1,128 research outputs found

    Acoustic driving of rotor

    Get PDF
    Sound waves are utilized to apply torque to a body in an enclosure of square cross section, by driving two transducers located on perpendicular walls of an enclosure, at the same frequency but at a predetermined phase difference such as 90 degrees. The torque is a first order effect, so that large and controlled rotational speeds can be obtained

    High resolution Ge/Li/ spectrometer reduces rate-dependent distortions at high counting rates

    Get PDF
    Modified spectrometer system with a low-noise preamplifier reduces rate-dependent distortions at high counting rates, 25,000 counts per second. Pole-zero cancellation minimizes pulse undershoots due to multiple time constants, baseline restoration improves resolution and prevents spectral shifts

    Effects of mechanical strain on thermal denaturation of DNA

    Full text link
    As sections of a strand duplexed DNA denature when exposed to high temperature, the excess linking number is taken up by the undenatured portions of the molecule. The mechanical energy that arises because of the overwinding of the undenatured sections can, in principle, alter the nature of the thermal denaturation process. Assuming that the strains associated with this overwinding are not relieved, we find that a simple model of strain-altered melting leads to a suppression of the melting transition when the unaltered transition is continuous. When the melting transition is first order in the absence of strain associated with overwinding, the modification is to a third order phase transition.Comment: 4 pages, 5 figures, RevTe

    Radio Galaxy Zoo: Cosmological Alignment of Radio Sources

    Get PDF
    We study the mutual alignment of radio sources within two surveys, FIRST and TGSS. This is done by producing two position angle catalogues containing the preferential directions of respectively 3005930\,059 and 1167411\,674 extended sources distributed over more than 70007\,000 and 1700017\,000 square degrees. The identification of the sources in the FIRST sample was performed in advance by volunteers of the Radio Galaxy Zoo project, while for the TGSS sample it is the result of an automated process presented here. After taking into account systematic effects, marginal evidence of a local alignment on scales smaller than 2.5deg2.5\deg is found in the FIRST sample. The probability of this happening by chance is found to be less than 22 per cent. Further study suggests that on scales up to 1.5deg1.5\deg the alignment is maximal. For one third of the sources, the Radio Galaxy Zoo volunteers identified an optical counterpart. Assuming a flat Λ\LambdaCDM cosmology with Ωm=0.31,ΩΛ=0.69\Omega_m = 0.31, \Omega_\Lambda = 0.69, we convert the maximum angular scale on which alignment is seen into a physical scale in the range [19,38][19, 38] Mpc h701h_{70}^{-1}. This result supports recent evidence reported by Taylor and Jagannathan of radio jet alignment in the 1.41.4 deg2^2 ELAIS N1 field observed with the Giant Metrewave Radio Telescope. The TGSS sample is found to be too sparsely populated to manifest a similar signal

    Radio Galaxy Zoo: Knowledge Transfer Using Rotationally Invariant Self-Organising Maps

    Full text link
    With the advent of large scale surveys the manual analysis and classification of individual radio source morphologies is rendered impossible as existing approaches do not scale. The analysis of complex morphological features in the spatial domain is a particularly important task. Here we discuss the challenges of transferring crowdsourced labels obtained from the Radio Galaxy Zoo project and introduce a proper transfer mechanism via quantile random forest regression. By using parallelized rotation and flipping invariant Kohonen-maps, image cubes of Radio Galaxy Zoo selected galaxies formed from the FIRST radio continuum and WISE infrared all sky surveys are first projected down to a two-dimensional embedding in an unsupervised way. This embedding can be seen as a discretised space of shapes with the coordinates reflecting morphological features as expressed by the automatically derived prototypes. We find that these prototypes have reconstructed physically meaningful processes across two channel images at radio and infrared wavelengths in an unsupervised manner. In the second step, images are compared with those prototypes to create a heat-map, which is the morphological fingerprint of each object and the basis for transferring the user generated labels. These heat-maps have reduced the feature space by a factor of 248 and are able to be used as the basis for subsequent ML methods. Using an ensemble of decision trees we achieve upwards of 85.7% and 80.7% accuracy when predicting the number of components and peaks in an image, respectively, using these heat-maps. We also question the currently used discrete classification schema and introduce a continuous scale that better reflects the uncertainty in transition between two classes, caused by sensitivity and resolution limits

    Theory of monolayers with boundaries: Exact results and Perturbative analysis

    Full text link
    Domains and bubbles in tilted phases of Langmuir monolayers contain a class of textures knows as boojums. The boundaries of such domains and bubbles may display either cusp-like features or indentations. We derive analytic expressions for the textures within domains and surrounding bubbles, and for the shapes of the boundaries of these regions. The derivation is perturbative in the deviation of the bounding curve from a circle. This method is not expected to be accurate when the boundary suffers large distortions, but it does provide important clues with regard to the influence of various energetic terms on the order-parameter texture and the shape of the domain or bubble bounding curve. We also look into the effects of thermal fluctuations, which include a sample-size-dependent effective line tension.Comment: replaced with published version, 21 pages, 16 figures include

    Detecting the Cold Spot as a Void with the Non-Diagonal Two-Point Function

    Full text link
    The anomaly in the Cosmic Microwave Background known as the "Cold Spot" could be due to the existence of an anomalously large spherical (few hundreds Mpc/h radius) underdense region, called a "Void" for short. Such a structure would have an impact on the CMB also at high multipoles l through Lensing. This would then represent a unique signature of a Void. Modeling such an underdensity with an LTB metric, we show that the Lensing effect leads to a large signal in the non-diagonal two-point function, centered in the direction of the Cold Spot, such that the Planck satellite will be able to confirm or rule out the Void explanation for the Cold Spot, for any Void radius with a Signal-to-Noise ratio of at least O(10).Comment: v1: 6 pages, 2 figures; v2: 6 pages, 2 figures, text improved, to appear on JCA

    HST and Spitzer imaging of red and blue galaxies at z~2.5: A correlation between size and star formation activity from compact quiescent galaxies to extended star forming galaxies

    Full text link
    We present HST NICMOS+ACS and Spitzer IRAC+MIPS observations of 41 galaxies at 2<z<3.5 in the FIRES MS1054 field with red and blue rest-frame optical colors. About half of the galaxies are very compact (effective radii r_e < 1 kpc) at rest-frame optical wavelengths, the others are extended (1< r_e < 10 kpc). For reference, 1 kpc corresponds to 0.12 arcsec at z=2.5 in the adopted cosmology. We separate actively star forming galaxies from quiescent galaxies by modeling their rest-frame UV-NIR SEDs. The star forming galaxies span the full range of sizes, while the quiescent galaxies all have r_e<2kpc. In the redshift range where MIPS 24 micron imaging is a sensitive probe of re-radiated dust emission (z<2.5), the 24 micron fluxes confirm that the light of the small quiescent galaxies is dominated by old stars, rather than dust-enshrouded star formation or AGN activity. The inferred surface mass densities and velocity dispersions for the quiescent galaxies are very high compared to those in local galaxies. The galaxies follow a Kormendy relation (between surface brightness and size) with approximately the same slope as locally, but shifted to brighter surface brightnesses, consistent with a mean stellar formation redshift of z_f~5. This paper demonstrates a direct relation between star formation activity and size at z~2.5, and the existence of a significant population of massive, extremely dense, old stellar systems without readily identifiable counterparts in the local universe.Comment: Accepted for publication in Ap

    Parametric Generation of Second Sound by First Sound in Superfluid Helium

    Full text link
    We report the first experimental observation of parametric generation of second sound (SS) by first sound (FS) in superfluid helium in a narrow temperature range in the vicinity of TλT_\lambda . The temperature dependence of the threshold FS amplitude is found to be in a good quantitative agreement with the theory suggested long time ago and corrected for a finite geometry. Strong amplitude fluctuations and two types of the SS spectra are observed above the bifurcation. The latter effect is quantitatively explained by the discreteness of the wave vector space and the strong temperature dependence of the SS dissipation length.Comment: 4 pages, 4 postscript figures, REVTE
    corecore