175 research outputs found
Development of a hybrid model to interpolate monthly precipitation maps incorporating the orographic influence
[EN] This paper proposes an interpolation model for monthly rainfall in large areas of complex orography. It has been implemented in the Iberian Peninsula (continental territories of Spain and Portugal), Balearic and Canary Islands covering a territory of almost 600.000km(2). To do this a data set that comprises a total number of 11,822 monthly precipitation series has been created (11,042 provided by the Spanish Meteorological Agency and 780 provided by the National Water Resources Information System of the Portuguese Water Institute). The data set covers the period from October 1940 until September 2005. The interpolation model has been based on the assumption of two different components on monthly precipitation. The first component reflects local and seasonal characteristics and 24 different mean monthly precipitation maps (12) and SDs maps (12) compose it. It considers the varying influence of physiographic variables such as altitude and orientation. The second precipitation component reflects the synoptic pattern that dominated each month of the series and it is composed by series of anomalies of monthly precipitation (780). Anomalies have been interpolated by means of ordinary kriging once local spatial continuity was assumed. Gridded maps of each variable have been developed at 200m resolution following a hybrid methodology that implements two different interpolation techniques. The first technique applies a regression analysis to derive maps depending on altitude and orientation; the second one is a weighting technique to consider the non-linearity of the precipitation/altitude dependence. Cross validation has been applied to estimate the goodness of both techniques. Results show an average annual precipitation of 655mm/year. Although this figure is only 4% less than the estimate of MAGRAMA (2004), regional and local differences are highlighted when the spatial distribution is considered. The model constitutes a comprehensive implementation considering the availability of historical records and the need of avoiding slow calculations in large territories.Ministry of Economy, Industry and Competitiveness, Grant/Award Number: CGL2014-52571-RÁlvarez-Rodríguez, J.; Llasat, M.; Estrela Monreal, T. (2019). Development of a hybrid model to interpolate monthly precipitation maps incorporating the orographic influence. International Journal of Climatology. 39(10):3962-3975. https://doi.org/10.1002/joc.6051S396239753910AEMET.2011Atlas Climático Ibérico. (Iberian Climate Atlas) VV.AA. Agencia Estatal de Meteorología. Ministerio de Medio Ambiente. ISBN: 978‐84‐7837‐079‐5. Available at:http://www.aemet.es/documentos/es/conocermas/publicaciones/Atlas-climatologico/Atlas.pdf[Accessed 14th February 2018]Álvarez‐Rodríguez J.2011.Estimación de la distribución espacial de la precipitación en zonas montañosas mediante métodos geoestadísticos (Analysis of spatial distribution of precipitation in mountainous areas by means of geostatistical analysis). PhD Thesis. Polytechnic University of Madrid Higher Technical School of Civil EngineeringÁlvarez-Rodríguez, J., Llasat, M. C., & Estrela, T. (2017). Analysis of geographic and orographic influence in Spanish monthly precipitation. International Journal of Climatology, 37, 350-362. doi:10.1002/joc.5007Barros, A. P., Kim, G., Williams, E., & Nesbitt, S. W. (2004). Probing orographic controls in the Himalayas during the monsoon using satellite imagery. Natural Hazards and Earth System Sciences, 4(1), 29-51. doi:10.5194/nhess-4-29-2004Barstad, I., Grabowski, W. W., & Smolarkiewicz, P. K. (2007). Characteristics of large-scale orographic precipitation: Evaluation of linear model in idealized problems. Journal of Hydrology, 340(1-2), 78-90. doi:10.1016/j.jhydrol.2007.04.005Creutin, J. D., & Obled, C. (1982). Objective analyses and mapping techniques for rainfall fields: An objective comparison. Water Resources Research, 18(2), 413-431. doi:10.1029/wr018i002p00413Daly, C., Neilson, R. P., & Phillips, D. L. (1994). A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain. Journal of Applied Meteorology, 33(2), 140-158. doi:10.1175/1520-0450(1994)0332.0.co;2Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., … Pasteris, P. P. (2008). Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology, 28(15), 2031-2064. doi:10.1002/joc.1688Daly, C., Slater, M. E., Roberti, J. A., Laseter, S. H., & Swift, L. W. (2017). High-resolution precipitation mapping in a mountainous watershed: ground truth for evaluating uncertainty in a national precipitation dataset. International Journal of Climatology, 37, 124-137. doi:10.1002/joc.4986Dhar, O. N., & Nandargi, S. (2004). Rainfall distribution over the Arunachal Pradesh Himalayas. Weather, 59(6), 155-157. doi:10.1256/wea.87.03Falivene, O., Cabrera, L., Tolosana-Delgado, R., & Sáez, A. (2010). Interpolation algorithm ranking using cross-validation and the role of smoothing effect. A coal zone example. Computers & Geosciences, 36(4), 512-519. doi:10.1016/j.cageo.2009.09.015Fiering, B., & Jackson, B. (1971). Synthetic Streamflows. Water Resources Monograph. doi:10.1029/wm001Gambolati, G., & Volpi, G. (1979). A conceptual deterministic analysis of the kriging technique in hydrology. Water Resources Research, 15(3), 625-629. doi:10.1029/wr015i003p00625Gómez-Hernández, J. J., Cassiraga, E. F., Guardiola-Albert, C., & Rodríguez, J. Á. (2001). Incorporating Information from a Digital Elevation Model for Improving the Areal Estimation of Rainfall. geoENV III — Geostatistics for Environmental Applications, 67-78. doi:10.1007/978-94-010-0810-5_6Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228(1-2), 113-129. doi:10.1016/s0022-1694(00)00144-xHanson, C. L. (1982). DISTRIBUTION AND STOCHASTIC GENERATION OF ANNUAL AND MONTHLY PRECIPITATION ON A MOUNTAINOUS WATERSHED IN SOUTHWEST IDAHO. Journal of the American Water Resources Association, 18(5), 875-883. doi:10.1111/j.1752-1688.1982.tb00085.xLloyd, C. D. (2005). Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. Journal of Hydrology, 308(1-4), 128-150. doi:10.1016/j.jhydrol.2004.10.026Marquı́nez, J., Lastra, J., & Garcı́a, P. (2003). Estimation models for precipitation in mountainous regions: the use of GIS and multivariate analysis. Journal of Hydrology, 270(1-2), 1-11. doi:10.1016/s0022-1694(02)00110-5Martínez-Cob, A. (1996). Multivariate geostatistical analysis of evapotranspiration and precipitation in mountainous terrain. Journal of Hydrology, 174(1-2), 19-35. doi:10.1016/0022-1694(95)02755-6Mitáš, L., & Mitášová, H. (1988). General variational approach to the interpolation problem. Computers & Mathematics with Applications, 16(12), 983-992. doi:10.1016/0898-1221(88)90255-6Naoum, S., & Tsanis, I. K. (2004). Orographic Precipitation Modeling with Multiple Linear Regression. Journal of Hydrologic Engineering, 9(2), 79-102. doi:10.1061/(asce)1084-0699(2004)9:2(79)Ninyerola, M., Pons, X., & Roure, J. M. (2006). Monthly precipitation mapping of the Iberian Peninsula using spatial interpolation tools implemented in a Geographic Information System. Theoretical and Applied Climatology, 89(3-4), 195-209. doi:10.1007/s00704-006-0264-2Pebesma, E. J. (2004). Multivariable geostatistics in S: the gstat package. Computers & Geosciences, 30(7), 683-691. doi:10.1016/j.cageo.2004.03.012Rotunno, R., & Ferretti, R. (2001). Mechanisms of Intense Alpine Rainfall. Journal of the Atmospheric Sciences, 58(13), 1732-1749. doi:10.1175/1520-0469(2001)0582.0.co;2Singh, P., Ramasastri, K. S., & Kumar, N. (1995). Topographical Influence on Precipitation Distribution in Different Ranges of Western Himalayas. Hydrology Research, 26(4-5), 259-284. doi:10.2166/nh.1995.0015Tabios, G. Q., & Salas, J. D. (1985). A COMPARATIVE ANALYSIS OF TECHNIQUES FOR SPATIAL INTERPOLATION OF PRECIPITATION. Journal of the American Water Resources Association, 21(3), 365-380. doi:10.1111/j.1752-1688.1985.tb00147.xTHIESSEN, A. H. (1911). PRECIPITATION AVERAGES FOR LARGE AREAS. Monthly Weather Review, 39(7), 1082-1089. doi:10.1175/1520-0493(1911)392.0.co;2Tobin, C., Nicotina, L., Parlange, M. B., Berne, A., & Rinaldo, A. (2011). Improved interpolation of meteorological forcings for hydrologic applications in a Swiss Alpine region. Journal of Hydrology, 401(1-2), 77-89. doi:10.1016/j.jhydrol.2011.02.010Weber, D., & Englund, E. (1992). Evaluation and comparison of spatial interpolators. Mathematical Geology, 24(4), 381-391. doi:10.1007/bf00891270Weber, D. D., & Englund, E. J. (1994). Evaluation and comparison of spatial interpolators II. Mathematical Geology, 26(5), 589-603. doi:10.1007/bf02089243World Climate Programme.1985. World Meteorological Organization. Review of Requirements for Area‐Averaged Precipitation Data Surface‐Based and Space‐Based Estimation Techniques Space and Time Sampling Accurancy and Error; Data Exchange. Boulder Colorado EE.UU. 17–1
Aerostructural design optimization of a 100-passenger regional jet with surrogate-based mission analysis
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106481/1/AIAA2013-4372.pd
A Geographer Looks at Spatial Information Theory
Abstract. Geographic information is defined as a subset of spatial information, specific to the spatiotemporal frame of the Earth’s surface. Thus geographic information theory inherits the results of spatial information theory, but adds results that reflect the specific properties of geographic information. I describe six general properties of geographic information, and show that in some cases specialization has assumed other properties that are less generally observed. A recognition of the distinction between geographic and spatial would allow geographic information theory to achieve greater depth and utility.
Utilizing image texture to detect land-cover change in Mediterranean coastal wetlands
Land-use/cover change dynamics were investigated in a Mediterranean coastal wetland. Change Vector Analysis (CVA) without and with image texture derived from the co-occurrence matrix and variogram were evaluated for detecting land-use/cover change. Three Landsat Thematic Mapper (TM) scenes recorded on July 1985, 1993 and 2005 were used, minimizing change detection error caused by seasonal differences. Images were geometrically, atmospherically and radiometrically corrected. CVA without and with texture measures were implemented and assessed using reference images generated by object-based supervised classification. These outputs were used for cross-classification to determine the ‘from–to’ change used to compare between techniques. The Landsat TM image bands together with the variogram yielded the most accurate change detection results, with Kappa statistics of 0.7619 and 0.7637 for the 1985–1993 and 1993–2005 image pairs, respectively
- …