EFR and FLS2, which recognize bacterial EF-Tu and flagellin, respectively. These PRRs, belonging to the leucine-rich repeat receptor kinase (LRR-RK) family, activate the production of reactive oxygen species via the NADPH oxidase RBOHD. The PRR-RBOHD complex is tightly regulated to prevent unwarranted or exaggerated immune responses. However, certain pathogenic effectors can subvert these regulatory mechanisms, thereby suppressing plant immunity. To elucidate the intricate dynamics of the PRR-RBOHD complex, we conducted a comparative co-immunoprecipitation analysis using EFR, FLS2, and RBOHD. We identified QSK1, an LRR-RK, as a novel component of the PRR-RBOHD complex. QSK1 functions as a negative regulator of PRR-triggered immunity (PTI) by downregulating the abundance of FLS2 and EFR. QSK1 is targeted by the bacterial effector HopF2Pto_{Pto}, a mono-ADP ribosyltransferase, resulting in the reduction of FLS2 and EFR levels through both transcriptional and transcription-independent pathways, thereby inhibiting PTI. Furthermore, HopF2Pto_{Pto} reduces transcript levels of PROSCOOP genes encoding important stress-regulated phytocytokines and their receptor MIK2. Importantly, HopF2Pto requires QSK1 for its accumulation and virulence functions within plants. In summary, our results provide novel insights into the mechanism by which HopF2Pto_{Pto} employs QSK1 to desensitize plants to pathogen attack. One Sentence Summary: QSK1, a novel component in the plant immune receptor complex, downregulates these receptors and phytocytokines, and is exploited by bacterial effector HopF2Pto_{Pto} to desensitize plants to pathogen attack

    Hyperglycemia in non-obese patients with type 2 diabetes is associated with low muscle mass: The Multicenter Study for Clarifying Evidence for Sarcopenia in Patients with Diabetes Mellitus

    Get PDF
    AIMS/INTRODUCTION: Hyperglycemia is a risk factor for sarcopenia when comparing individuals with and without diabetes. However, no studies have investigated whether the findings could be extrapolated to patients with diabetes with relatively higher glycemic levels. Here, we aimed to clarify whether glycemic control was associated with sarcopenia in patients with type 2 diabetes. MATERIALS AND METHODS: Study participants consisted of patients with type 2 diabetes (n = 746, the average age was 69.9 years) and an older general population (n = 2, 067, the average age was 68.2 years). Sarcopenia was defined as weak grip strength or slow usual gait speed and low skeletal mass index. RESULTS: Among patients with type 2 diabetes, 52 were diagnosed as having sarcopenia. The frequency of sarcopenia increased linearly with glycated hemoglobin (HbA1c) level, particularly in lean individuals (HbA1c <6.5%, 7.0%, ≥6.5% and <7.0%: 18.5%; HbA1c ≥7.0% and <8.0%: 20.3%; HbA1c ≥8.0%: 26.7%). The linear association was independent of major covariates, including anthropometric factors and duration of diabetes (HbA1c <6.5%: reference; ≥6.5% and <7.0%: odds ratio [OR] 4.38, P = 0.030; HbA1c ≥7.0% and <8.0%: 4.29, P = 0.024; HbA1c ≥8.0%: 7.82, P = 0.003). HbA1c level was specifically associated with low skeletal mass index (HbA1c ≥8.0%: OR 5.42, P < 0.001) rather than weak grip strength (OR 1.89, P = 0.058) or slow gait speed (OR 1.13, P = 0.672). No significant association was observed in the general population with a better glycemic profile. CONCLUSIONS: Poor glycemic control in patients with diabetes was associated with low muscle mass

    Genome Sequence of Striga asiatica Provides Insight into the Evolution of Plant Parasitism

    Get PDF
    Parasitic plants in the genus Striga, commonly known as witchweeds, cause major crop losses in sub-Saharan Africa and pose a threat to agriculture worldwide. An understanding of Striga parasite biology, which could lead to agricultural solutions, has been hampered by the lack of genome information. Here, we report the draft genome sequence of Striga asiatica with 34,577 predicted protein-coding genes, which reflects gene family contractions and expansions that are consistent with a three-phase model of parasitic plant genome evolution. Striga seeds germinate in response to host-derived strigolactones (SLs) and then develop a specialized penetration structure, the haustorium, to invade the host root. A family of SL receptors has undergone a striking expansion, suggesting a molecular basis for the evolution of broad host range among Striga spp. We found that genes involved in lateral root development in non-parasitic model species are coordinately induced during haustorium development in Striga, suggesting a pathway that was partly co-opted during the evolution of the haustorium. In addition, we found evidence for horizontal transfer of host genes as well as retrotransposons, indicating gene flow to S. asiatica from hosts. Our results provide valuable insights into the evolution of parasitism and a key resource for the future development of Striga control strategies.Peer reviewe

    The tomato genome: implications for plant breeding, genomics and evolution

    No full text
    corecore