3,872 research outputs found
Dynamic stability of a bearingless circulation control rotor blade in hover
The aeroelastic stability of flap bending, lead-lag bending and torsion of a bearingless circulation control rotor blade in hover is investigated using a finite element formulation based on Hamilton's principle. The flexbeam, the torque tube and the outboard blade are discretized into beam elements, each with fifteen nodal degrees of freedom. Quasisteady strip theory is used to evaluate the aerodynamic forces and the airfoil characteristics are represented either in the form of simple analytical expressions or in the form of data tables. A correlation study of analytical results with the experimental data is attempted for selected bearingless blade configurations with conventional airfoil characteristics
Aeroelastic Stability of Rotor Blades Using Finite Element Analysis
The flutter stability of flap bending, lead-lag bending, and torsion of helicopter rotor blades in hover is investigated using a finite element formulation based on Hamilton's principle. The blade is divided into a number of finite elements. Quasi-steady strip theory is used to evaluate the aerodynamic loads. The nonlinear equations of motion are solved for steady-state blade deflections through an iterative procedure. The equations of motion are linearized assuming blade motion to be a small perturbation about the steady deflected shape. The normal mode method based on the coupled rotating natural modes is used to reduce the number of equations in the flutter analysis. First the formulation is applied to single-load-path blades (articulated and hingeless blades). Numerical results show very good agreement with existing results obtained using the modal approach. The second part of the application concerns multiple-load-path blades, i.e. bearingless blades. Numerical results are presented for several analytical models of the bearingless blade. Results are also obtained using an equivalent beam approach wherein a bearingless blade is modelled as a single beam with equivalent properties. Results show the equivalent beam model
Calculated Hovering Helicopter Flight Dynamics with a Circulation Controlled Rotor
The influence of the rotor blowing coefficient on the calculated roots of the longitudinal and lateral motion was examined for a range of values of the rotor lift and the blade flap frequency. The control characteristics of a helicopter with a circulation controlled rotor are discussed. The principal effect of the blowing is a reduction in the rotor speed stability derivative. Above a critical level of blowing coefficient, which depends on the flap frequency and rotor lift, negative speed stability is produced and the dynamic characteristics of the helicopter are radically altered
Further studies of stall flutter and nonlinear divergence of two-dimensional wings
An experimental investigation is made of the purely torsional stall flutter of a two-dimensional wing pivoted about the midchord, and also of the bending-torsion stall flutter of a two-dimensional wing pivoted about the quarterchord. For the purely torsional flutter case, large amplitude limit cycles ranging from + or - 11 to + or - 160 degrees were observed. Nondimensional harmonic coefficients were extracted from the free transient vibration tests for amplitudes up to 80 degrees. Reasonable nondimensional correlation was obtained for several wing configurations. For the bending-torsion flutter case, large amplitude coupled limit cycles were observed with torsional amplitudes as large as + or - 40 degrees. The torsion amplitudes first increased, then decreased with increasing velocity. Additionally, a small amplitude, predominantly torsional flutter was observed when the static equilibrium angle was near the stall angle
Flap-lag-torsion flutter analysis of a constant life rotor
The constant lift rotor (CLR) employs a control input of pitch moment to several airfoil sections which are free to pivot on a continuous spar, allowing them to change their pitch to obtain the desired lift. A flap-lag-torsion flutter analysis of a constant lift rotor blade in hover was developed. The blade model assumes rigid body flap and lead-lag motions at the root hinge and each strip undergoes an independent torsional motion. The results are presented in terms of root locus plots of complex eigenvalues as a function of thrust. The effects of several parameters (including structural damping, center of gravity and elastic axis offset from aerodynamic center, compressibility pitch-lag and pitch-flap coupling) on the blade dynamics are examined. With a suitable combination of lag damper and pitch-flap coupling, it is possible to design a constant lift rotor blade free from flutter instability
Nonlinear dynamic response of wind turbine rotors
The nonlinear equations of motion for a rigid rotor restrained by three flexible springs representing the flapping, lagging and feathering motions are derived using Lagrange's equations for arbitrary angular rotations. These are reduced to a consistent set of nonlinear equations using nonlinear terms up to third order
Magnetoresistance of atomic-sized contacts: an ab-initio study
The magnetoresistance (MR) effect in metallic atomic-sized contacts is
studied theoretically by means of first-principle electronic structure
calculations. We consider three-atom chains formed from Co, Cu, Si, and Al
atoms suspended between semi-infinite Co leads. We employ the screened
Korringa-Kohn-Rostoker Green's function method for the electronic structure
calculation and evaluate the conductance in the ballistic limit using the
Landauer approach. The conductance through the constrictions reflects the
spin-splitting of the Co bands and causes high MR ratios, up to 50%. The
influence of the structural changes on the conductance is studied by
considering different geometrical arrangements of atoms forming the chains. Our
results show that the conductance through s-like states is robust against
geometrical changes, whereas the transmission is strongly influenced by the
atomic arrangement if p or d states contribute to the current.Comment: Revised version, presentation of results is improved, figure 2 is
splitted to two figure
Transient Thermal Diffusion in Conical Bodies
A numerical solution has been obtained for transient thermal diffusion in a cone in which chemical, electrical or nuclear energy at a constant rate. An implicit method is used to set up the finite difference equations and detailed analysis is carried out to trace the time history of the temperature distribution from the initial stages to the steady state. The effect of the rate of heat generation on the time required to reach steady state thermal distribution has also been depicted
Where To Look? Automating Attending Behaviors of Virtual Human Characters
This research proposes a computational framework for generating visual attending behavior in an embodied simulated human agent. Such behaviors directly control eye and head motions, and guide other actions such as locomotion and reach. The implementation of these concepts, referred to as the AVA, draws on empirical and qualitative observations known from psychology, human factors and computer vision. Deliberate behaviors, the analogs of scanpaths in visual psychology, compete with involuntary attention capture and lapses into idling or free viewing. Insights provided by implementing this framework are: a defined set of parameters that impact the observable effects of attention, a defined vocabulary of looking behaviors for certain motor and cognitive activity, a defined hierarchy of three levels of eye behavior (endogenous, exogenous and idling) and a proposed method of how these types interact
Growth of Hydromagnetic Shock Waves
In this technical note we consider the influence of a transverse magnetic
field on the formation of a shocks wave in an electrically conducting field. We conclude
that the presence of a transverse magnetic field is Conducive to the growth of compression
waves and the decay of the expansion waves
- …