356 research outputs found

    Genotoxic effects of 5-bromouracil on cytomorphological characters of Cichorium intybus L.

    Get PDF
    This work was done to study the effect of base analogue 5-bromouracil (5-BU) on the medicinal herb, Cichorium intybus. 5-BU induced miss pairing during the DNA replication. The seeds of C. intybus were treated with different concentrations of 5-BU. Variations in some parameters such as seed germination, seedling survival, seedling height, pollen fertility, days to flowering, days to maturity, number of leaves per plant, plant height, and chromosome behavior were studied in M1 generation. A positive correlation between increasing concentrations of mutagen and various cytomorphological characters of C. intybus was observed.Key words: Chromosomal aberrations, Cichorium intybus, morphological variations, 5-bromouracil

    The Economic Costs of Cardiovascular Disease, Diabetes Mellitus, and Associated Complications in South Asia: A Systematic Review

    Get PDF
    Background: More than 80% of global deaths caused by cardiovascular disease (CVD) and diabetes mellitus (DM) occur in developing countries. The burden of noncommunicable disease in South Asia is increasing rapidly. Objectives: To estimate the costs of CVD and the costs of DM to individuals and society in Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan, and Sri Lanka. Methods: We systematically searched six health and economic databases for studies identifying costs related to CVD or DM and their respective complications. Costs were extracted from included studies and converted to US $ for the price year 2015 to enable meaningful comparisons. Results: Of the 71 articles suitable for full-text review, 29 studies met the inclusion criteria. Most were cost-of-illness studies (n = 27) and were from the patient perspective (n = 23). Most collected data since 2000 (n = 23) and included data from India (n = 24). No studies included longitudinal costs at the patient level. Medical costs for routine management of CVD and DM were broadly similar. These costs escalate significantly once complications occur, which require treatment, particularly for stroke, major coronary events, and amputations. Costs are mainly borne by the individual and family. Some included studies modeled rapidly rising future costs. Most studies included had methodological weaknesses. Conclusions: Marked increases in costs have been identified when complications of these chronic diseases occur, underlining the importance of secondary prevention approaches in disease management in South Asia. Higher quality studies, especially those that include longitudinal costs, are required to establish more robust cost estimates

    A Rapid FACS-Based Strategy to Isolate Human Gene Knockin and Knockout Clones

    Get PDF
    Gene targeting protocols for mammalian cells remain inefficient and labor intensive. Here we describe FASTarget, a rapid, fluorescent cell sorting based strategy to isolate rare gene targeting events in human somatic cells. A fluorescent protein is used as a means for direct selection of targeted clones obviating the need for selection and outgrowth of drug resistant clones. Importantly, the use of a promoter-less, ATG-less construct greatly facilitates the recovery of correctly targeted cells. Using this method we report successful gene targeting in up to 94% of recovered human somatic cell clones. We create functional EYFP-tagged knockin clones in both transformed and non-transformed human somatic cell lines providing a valuable tool for mammalian cell biology. We further demonstrate the use of this technology to create gene knockouts. Using this generally applicable strategy we can recover gene targeted clones within approximately one month from DNA construct delivery to obtaining targeted monoclonal cell lines

    Distance-Based and Low Energy Adaptive Clustering Protocol for Wireless Sensor Networks

    Get PDF
    A wireless sensor network (WSN) comprises small sensor nodes with limited energy capabilities. The power constraints of WSNs necessitate efficient energy utilization to extend the overall network lifetime of these networks. We propose a distance-based and low-energy adaptive clustering (DISCPLN) protocol to streamline the green issue of efficient energy utilization in WSNs. We also enhance our proposed protocol into the multi-hop-DISCPLN protocol to increase the lifetime of the network in terms of high throughput with minimum delay time and packet loss. We also propose the mobile-DISCPLN protocol to maintain the stability of the network. The modelling and comparison of these protocols with their corresponding benchmarks exhibit promising results

    Primary skin fibroblasts as a model of Parkinson's disease

    Get PDF
    Parkinson's disease is the second most frequent neurodegenerative disorder. While most cases occur sporadic mutations in a growing number of genes including Parkin (PARK2) and PINK1 (PARK6) have been associated with the disease. Different animal models and cell models like patient skin fibroblasts and recombinant cell lines can be used as model systems for Parkinson's disease. Skin fibroblasts present a system with defined mutations and the cumulative cellular damage of the patients. PINK1 and Parkin genes show relevant expression levels in human fibroblasts and since both genes participate in stress response pathways, we believe fibroblasts advantageous in order to assess, e.g. the effect of stressors. Furthermore, since a bioenergetic deficit underlies early stage Parkinson's disease, while atrophy underlies later stages, the use of primary cells seems preferable over the use of tumor cell lines. The new option to use fibroblast-derived induced pluripotent stem cells redifferentiated into dopaminergic neurons is an additional benefit. However, the use of fibroblast has also some drawbacks. We have investigated PARK6 fibroblasts and they mirror closely the respiratory alterations, the expression profiles, the mitochondrial dynamics pathology and the vulnerability to proteasomal stress that has been documented in other model systems. Fibroblasts from patients with PARK2, PARK6, idiopathic Parkinson's disease, Alzheimer's disease, and spinocerebellar ataxia type 2 demonstrated a distinct and unique mRNA expression pattern of key genes in neurodegeneration. Thus, primary skin fibroblasts are a useful Parkinson's disease model, able to serve as a complement to animal mutants, transformed cell lines and patient tissues

    Targeting of the Human Coagulation Factor IX Gene at rDNA Locus of Human Embryonic Stem Cells

    Get PDF
    BACKGROUND: Genetic modification is a prerequisite to realizing the full potential of human embryonic stem cells (hESCs) in human genetic research and regenerative medicine. Unfortunately, the random integration methods that have been the primary techniques used keep creating problems, and the primary alternative method, gene targeting, has been effective in manipulating mouse embryonic stem cells (mESCs) but poorly in hESCs. METHODOLOGY/PRINCIPAL FINDINGS: Human ribosomal DNA (rDNA) repeats are clustered on the short arm of acrocentric chromosomes. They consist of approximately 400 copies of the 45S pre-RNA (rRNA) gene per haploid. In the present study, we targeted a physiological gene, human coagulation factor IX, into the rDNA locus of hESCs via homologous recombination. The relative gene targeting efficiency (>50%) and homologous recombination frequency (>10(-5)) were more than 10-fold higher than those of loci targeted in previous reports. Meanwhile, the targeted clones retained both a normal karyotype and the main characteristics of ES cells. The transgene was found to be stably and ectopically expressed in targeted hESCs. CONCLUSION/SIGNIFICANCE: This is the first targeting of a human physiological gene at a defined locus on the hESC genome. Our findings indicate that the rDNA locus may serve as an ideal harbor for transgenes in hESCs

    Is inhibition of kinase activity the only therapeutic strategy for LRRK2-associated Parkinson's disease?

    Get PDF
    Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are a common cause of familial Parkinson's disease (PD). Variation around the LRRK2 locus also contributes to the risk of sporadic PD. The LRRK2 protein contains a central catalytic region, and pathogenic mutations cluster in the Ras of complex protein C terminus of Ras of complex protein (mutations N1437H, R1441G/C and Y1699C) and kinase (G2019S and I2020T) domains. Much attention has been focused on the kinase domain, because kinase-dead versions of mutant LRRK2 are less toxic than kinase-active versions of the same proteins. Furthermore, kinase inhibitors may be able to mimic this effect in mouse models, although the currently tested inhibitors are not completely specific. In this review, we discuss the recent progress in the development of specific LRRK2 kinase inhibitors. We also discuss non-kinase-based therapeutic strategies for LRRK2-associated PD as it is possible that different approaches may be needed for different mutations

    The ubiquitin-like molecule interferon-stimulated gene 15 (ISG15) is a potential prognostic marker in human breast cancer

    Get PDF
    INTRODUCTION: ISG15 is an ubiquitin-like molecule that is strongly upregulated by type I interferons as a primary response to diverse microbial and cellular stress stimuli. However, alterations in the ISG15 signalling pathway have also been found in several human tumour entities. To the best of our knowledge, in the current study we present for the first time a systematic characterisation of ISG15 expression in human breast cancer and normal breast tissue both at the mRNA and protein level. METHOD: Using semiquantitative real-time PCR, cDNA dot-blot hybridisation and immunohistochemistry, we systematically analysed ISG15 expression in invasive breast carcinomas (n = 910) and normal breast tissues (n = 135). ISG15 protein expression was analysed in two independent cohorts on tissue microarrays; in an initial evaluation set of 179 breast carcinomas and 51 normal breast tissues; and in a second large validation set of 646 breast carcinomas and 10 normal breast tissues. In addition, a collection of benign and malignant mammary cell lines (n = 9) were investigated for ISG15 expression. RESULTS: ISG15 was overexpressed in breast carcinoma cells compared with normal breast tissue, both at the RNA and protein level. Recurrence-free (p = 0.030), event-free (p = 0.001) and overall (p = 0.001) survival analyses showed a significant correlation between ISG15 overexpression and unfavourable prognosis. CONCLUSION: Therefore, ISG15 may represent a novel breast tumour marker with prognostic significance and may be helpful in selecting patients for and predicting response to the treatment of human breast cancer
    corecore