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ABSTRACT

The nonlinear equations of motion for a rigid rr. tor restrained
by three flexible springs representing, respectively, the? -Mapping
lagging and feathering motions are derived usLsc Lri-jranc:,-;'.:? equa-
tions, for arbitrary angular rotations. Thess &: •=: reduced to a
consistent set of nonlinear equations using rr_.;:l '= •••.-•.ar terrio \ip to
third order. 'The complete analysis is divided into thre.i; parts
A, B and C.A,

Part A consists of forced response of tvv.i-dcgri^e .'lapping-
lagging rotor under the excitation of pure gravitational fj.;-.'id
(i.e., no aerodynamic forces). Both forced osci"! i at ions a.r- v.'ell
as parametric resonance are invest iĝ l ted u:->incj the «=:irii^rii. balance
method and solving the resulting nonlinear alcehraic oq---.r:j.c-ns
numerically by Nev;ton-Raphson iterative r.̂ chn i.qur;. ? -f fect^ of
initial coning angle and flapping to lagging t.i'.-o-i'.iHnoy ratio £ire
discussed. For relatively small initial coning angle (about 9 )
tho nonlinearity becomes softening spring type- and large co-spied
responses are possible for rotational frequencies significantly
lower than the lagging frequency.

In Part B, the effect of aerodynamic forces en the dynamic
response of two-degree flapping-lagging rotor is investigated..
Significant aerodynamic effects are found for some of the previous
forced oscillations and parametric resonances. Also, self-excited
aerodynamic flutter instabilities are obtained after neglecting
the gravity forces. Effects of vaious parameters like Lock number,
inflow ratio, initial coning angle, structural damping, etc. are
discussed. Also, the effect of a wind shear velocity gradient is
investigated, and is found to produce little effect on the lagging
response but appreciable effect on the flapping amplitude.



In Part C, the effect of third degree of motion, feathering,"""
is considered. First, the forced response of flapping-lagging-
feathering rotor under gravitational field and with wind shear
flow is studied. It is found that even for relatively torsionally
stiff rotor, the flapping amplitude is increased and the feathering
response is appreciable. For the self-excited aerodynamic flutter
instability, it is found that the feathering motion can reduce the
linear instability speed appreciably. Also, the limit cycle flutter
solution of a typical configuration shows a substantial nonlinear
softening spring behavior. This reveals the possibility of sus-
tained limit cycle flutter oscillations occurring well belov; the
linear instability speed if large enough disturbances arc. given to
the rotor.
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SECTION 1

INTRODUCTION

For centuries, wind energy systems have been used as sources

of power in different forms like sailing of ships, pumping of

water, grinding of grain, generation of electricity, etc. In

the middle of the twentieth century, the interest in these sys-

tems declined because of the poor economic viability with other

power generation systems. However, with the recent energy crisis

and also because of readily available technology of fixed and

rotary wing aircrafts,wind power is being considered as one of

the potential sources of clean nondepleting energy.

Many types of wind power systems have been tried in the past

to trap the thinly distributed wind energy. Most of the wind

machines can be broadly classified into three categories depend-

ing upon the orientation of the axis of rotation, as Horizontal-

axis wind rotor, Vertical-axis wind rotor and Cross-wind rotor.

The Majority of these machines are based on the principle of

Airfoil lift. At the present time, more attention has been given

to the Horizontal-axis wind turbine partially because of its

better theoretical understanding. So all the latter discussion

and analysis is related mainly to this type of machine. (For

general material see Refs. 1-8.)

Because of the low density of air, large amounts of air must

be tapped to provide an appreciable amount of power. It is

generally true that the cost of power produced is reduced with

increasing size of wind driven plant, i.e., increasing the size

of the rotor. However, one of the prime design problems of the

big wind turbine system is the dynamics of rotor blades and the

supporting tower and this has direct bearing on the operating life

of the rotor. To keep low the cost of power production it is

essential that the rotor should have long efficient life, i.e.,

subjected to less vibratory fatigue loads. Thus,±here is need to

understand the dynamic characteristics of the wind turbine system.



In some aspects, the dynamics of the big wind turbine is

quite similar to that of the rotary wing aircraft. In the past

three decades, a lot of research has undergone to understand the

various dynamic or aeroelastic problems of helicopter and tilt

rotor aircrafts, see for example Loewy's review paper [9] and

other Refs. 10-23. A good deal of techniques developed in the

formulation and analysis of the aeroelastic problems of rotary

wing aircrafts can be used to study the dynamics of wind turbine

rotors. However, all the results of rotary wing aircraft cannot

be transformed directly for v/ind turbine because of differences

in some of the parameters like rotational speed, tip velocity

ratio/ stiffnesses and weight properties, etc. In addition there

are certain specific aspects of wind turbine dynamics which have

to be looked into individually. For example, forced response of

wind turbine blade under periodic forces due to gravitational

field and sheared flov; effect and also impulsive forces due to

tower shadow effect are quite important problems, particularly

for big wind turbines. A good general picture of various dynamic

problems concerning wind turbines is given in Refs. 24-26.

There is little literature available related directly to

the dynamics of v/ind turbine. Ormiston [27] has made a simple

linear analysis from the uncoupled flap and lag equations for the

forced response of wind turbine.rotor under the excitation of

gravity forcing function and also due to velocity gradient effect.

The influence of blade number and hub articulation on the blade

and tower stresses is examined and also the basic scaling relation-

ships with respect to the length of the blade are discussed. Kaza

and Hammond [28] has formulated the general linear flap-lag equa-

"tions for flutter stability applicable both to the wind turbine

rotor with velocity gradient as well as helicopter rotor in for-

ward flight. Two types of hinge sequences for flap-lag motions

are used and the equations with the periodic functions are solved

using the Floquet-Liapunov method as well as the approximate



method (time averaging of periodic functions). It was seen that

the velocity gradient has little effect on the flutter boundary

where as hinge sequence for flap-lag motions has a strong influence

on the flutter stability of this two degree of freedom system.

Friedmann [29] has derived the general coupled nonlinear flap-

lag-torsional equations of motion for moderately large deflec-

tions of a pretwisted cantilevered wind turbine blade with the

incoming wind having velocity gradient as well as gust components

in all the three directions. The methods to solve these equations

are mentioned. Miller [30] has obtained the linearized version

of the nonlinear flapping-lagging-feathering flutter equations of

rotor by considering the motion to be small perturbations about

possibly large static solution. The importance of various physi-

cal quantities involved in the flutter and divergence of windmill

blade is discussed. The effective damping plots are obtained for

various configurations from the eigen analysis of the flutter

equations. Dugundji [31] has given a good review of the whirl

stability problem of wind turbine rotor mounted on a flexible

tower. The general linear coupled equations of motions are

derived for flapping-lagging rotor with two degrees of motion of

tower head. The solution of these equations containing periodic

coefficients using Floquet theory, for two bladed rotor particular-

ly, is discussed. Some experimental results of small windmill

model are given. In Refs. (26,32,33), the authors discuss the

various aspects like design, fabrication, analysis, testing, etc.

of 100 KW NASA Wind Turbine also discuss some of the dynamic

problems pertianing to this wind turbine.

For most of the aeroelastic analysis of rotors, the basic-

ally nonlinear equations of motion are linearized by retaining

only important static terms. Then it becomes much easier to work

on the linearly coupled equations. However, there are some non-

linear analyses in the literature. Young [34] has made a quali-

tative analysis of the second order nonlinear equations of flapping-

lagging rotor by the approximate method. Hohenemser and Heaton [35!



have used the stepwise numerical integration scheme to solve the

second order flap-lag equations. Tong and Friedmann [14] has made

an exhaustive nonlinear analysis of flap-lag as well as Flap-Lag-

Feathering rotor by the multiple time scales perturbation method.

Another method, Harmonic Balancing, is quite widely used in the

linear dynamic analysis of the rotor mainly because of its simpli-

city (e.g., Refs. 15,22,36). Dugundji, etc. [37,38] have used

Harmonic Balance Method to solve the nonlinear panel flutter equa-

tions as well as to obtain the nonlinear forced oscillations

response of the beams.

In the present report, nonlinear dynamic analysis is made for

an isolated blade of wind turbine with no tower interaction. The

blade is assumed to be completely rigid and is restrained by three

flexible springs at the hinge point representing, respectively,

the flapping, lagging and feathering degrees of motion. It is

further assumed that the blade e.g., aerodynamic center and

elastic axis lies at the quarter chord point and there is no

variation of any of these along the blade axis. A particular

hinge sequence of feathering first (from rotation axis), flapping

second, and lagging motion last is followed. However, one can

expect different results with changed hinge sequence [17,28]. The

equations of motions are derived using the energy approach (i.e.

Lagrange's equations). Keeping nonlinearity up to third order,

the consistent nonlinear differential equations are obtained.

The complete analysis is divided into three parts, A, B and C.

Part A consists of forced response of flapping-lagging rotor

under the excitation of pure gravitational field. No aerodynamic

forces are considered here. The blade can, however, have initial

feathering angle setting. Both forced oscillations as well as

parametric resonance are investigated. The forced oscillations

response takes place at the frequency of the forcing function

(i.e. rotational freq.) where as for parametric resonance the

response frequency is one half the forcing frequency.. First,



simple linear solutions are worked out from the uncoupled flap

and lag equation to get some basic understanding of the possible

response of the blade. Then nonlinear limit cycle solutions are

obtained for the flapping-lagging equations by applying the

Harmonic Balance method and solving the resulting nonlinear

algebraic equations numerically by Newton-Raphson iterative

technique. These solutions are checked for stability to see

whether they are physically existent or not. The stability check

is made by giving small perturbations to these steady solutions

and studying the growth rate of these disturbances with time under

the assumption of slowly changing functions. If the perturbations

grow with time means solution is unstable. The effect of initial

coning angle and flapping to lagging frequency ratio on both

forced response as well parametric resonance is investigated.

The comparison of linear and nonlinear solutions near and away

from resonance conditions is discussed.

In Part B, the effect of aerodynamic forces on the two-degree

flapping-lagging rotor is investigated. Quasi-steady airfoil

theory is used to obtain the aerodynamic forces. First forced

response of rotor is studied under the excitation of gravitational

forcing field and in the presence of aerodynamic forces. Again,

the nonlinear analysis of flapping and lagging equations is made

like Part A for both forced oscillations as well as parametric

resonance. The effect of various parameters like Lock number,

inflow ratio, coning angle, structural damping, flapping to

lagging frequencies ratio etc. on response amplitude is investi-

gated. Then the self-excited flutter response of this torsionally

rigid rotor is studied in the absence of gravitational forces.

•The equations of motion are the same as the first case except

that all periodic terms are absent in these equations because of

neglecting gravity forces. First simple linear analysis is made

and then more rigorous nonlinear solutions are obtained by using

the Harmonic Balance method. The nonlinear flutter solution is

slightly different from that of forced response, here, for a

known lagging amplitude the solution is worked to obtain the

5



corresponding flapping amplitude, the flutter frequency and the

stiffness of the configuration. The results are presented in

the form of stability envelopes. The effect of inflow ratio,

Lock number, coning angle, structural damping, hinge offset, etc.

on the ciritcal flutter boundary are discussed. The behavior

of limit cycle flutter amplitude with changing rotational speeds

is also studied. In the end of Part B the effect of sheared

flow on the forced response of flapping-lagging rotor is investi-

gated. Expanding the velocity profile power law relation and

retaining terms up to the second order, and comparing the elemental

thrusts obtained from momentum theory and blade element theory,

the inflow at any poinf'is expressed in terms of inflow at the

hub, blade azimuthal angle and the radial distance of the point.

The equations of motion here get modified and these contain

periodic aerodynamic terms. Again, by nonlinear analysis the

effect of velocity gradient on the forced response of the blade

is studied with and without the gravity forces.

In Part C, the effect of third degree of motion, feathering,•

normal to the axis of rotation is considered, thus making the

rotor a three degree of freedom system. The general equations of

motion for this flapping-lagging-feathering rotor in the presence

of gravity forces and with sheared flow are worked out. First

simple solutions are obtained, then nonlinear limit cycle solutions

are obtained for the forced response of the rotor by the Harmonic

Balance Method. The nonlinear solutions are again checked for

their well-posedness. The response amplitudes of a typical rotor

configuration with the three degrees of motions, for two cases

of with and without sheared flow, are compared with those of the

same rotor with the feathering degree of motion locked. Then the

self-excited flutter solutions for flapping-lagging-feathering

rotor are investigated after neglecting gravity forces and also

considering the uniform inflow. First the linear flutter analysis

is made by assuming the motion to; be small perturbations about



some possibly large static solution. The damping plots are

obtained for various configurations from the eigen analysis of

the linearly coupled equations. Then nonlinear flutter analysis

is made by the Harmonic Balance method. The behavior of the

limit cycle flutter amplitude with changing rotational speeds is

studied.



PART A: NO AERODYNAMIC FORCES
SECTION 2

NONLINEAR EQUATIONS OF MOTION

The rotor blade will be considered rigid with root hinges as

shown below. The flapping and lagging hinges have the same offset,

'e', and the C.G. of each blade cross-section is assumed to lie on

the longitudinal £ axis of the blade. No aerodynamic forces will

be considred at this time, since the main purpose here v/ill be to

assess the .effects of the gravity forces on the rotating windmill

rotor blade.

Hinge Joint

Rotation

axis

Rotation angle

Feathering

Flapping

Lagging

- e

For convenience in setting up the nonlinear equations of

motion, the no-offset-case (e=0) will be derived first, then the

effect of the offset , e, will be added later.

All equations and all subsequent calculations in this section

v/ill apply for the hinge sequence shown above, i.e., feathering 9

first, flapping 6 second, and lagging <J> last.

8



2.1 No Hinge Offset Present

When no offset is present, the absolute location x, y, z of

any point on the blade, £, r\, c;, can be defined in terms of four

axis rotations involving the Euler angles ty, 8, 8, and $ respectively,

These are shown in the sketch below.

Fixed A^es X

Rotates ^ <ivourt^

a e <>
M

U cb

M

V* -A** o

tid a*!f c?
0 0 1

"Xt

^i

^

[^

^

^i[

zv

1 •*

1 0 o

o c^0 -4^0

_o ^e ^a_

f r ]
J *< «^2

\ t;

oct

^
0 -

1 5



Multiplying out the various rotation matrices above, gives the

following relation between the fixed axes x, y, z and the blade

axes £, n, £ namely,

-x

< > =

\

Cera 9

•f-

-s&v̂ Cff*- 3 -o^ 4

' + doty/î .§ A**.Q

i -f- <S«<.T CnO C<m.

6. X<UAA {5

(1)

It should be noted that the inverse of the above square matrix

is equal to its transpose.

From the above'relationship, the absolute velocities x, y,

of any point £, r\, z;, can be found by differentiation to be,

10



etc.

2. - (4)
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J r.7- . T- •*-•)
j x + f + £ -C

The kinetic energy T of this rotating blade is,

4. -} \ -\ '" • /» • — f v« m '(5)

The evaluation of Eg. (5) is extremely tedious as it involves

many trigonometric terms in the squaring process which later

combine together. To circumvent this, an alternative expression

is used for kinetic energy T based on the fact that the blade is

in pure rotation about the origin. It can then be shown that the

kinetic energy T is also,

TT i T A*-" IT Ti = -j i, 0 + 2.1,, *>„ * i I- to- (6)

where to-, w , w are the angular velocities of the blade about

the £,, r], ̂  axes respectively. For a flat blade with the section

C.G. on the £ axis, the product of inertia terms If C£l "£l,-~t,n n? ^ ̂ >
hence only the first three terms need be retained.

To evaluate the angular velocities w_, u , w , in terms of thet, n c
coordinate velocities ^, 0, B, <j>/ one notes that the total vector

velocity w can be written in two ways,

CO ^ + 0 ̂ , - 61., -f- <J> U (8)

12



From the rotation transformations between the various axes,

the following relations exist between the unit vectors,

j

(9)

Placing these into (8), reducing all unit vectors to (,.., £ , £

and comparing with (7) gives the angular velocities as,

c ' / ' + + tov- **. e. ' 0

= $7.

where ij; = <T7. is the constant rotation speed of the rotor. Using

the above expressions for angular velocities, the kinetic energy

(6) for this blade with I_ £ I ~ I_r & 0 becomes,£n nC 5C

13



-~ • *•[ > / x in^ __ _i_ Q I a I T fh ~r ' ^j-A + T • 2-

^L 4>) + i ̂ Z

e '

o (i^^^j> -t- r^/ixU

Tj-Tj) ^A^0a^^X>^2^ - I-j •LtffV.&AJ*. ?.$ I

p - [ r? /u-7"^ + r^

+ X-j OSL 6 C^L2"^ J

The internal potential energy U of this rotor blade arises from

torsional springs kfi, kft, k. which are placed at the three hinges »

of the hub. This gives,

14



where 9 / $ / <f> are the initial settings for no spring moments.
o ^ o

The gravity forces give rise to an incremental work 6W as shown

in the sketch below,

acts, alpna 7C axis

cL (13)

The incremental displacement 6x can be expressed in terms of the

incremental variables 66, SB, S^ using (2) as,

y5m

(-

(14)

etc.

15



Since the blade section C.G. is assumed to lie on the C axis,

then n = £ = 0 in (14) . Placing (14) into (13) and integrating

gives

4>

where,

(y — <\- P^ AA/V^Y* ( Ctf^ 0 XA^ B wr^-((> -f /4>c^ 6 A/Uv <j?J

j r , . . .-[
; "" / ^ L "^ ^^^ ^r^v) Cfr^\ p^1- yj

v =x

— ^atic unba l ance =. • \ VA "I
I a- vf> JabouT ;5 «^,^ a

(16)

• A \ \X^w <p j

If aerodynamic forces were also present, additional aerodynamic

moments Qn, Qn, Q, would be added to (15).
o P <P

Gathering together the T, U, Qi from (11), (12), (16), and

placing into Lagrange's equations

. 2TL = Q
' (17)

16



gives, after some algebra, the nonlinear large deflection equations

of motion as,

Q

« »

0 • - 1
-̂CAV. (3 j

»•

* *
- 0 (3

* *0

(18)

17



8 Eg u

Q f I,

4. J- 51" -

= OL ^ j A^
*~

0

e*
T

J

J

(19)

UGL

- e

18



~57.p

== ^ ' 3 ~

(20)

The preceding equations apply to arbitrarily large angular

deflections of a rotating blade with no offset.

2.2 Effect of Hinge Offset

When an offset, e, is present, one introduces an additional

axis system X,Y,Z which now represents the fixed axis system.

The origin of the previous x,y,z system now circles about the Z

axis at the offset distance e, while maintaining its axes parallel

to the XYZ axes.

Fixed axes -*• 2 T

-J*- ~~

T -

19



The velocities of the two axes systems are related by

0

" - y. - e.

T -

z «

The kinetic energy T of the rotor blade is given by,

<

=• - \ ( "7~-^ 11o
+ 1 + ze

This can be regrouped into the form,

20

(22)

e

[ ( ̂  ĉ -V - ̂  xu^^l dm -f -̂ ŝi (* d



The first term above represents the kinetic energy of the blade

found previously and given by (11). The third term can be dis-

carded since it is a constant, and will not contribute in Lagrange's

equations (17). The second term represents the additional kinetic

energy Ta due to the hinge offset. This can be further simplified
f\

by taking ^ = 0 in these equations to give,

(24)

Introducing y from (3) into the above gives,

f\
4-

( /4/Uv 0 /^ % A^ 4* •*• c:<«- 0 Ojra. ̂ ^ ^- 4*
(25)

where S is the static unbalance as in (16) .

The additional terms in Lagrange's equations (17) coming from

this T are,

6

52. e AA^. c< .̂ < ( 2 6 )

51
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These terms are to be added to the left hand sides of (18), (19)

and (20) respectively, and represent the sole contribution of the

hinge offset. It can be seen from (21) and (14) that no additional

gravity force terms will result from the hinge offset.

2.3 Summary of Equations of Motion

The nonlinear equations of motion given by (18) , (19) , (20) ,

(26) for the rotating blade can be simplified somewhat by expanding

the trigonometric terms to 3rd order, i.e.,

(27)

and also by noting that for these blades,

(28)

T *2z. T j_ T
3 - 1^ + I?

Then considering only terms to 3rd order, the nonlinear equations

(18), (19), (20), (26) reduce to,

6

-• i e]

(29)
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flua_:_

e i,,
-^516 I-, p + z a <*>!,, (p-h e<t>)

(30)

u. a

(31)

Equations (29), (30), (31) represent the final nonlinear 3rd order

equations to be investigated. It should be noted that in reducing

the offset terras (26) to 3rd order quantities, the offset e itself

was considered a first order quantity.

i
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SECTION 3

LINEAR ANALYSIS OF FLAPPING-LAGGING ROTOR

To gain understanding, the simpler flapping-lagging case will

be examined before going to the full three degree of freedom case.

A linear, small deflection analysis about a large static deflected

position will first be conducted before examining the complete

nonlinear analysis in the next section.

The basic equations of motion for this flapping-lagging case
• »»

are obtained from (30) and (31) by setting 6 and 9 equal to zero.

The 8 itself is retained as a constant .initial hinge setting for

the blade. It will also be convenient to nondimensionalzie the

time variable in the standard way by introducing ̂  as,

) = SI.EL = SZ(°) (32)

Under these assumptions the basic nondimensionalized equations

become

00 „ .. o O O

p (l-4>) - 2.0f <[» T 24*

-f - p0-
(33)

00

a . (34)

(-1
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where the following nondimensional parameters have been introduced,

.-2 p if,
*-, _ I TOr UHlffJO

^ £ I blad^e.mjP/3 ^ £ ^ blade, y

(35)

C"^ ^** .» /~ x i *^vx- ^"^vi/i i jfc ^ -̂» ""'y / A- »t_ \
• -* ~ "̂~ \ -— "*** / ^^ _ ^ I 1

In the G above, u>p , represents physically the natural frequency

of the blade hanging as a pendulum with no stiffness k present.

Equations (33) and (34) represent the basic nonlinear equations

to be investigated for the flapping-lagging case.

3.1 Static Solution

A static solution to (33) and (34) can be obtained by neglecting

all derivatives terms and by setting G = 0. Under these conditions,

the equations reduce to,

. - , ( 3 6 )
9 =
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For a given e, 6, <}> / B / v / v,, these nonlinear equations can
S S p (p

be solved to give the static solution < > = < ( ) , £ = p1 . The

solution is most easily accomplished by iteration, i.e., first
2 2setting B and <J> equal zero in the paranthesis terms, then

solving these linear simultaneous equations for $ and <j>, then

correcting the paranthesis terms wit!

then solving for 3 and <{> again, etc.

2 2
correcting the paranthesis terms with the previous g and <{> ,

3.2 Small Perturbation Equations

Having found the above static solutions 3 and <J> , one can

then investigate small perturbations of the nonlinear equations

about these static positions by assuming solutions in the form,

Here, B and <J> represent small perturbations about possibly large

static positions 0 and <j> . Placing (37) into (33) and (34) ,
o o A* /*•

retaining only linear terms in the perturbations $, <j), and cancelling

out the previous static solution (36) , results in the linear

equations,

00

26 (38)



'. u/

(39)

/•*• /«
These equations in 3 and 4> represent linear coupled equations

with both forced excitation and parametric excitation present.

3.3 Simple Linear Solutions

One can obtain some simple linear solutions of the perturbation
/

equations (38) and (39) by arbitrarily uncoupling them. This will
f*s /*~

give an indication of the source and rough magnitude of £ and cj>.

Later a more accurate coupled linear analysis can be made. And

of course, later still, in the next section, a complete nonlinear

analysis will be made.
fv s*s

The 8 equation, when uncoupled from the $ equation by setting
XV

all <j> = 0 in (38) , is,

oo

(40)
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Two types of strong oscillations are possible for this type of

equation, a forced oscillation near Q £ to and a parametric

instability in the neighborhood of the first parametric instability

region, ft % 2w . In here, u represents the natural frequency

of this equation in flapping, namely,

(41)

For the forced oscillation, one assumes approximately the

steady state solution,

(42)

Placing into (40) and matching sin tfi and cos ty terms gives,

a,
(43)

G -C

The coefficients above can also be rewritten using the definitions

of G and VD in (35) as,p

e -J—T " ~ ~ ?

(44)
T- JL1-

6
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Equations (44) give simple estimates of the forced oscillation

amplitudes in flapping. It is to be recalled that total amplitude,

AQ= /2. 2 . It can be seen from (44), that resonance will
f» ax + bx

occur when the rotation speed reaches.

(45)

e 4-

Since the denominator in (45) must be positive this resonance in

flapping can only occur if

• - *" > e (46)

This may well occur for small hinge offsets e.

For parametric instability in the first (and strongest)

instability region, one assumes approximately the steady state

solution,

? . ' VJ/ ' \U6 ^ a, ASS~ _L .*- k C*<L-L.
i I 2—

Placing into ( 4 0 ) and matching sin i|//2 and cos ty/2 terms gives

the equations,

b = 0 (48)

4- -_
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These homogeneous equations in a, and b, have the solution given

by (47) only if their determinant equals zero, i.e., if,

~
J

= 0

(49)

2
This equation can be solved for v0 by bringing the second termP
to the right hand side, then taking the square root of both

sides, and rearranging to-give.

0%
(50)

This gives two solutions corresponding to the two boundaries of

the first instability region. The boundary with + G is the one first

reached here. Noting from (35) that G can be expressed as,

Q = (51)

one may rearrange the criterion (50) to give,

-z - a
(52)

This defines the rotation speedy at which parametric resonance in
2

flapping occur. Since generally (wPend/
wg) << ! for windmills,
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this can only occur if,

fl2" 1- A cbZ -f 2. fc > 2 , - l - e (52A)
4- ' 0 * ° 4-

which is generally impossible to meet. Hence no parametric

resonance is expected in flapping.

Looking next at the lagging case, the <J> equation, when

uncoupled from the 8 equation by setting all 3 = 0 in (39) is,

oo

f^ f — 2- J~ T- \+ ( e. + y-^^-i- 0 - p, j

(53)

The natural frequency of this equation in lagging is,

60N ^ StJ e f y- + 9-- (54)

and strong forced oscillations occur near 0 £ w , while the first

parametric instability region occurs near fi £ 2. kV •

For the forced oscillation, one assumes approximately the

steady state solution,

(55)

Placing this into (53) and carrying through as previously for the

flapping B case gives,
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00 •• i - -=.
(56)

b,

Equation (56) give simple estimates of the forced oscillation

amplitudes in lagging. It is recalled that the total amplitude,

A.= / 2 , 2 . From (56), resonance will occur when<i> ci "T" JD
2. 2.

N 1-e t £-
(57)

This resonance in lagging will occur if

i+. pj" > e •*• e2" (58)

This condition is alv/ays met in practice, hence large lagging

forced oscillations are distinctly possible at the rotation

speed given by (57) .

For parametric instability in the first instability region,

one assumes approximately the steady state solution,

(59)

Placing into (53) . and matching, sin if;/ 2 and cos if;/ 2 terms gives the

equations,
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(60)

+ e

Setting the determinant of these homogeneous equations equal to

zero as previously for the flapping 3 case gives,

J- - e, -
4-

(61)

Using the stability boundary ' above and expressing G as in (51)

previously, (but with reference to to. now) , the criterion (61)

may be rearranged to give the rotation speed?for parametric

resonance as,

1 4- Ll 1

-J— —

^ • .

£fl) \ ( L - %-% ) -
e - 0* + ft*"

*~ • • • i

H (**-9&>-

(6.2)

Since generally (u d/10^) << •"•

resonance will occur if,

windmills, this parametric

J_
4

> e (63)
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This condition is generally met for small offsets e, hence

parametric resonance in lagging is distinctly possible at the

rotation speeds given by (62).

To end this brief discussion of simple linear solutions/ it

may be of interest to introduce some simple physical interpretations

to some of the results, equations (41) to (63). The criteria for

strong forced oscillations in flapping (46) and lagging (58), and

the rotation speeds at which these forced oscillations occur (45)

and (57) , come simply from the requirement fi = <ON. This can

easily be shown by setting n = w in (41) and (54) respectively.

Similarly, the criterion for the first parametric instability

region in flapping (52A) arid lagging (63) can be shown to come

from the requirement ft = 2w . The rotation speeds at which these

parametric instability regions first occur (52) and (62) are
2 2

slightly less because of the (u d/
wg) and (wp d/̂ ^ factors.

If (w_. -,A>0) -> 0 and (w^ ,/w.) -»• 0, then these rotation speedsFend p Pend <f>
also occur at ti - 2w>,.N

Another quantity can be given a simple physical interpretation,
2

namely, the (u A/UQ) factor appearing in (44) and (52). Consider

a blade held horizontally against gravity and restrained at the

3 hinge by the spring k as shown below.
P

J>YV

The angular deflection 8nw under its own dead weight is given by,
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** (64)
J>VN/
8
v

where S = J£ dm is the static unbalance about the r) axis. The

natural frequency u>0 of this blade is defined asp

(65)

Solving (65) for k0, placing it into (64), using the definition
2 .(«„ ,) =g S /I given in (35), and noting that Sr ~ S , resultsPena £ n ^" t, ri

finally in

(66)

2
Thus, the (w /)/WR) factor simply represents the static deflection

g of a horizontal blade under its own dead weight. Similarly it

can be shown that,

.•2,

(67)

These B and <}> give simple interpretations of the forced

amplitude oscillations (44) and (56).

In summary, the simple linear analysis in this section has

indicated that gravity effects are likely to be more important

for lagging motions than for flapping motions, and that both strong

forced oscillations and parametric instabilities are possible for

lagging at the rotation speeds.given by (57) and (62).
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3.4 Complete Linear Solution

complete linear solution of the .coupled small perturbation

equations (38) and (39) can be made for more accuracy. For the

case of forced oscillations, one would assume the approximate

steady state solution,

C. **•

The higher harmonics, sin2i|;, cos 2^ will be neglected here.

Then placing these into (38) and (39) and matching the constant,

the sin \<>, and the cos fy terms of each equation results in six

equations in six unknowns, 0 , a, , b, , <{> , a0, b0. The 3 and
C J. J. C ^ fL C

<{) are included in (62) to allow for small centershifts from the
C

static values B and $ . The solution (62) will now include the

effects of the small second parametric instability region near

ft ̂  u in addition to the dominant forced oscillation resonance

there. The six linear equations can be readily solved by inversion

to give the forced oscillation amplitudes in (63). Also, the

determinant of these equations can be evaluated numerically for

different values of rotation speed ft to find what ft makes the

determinant equal zero. This would then represent the boundary

of the small second instability region.

Instead of developing and presenting these coupled linear

equations here, it will be more convenient to present and solve

them later as a subcase of the complete nonlinear equations to

be given in the next section.

For the case of parametric instability in the first instability

region, which is always the strongest instability region, (see

Bolotin [40]), one would assume the approximate solution,
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U,

CX AAxv^i- 4- b ,

(68A)

c£? ^ a^ /a-̂ v̂  ̂  4- L
™̂ *̂

and obtain the appropriate four equations in the four unknowns,

The higher harmonics .sin3i|>/2, cos3i^/2 are neglected here. The

determinant would then be examined numerically to find what

rotation speeds fl make it equal zero, thereby determining the

stability boundaries. Again, this linear solution will be

obtained as a subcase of the complete nonlinear equations in

the next section.
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SECTION 4

NONLINEAR ANALYSIS OF FLAPPING-LAGGING ROTOR

The linear solutions given in the previous section serve

only as a guide to the small amplitude behavior of the rotor

blade. When the amplitudes become large, the nonlinear terms

in the equations will serve to limit the predictions of linear

theory. This is particularly true of the forced oscillation

resonances and the parametric instability regions where infinite

amplitudes are predicted by linear theory. Accordingly, the

complete nonlinear equations (33) and (34) will nov; be examined.

4.1 Forced Oscillations

For forced oscillations of equations (33) and (34), one seeks

limit cycle solutions in the form

^ ofc 4- a,
(69)

The higher harmonics, sin2ij>, cos2t(/, etc. v/ill be neglected here.

The $ and $ above represent the total centershift from zeroc c
and would now include the static solutions £ and <f> plus any

additional centershift due to the oscillation amplitudes, a? b{
a_ b . Placing these expressions (69) into (33) and (34) and

matching the constant, sin ty, and cos ^ terms of each equation

and discarding the higher harmonic terms, gives after much algebra

and trigonometric reduction, the following six nonlinear equations,

•

-f - > = 0

(70)
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where the elements F.. are given as,

»— . \ */ t —* _ _.*" I * .

^- ( J p z f a - t - i - i - e - e - i ^ - ^ - N

F;̂  =

NG,

tfc - N



=s O

= - NQ

=, 0 - Z g f t < f c -

- N

pr .

l- 44-
4- e + 0 -

40



= e -

55- =, 2, + e - 1
7-

>C

nr —
' 62 . ~

= e -

==. o

= a •«• e -
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FJO = NG,

= -£4>s - N

The nonlinear terms appearing in the F. . expressions have been

grouped to provide a reasonable symmetry. Other groupings could

also have been chosen.

In the above elements the following definitions have been

introduced for convenience,

(%«?

0 -f^r liKeaJ- c«tse

1 for
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For a given configuration defined by the six parameters 8,

* (a) /a = one solves the nonlinears' "' "V
equations (70) for various values of rotation frequency ratio

fi/w,. In evaluating the coefficients, it is convenient to use

the relations,

IT? __

G, =

(72)

The solution of the nonlinear equations (70) is best accomplished

numerically by using an iterative Newton-Raphson technique, which

uses some initial estimate of the solution to begin the process.

As a start one may use the trial solution B = 3 .r <j> = <f> /•» G s c s
a = b, = a9 = b_ = 0. One may be further guided by the simple-

linear solutions (56) and (44) given in Section 3.3 However, one

must realize that for nonlinear equations, multiple solutions

may be found in certain cases. The particular solution obtained

would depend on the initial estimate in the iterative computation

process. Solutions would probably vary with frequency as shown

below,

av"$e cj>j?w

5wa ii 4™p\v

Multiple. SoIuT/oj-i.5

The effects of various parameters such as <j>DW' 3. Q etc. could

be assessed as desired. Also, the complete linear case mentioned
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in the previous section 3.^ could be worked out by simply setting

N = 0.

Finally, it should be mentioned that some of the limit cycle

solutions obtained will be unstable and as such, have no physical

reality. These unstable solutions can be checked formally by a

stability analysis or may be inferred by experience.

4.2 Parametric Resonance

For parametric instability in the first instability region,

one assumes a limit cycle solution of (33) and (34) in the form,

O.
(73)

The higher harmonics sini^, sin3^/2, etc. will be neglected here.

Placing these into (33) and (34) and matching the constant, sin i|'/2,

and cos ty/2 terms of each equation and discarding the higher harmonics,

gives again .six nonlinear equations,

R,
P«
P3!

Pf.1

p'i

p,,
p»
<v

•»

9

p,,
Pi?

P3J
r

*

P*
»

^

«

«

> H-

Oz.

> = 0
'20

'40
(74)
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where the elements P.. are given as,

P = 5a £ + 1 + 6 -,

- N

P.O, =
O

o

P!4 ~
- N

- 0

= 0

=- 0

^ -
R

P. o

9

- e G, i e

!i-t/-$- 4-

N
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\1

— *• 17 -i- ^
33 = «>p 2- + ?

-J-

_ N i

^

- N
4-1

P4-^

-Nf I

pf
P

o

0
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Pr, = <?

= e - ;c<fc + G, i &A - N

>c + G, i B ^

= P

- N {-•£

Psi = -Qi (*-- 6P'

=. o

« - gt - e

= e -

e

P,

f & =

,^ lib,'-; + ^
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= - w 2 p,. - N i 0,̂ - Qib,) - §£ (a,

= o

P —

In these elements, the same definitions (71) and (72) are used

as before. The equations (74) are solved as previously for the

forced oscillation case, only now, one is guided by the simple

linear parametric instability solutions (52) and (62), and one

seeks solutions near fi/u. "^ 2. These steady state limit cycles,

appearing at roughly twice the rotational speeds R of the forced

oscillation resonances, may be equally as severe as the forced

oscillations. It is to be noted that the actual vibrations them-

selves occur at roughly w ̂  w even though the rotational speed

here is roughly ft ̂ 2w,.
<f>

Other nonlinear subharmonic and superharmonic solutions can

be investigated in a similar manner by introducing equations (69)

or (73) with additional harmonic terms present ii.to the basic non-

linear equations (33) and (34). One would then harmonically

balance these additional harmonics which would lead to larger

size nonlinear algebraic equations in place of (70) and (74).

Such subharmonic and superharmonic solutions for simple beams

were examined by Tseng and Dugundji [38].
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SECTION 5

NUMERICAL RESULTS FOR NONLINEAR FLAPPING-LAGGING ROTOR

Numerical results using the previous nonlinear analysis of

Section 3 are obtained for the following configurations:

CASE I : R - o <b =.0 <£>_= .71 4> =.o$8 0 = o € = .f
13 S p 'D\Al

CASE II: = ./5 c = o W = - 7 f c

CASE III; S=.'S (t> - o OJi = (•</ 6 =.08? 0 = o €=•!
's TS y8 . 'DW

The 4> „ = .088 represents a relatively flexible lag rotor, i.e.,

the case for which w =3.37 w ,<j> pend.
5.1 Forced Oscillations

First, simple uncoupled solutions are calculated for the

different cases using Eqs . (36) and (44). Then the linear and

nonlinear solutions are obtained from Eq. (70) by computer. For

the compution of nonlinear solutions, the corresponding linear

solutions are used as initial guess as far as possible. The

results for the above three cases are presented in Tables 1-3.

From these results, one can see that the simple solutions give

reasonable estimate of linear solutions, particularly, where

coupling motion is weak. Also, linear solutions agree well with

nonlinear solutions away from the resonance region. This is

quite apparent from the fact that the linear theory is good, for

small amplitudes and becomes inadequate for large amplitudes

which take place near resonance condition. All these solutions

are checked for stability by giving linear perturbations to the

steady solution and then studying the growth of these perturbations

(discussed later in Section 5.3)

In Fig. 1, the solutions are plotted for Case I. For this

configuration of zero coning angle, the response is uncoupled and

one gets only lagging amplitude. Here it can be seen that the

linear and nonlinear solutions are quite close except near resonance

(i.e., ft/w, ~ .95 to 1.15). Arrow mark on the graph is a resonance
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point obtained by linear theory. The nonlinear solutions become

unstable for A^ greater than about 1.
<f>

In Figs. 2a, 2b and 2c are respectively plotted lagging

amplitude, flapping amplitude and center shift 3 for coupled

response of Case II. Here/ one can find a large shift of non-

linear behavior from the linear one particularly after the ampli-

tude started increasing. At large amplitudes, the nonlinear

resonance curves bend towards decreasing frequencies depicting

a typical nonlinear softening spring type system. From Fig. 2a,

one finds that for lagging amplitude, the higher frequency branch

becomes almost flat in the overhang whereas lower frequency branch

becomes unstable after maximum slope. Similar strong nonlinear

characteristics are also visible for flapping motion in Fig. 2b.

Further it can be seen in Fig. 2c that 3 the mean angle setting

about which limit cycle oscillations take place increases with

increasing amplitude. These curves show that small initial coning

angle of the order of 9 can produce an appreciable change in

the nonlinear forced response of the blade.

In Figs. 3a to 3c, the results are plotted for Case III.

This physically signifies a system in which lagging hinge stiff-

ness is lower than that of flapping. Here, also, like Case II,

one sees the softening spring characteristics for large amplitudes.

In fact, the nonlinear response for case III appear to be more

violent than Case II.

5.2 Parametric Resonance
The numerical results are obtained by solving Eq. (74) by

computer, for the same configurations for which forced oscillation

response results were obtained. These results are plotted in

Figs. 4-6.

In Fig. 4, corresponding to Case I, results are plotted

for linear and nonlinear solutions. Like forced response of

Case I, (i.e. zero coning angle) one gets here also only uncoupled

lagging motion. It is found that there is distinct unstable band
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for ft/w, of 2.52 to 2.64. The linear solution predicts infinite

amplitude in this band whereas nonlinear solutions give two

limited amplitude branches which try to bend toward each other

in this region. However, for higher lagging amplitude (-1.4),

the nonlinear solutions become unstable. The trivial solution

of 3 =a,=b,=tj> =a0=b =0 exists for every ft/w. except for this
C -L JL C 2. £ (p

instability band where trivial solutions becomes unstable.

In Figs. 5a to 5c, results are plotted for Case II. With

a small coning angle (~9 ) , there is hardly any change in- the

linear response but there is distinct change in the nonlinear

parametric response of the blade. Nonlinear response is coupled

one with lagging motion more dominant as compared to flapping

motion. Like forced oscillations of Case II, the nonlinear

parametric resonance curves for large amplitudes bend towards

decreasing frequencies, again, depicting a typical "Softening

Springs" type system. The higher frequency branch for lagging

motion, A, becomes flat and extends to lower frequency region

and lower frequency branch becomes completely unstable. Again

the trivial solution is stable except for ft/w, of 2.52 to 2.64.

In Figs. 6a to 6c, the results for Case III are plotted.

The results are just similar to those plotted for Case in II in

Figs. 5. Again one gets the coupled response with strong lagging

motion.

5.3 Stability Analysis

The nonlinear solutions obtained by Harmonic Balance method

for forced oscillations as well as parametric excitations are

not always physically existent. One has to make stability check

on these solutions to find out whether any of these can be a

physical reality. So, these solutions are further investigated

here for stability by giving small perturbations to the steady

solutions and studying the growth rate of these disturbances under

the assumption of slowly changing functions. The solution will

be unstable if the growth rate of perturbations with time is
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positive. By slowly changing is meant here that the increase

of a function during a period is small as compared to the average

value for this period, i.e.,

« 2FT «

«0

2.JT « 1 etc (75)

See Bolotin [40] for details.

First, considering the stability of forced oscillations,

one can write perturbed solution in the form

(76)
cos

a
10'

b!0' ' a20' b20 rePresent tne steady-statewhere frc

solution for which stability check is being made, and $ ,a,,b,,
s\ s* s\ C -L J_

<f> , a9 , b« are the time dependent perturbations given to respectivec « «
steady components. To study the growth of these disturbances,

the above equations are substituted in the basic flapping and

lagging equations (Eqs. 33 and 34). Then retaining only linear

terms in perturbations and their first order derivatives and

subtracting the steady-state solution , once again on matching the

constant, sinif/ and cosi(/ terms from these two equations, one gets

six linear algebraic equations which can be concisely put into

matrix form as -

»„

1

A

0,

b,

A.

cb

a,
/b x_ /4

e«,
,̂

Ew

^,

ts,

_!« (77)



Putting,

a,

£

(78)

Substituting this into the above Eq. (77) , results in an

algebraic eigenvalue problem which can be easily solved using

any standard eigenvalue subroutine. The solution will give six

eigenvalues — if any of the eigenvalues has positive real part,

this means perturbation will grow with time and this marks the

solution as an unstable one.

On similar lines, the stability of parametric excitation

solutions are checked by putting,

+ f £,0

(79)

Following the same steps like Forcing Solution we get here also

an algebraic eigenvalue matrices.

'

= A

S B

€
C80)

Again the nature of the roots A will indicate whether the solution

is stable or not.
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PART B: EFFECT OF AERODYNAMIC FORCES
SECTION 6

FORMULATION OF AERODYNAMIC FORCES

The aerodynamic forces are obtained using quasi-steady

airfoil theory. The elemental lift and drag forces acting

airfoil. section can be written,

a. c dk (e-

on

v;here
dC,

a = section lift curve slope,

d

c

p =

V_ =

blade profite drag coefficient

blade chord

air density

resultant velocity, >/
u

2
+v2

0. local blade built-in incidence

loi

U

= inflow angle, tan

<&.

(81)

[r is same as

As shown in the above figure, U,v are flow velocity components

along blade ax&s r\ and 5 and 9t -a^ is the effective angle of incidence

Resolving the aerodynamic forces along the blade axes, one gets

(82)
dC = dL Mnoc. 4- dD
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Assuming the effective angle of incidence is small (i.e.,

below stalling angle) , such that

sn,

1 Cdo v2and also considering •=• - — ~- «1, the forces dN and dC can be
Uwritten as

dN « i £ a- c d-k [ U*sin- ®t- - V U Gofcty -

4C a £ f a c ^ [ UZ Cdo 4- v

l/J

fl. -
/ o o \

From Eq. (10) of part A, the angular blade velocities about the

three axes £, ru C are given as, .

OJx - -Q_( sia 0 sia $ 4- C°S §

L -: Q. COS Q

The inflow velocity through the rotor is,

v/hich can be resolved along three blade axes as

(84)

(85)

(85a)
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where

cos <> 4- sia Q siat> = -

t-Un = _

Uifr -XlXR cos© oosp

In the above, X is the inflow ratio parameter and is assumed

here constant over the disk area for a uniform approaching wind stream.*
Introducing the blade hinge-offset effect, the velocity of

the hinge-point is given as

, (86)

which can again be resolved along the three blade axes as,

^ = \ % + «ty ? + Ukl, % (86a)

where

- ea(-sfn.Q sin.p cos<^ + cosQ

smQ sia^ sm^ ^ Cos<9 coscj?")

Sin. <9 cos .

The resultant flow velocities U and v for any point £ on the

blade is then,

U =

COS©
(87)

V = -h.03̂  _ U^ 4.

= flh.(cose sia^ smd> -sin.©
(88)

*
This is strict]y true only for an ideally twisted rotor. For
other rotors, there may be some variation with r.
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Like part A (Eq. 27), expanding the trignometric terms to third

order in above equations we get

U-

With the inclusion of aerodynamic forces, the generalized

is QD and Q, in Lagra
P 9

additional contributions,

forces QD and Q, in Lagrange's equations (Eq. 17) have theP 9

. . (90)

dC

sjxin.

One may assume the built-in incidence along the blade span is

(91)

where 9, is constant incidence along blade length and 0_ alone

represents the ideal twist distribution.

After performing various integrations and combining with

Eqs. 33 and 34 we get the nonlinear equations of motion for a

flapping-lagging rigid rotor with flexible^-springs at the hinge-

point in the presence of airflow as

Flapping Equation;

^ Ca + (J> G} H

C / s-£<f> C6f +^ZC,]
(92 )
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Lagging Equation:

Bw

8,5 *̂ q +4-*^-^* Be,]

(93)

4
In above equations, y = pacR /I is the Lock number and, £0 andn p
$ represent structural damping coefficients for flapping and

lagging motions, respectively. The other constants are defined

in Appendix I.
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SECTION 7

NONLINEAR RESPONSE OF FLAPPING-LAGGING ROTOR

WITH AERODYNAMIC FORCES
Seeking a general limit cycle solution of nonlinear Eqs. 92

and 93 for both forced oscillations as well as parametric resonance

in the form of

ss f| -4- a, sin. b, cos (94)

where a is the ratio of response frequency to forcing frequency

Here a=l represents forced oscillations and a = -^ gives para-

metric resonance. Substituting these expressions (94) into

Eqs. (92) and (93) and balancing out the constant, sin aijj and

cos a.fy terms of each equation and neglecting higher harmonics,

gives six nonlinear algebraic equations,

R, Ris

'GZ

I

"a.

I?

R-

10

= 0 (95)

The various terms in the above matrices are defined in Appendix II

The solution of these nonlinear algebraic equations (95) can

be again obtained numerically by Newton-Raphson technique.
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Stability Check of Solution

As discussed in Part A, the nonlinear solution got by

Harmonic Balance method has to be checked for stability to prove

its well-posedness. Once again, here the solutions are checked

for stability by giving small perturbations to these steady

solutions and studying the growth rate of these perturbations

with time under the assumptions of slowly changing functions.

(See Section 5.3 for more details.)

Writing the perturbed solution as

+ [Q(0 * d.

-f
(96)

where 3cQ/ a1Q, b10, <J>c 0 / a2 Q , b2Q is steady solution for which
^ ^ ^ ^ ^ ^stability check is being made and 3 , a,, b,, <f> , &2/ b» are the

time dependent perturbations given to respective steady 'solution

components.

These equations (96) are put into basic nonlinear equations

of motion (92) and (93) . Retaining only the linear terms in

perturbations and their first order derivatives and filtering

out the steady solution, then again on matching the constant,

sin cti|> and cos cuf), one gets six linear algebraic equations.

,M

a,

*c

'l>

T,.

>Z

t
o

A
O

•

t
ati
i

J L J (97)
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writing

i
3,

*
^a,
A

i
a,

*t

at

>

(98)

substituting (98) into (97) results into an algebraic eigenvalue

problem which can be solved by using one of the standard subroutines,

Solution will give six eigenvalues X and the nature of the eigen-

values will decide whether solution is stable or not. If any of

the these eigenvalues has positive real part means perturbation

will grow with time and makes the solution unstable.

Numerical Results

Numerical calculations for forced oscillations as well as

parametric resonance with aerodynamic forces are repeated for

most of the configurations of Part A. Once again

= oCase I.

Case II. B =.\5 cf»=o

Case III. B = .IS d7=0 co «

cb =.088 9 =o
ŵ,̂ -

<^> =.088 G=0

>f)UI

For aerodynamic characteristics, Lock number y of 12 is

used for most of the results and the values of 'a' and C , are
d

taken respectively of 6.0 and .012.

7.1 Forced Oscillations Results (a=l)

In Fig. 7 results for Case I of zero initial coning

angle with aerodynamic forces are plotted. Here X=0 represents
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a configuration with zero inflov; velocity. It can be seen that

for this case of no inflow> response is uncoupled and. one gets

only lagging amplitude, which is quite similar to that of no

aerodynamic case (Fig. 1). Here also the amplitude shoots up

near resonance (— - 1.05). However, v/ith the inclusion of small
U) ,

inflow ratio of X®.1, the amplitude is well bounded. Also, with

inflow, response is coupled, though the amplitude of flapping

motion is comparatively much smaller except near resonance (Fig. 7b)

Further, in Fig. 7b, 3 the mean angle about which limit cyclec
oscillations take place, is plotted and $ has negative value

\*r

because of thrust direction for this positive inflow.

In Fig. 8, the lagging amplitude response for Case II

with aerodynamic forces is plotted. Here positive A represents

configuration with initial coning angle facing into flow direction

and negative X the case of initial coning angle facing along the

flow direction. For X=0, the response amplitude is entirely

different from that of no aerodynamic case, Fig. 2a. With the

presence of aerodynamic forces, the instability overhang region

completely vanishes. Though the amplitude increases near — ~ 1.05,
CO i

but it is bounded with flat peak. The peak value is higher9for

negative X as compared to positive X. This can be explained with

the help of Fig. 7b that with positive X, the coupling is reduced

by decreased 6 and for negative X the coupling is amplified by

increased {3 . It is found that the flapping amplitude response
Vrf

though smaller in comparison to lagging amplitude, the peak for

negative X is quite higher than that for positive X (not shown in

figure). Further, it is seen that the solution for X = -0:1

becomes unstable in the peak value region.

In Fig. 9, the results for Case III are plotted. For

this configuration of softer lagging hinge stiffness than flapping

stiffness, the behavior is quite similar to that of Case II in

eliminating the violent overhang instability region with the

presence of aerodynamic forces. Here the peaks for lagging

amplitude are comparatively sharp but are of nearly same magnitude
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for the three different cases of X=-.l, 0, . 1. This is mainly-

because of higher flapping stiffness, the average coning angle 3

is not too much effected by the small value of inflow, X=j^.l.

Figure 10 illustrates the lagging response for a typical

configuration of Case II with X=-0.1 for different Lock numbers,

y. Here, one can see that by reducing Lock number, the behavior

of forcing response tends towards that of no aerodynamic case

(Fig. 2) . For Lock number of 3, there is little overhang towards

left depicting a typical nonlinear softening effect. Again, the

higher frequency branch remains stable in overhang region whereas

lower frequency branch becomes unstable.

In Fig. 11, the effect of structural damping on forced

oscillations with no aerodynamic forces for Case II is presented.

For small value of damping coefficients t; =C =.01 encloses the

stability branches (see for comparison Fig. 2a) . The behavior

is quite similar to that shown in Fig. 10 for low Lock number.

This means that the aerodynamic forces can be looked as if they

add the equivalent structural damping to the system depending

upon Lock number y and inflow X.

7.2 Parametric Resonance Results (a=-?j-)

In Fig. 12, the results for Parametric Resonance of

Case I in the presence of aerodynamic forces are plotted. There

is a distinct band of instability for zero inflow and the response

is uncoupled lagging motion. From stability analysis one can see

that the trivial solution of 3 =a,=b,=<£ =a =b =0 is stable for
Q C J. J. C 2. £

every' — except in the instability band where trivial solution

becomes^uns table. This behavior is quite similar to that for no

aerodynamic forces (Fig. 4) . The two instability branches bend

towards each other and the higher frequency branch also becomes

unstable for large lagging amplitude (A, -.75). However, with

the inclusion of small inflow X=.05, this instability band

completely vanishes.

Figure 13 presents the response for Case II. With the

inclusion of aerodynamic forces with no inflow, one can see that

the behavior of rotor is quite different from that of no aerodynamic
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solution (Fig. 5). The overhang instability region gets completely

eliminated and the two stable solution branches joins in the in-

stability band resulting in the'limit cycle amplitude. The

response is coupled but the flapping amplitude is of an order of

magnitude lower than the lagging amplitude. Again with the inclusion

of small inflow, the instability band vanishes.

Figure 14 shows the effect of Lock number on Parametric response

of Case II with A=-0.1. For Lock number y=12, there is no instability

region, but for j=6 and 3 there is instability region with overhang

towards left examplifying a typical nonlinear softening effect. Out

of the two branches of solution, the higher frequency branch is stable

while the other branch is unstable from the very initiation. The

other noticeable thing about'these graphs is that with the increase

of Lock number, not only the instability overhang and peak amplitude

reduces but also the instability band shifts towards the right.

Figure 15 illustrates the effect of structural damping on

parametric oscillations of Case II with no aerodynamic forces.

Here the solution is not very different from that of no-damping

case, Fig. 5a, except that the two branches of solutions shrinks

in the overhang region.

64



SECTION 8

SELF-EXCITED FLUTTER RESPONSE OF FLAPPING-LAGGING ROTOR
In the earlier sections it has been shown that a rigid rotor

restrained by two springs at hinge point representing flapping

and lagging motions can get into large nonlinear response due to

gravity forcing excitation. Here, it is intended to discuss that

this torsionally rigid rotor, in the absence of gravity forces

can also lead to self-sustained oscillations caused by the inter-
action of aerodynamic forces with structural vibrations of

blade.

The equations of motion for flapping-lagging rotor for flutter

can be rewritten from Eqs. (92) and (93) by eliminating gravitational
effects.
Flapping;

o
•«• 2.

(99)

Lagging;

$ 4- (|2cj> - 2

a6s 4-^6, 4-^c(>67

3.1 Simple Linear Solution

It is sometimes advantageous to deal with simple solutions to

get the feel of the nature of phenomena and then later on using

these simple solutions as a guide one can make more rigorous

analysis. Here also first simple linear solution for self-sustained
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oscillation is worked out by assuming that the small amplitude

motion is taking place about possible large static positions

B and < { > .

where $ and <j> represents small perturbations. Placing (101) into

Eqs. (99) and (100) and keeping only linear terms in perturbations

and their derivatives and subtracting the static solution results

in

$ Equation:

(102)

4> Equation:

(103)

and static solution equations are

(104)

These equations are further simplified by considering a rotor

with ideal twist distribution (only 92) and with no hinge offset
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(e=0) and also assuming that the static equilibrium angles 30<
2 •

and ^0
<<:1 so that BQ and <j>Q can be neglected. Equations 102-

104 reduces to

8 Equation:
00 o

(105)

<ji Equation:

OO o

and static equilibrium equation

(107)

For the critical condition of flutter

(108)

substituting in Eqs. (105) and (106), gives characteristic equation

(t'co) -f too m.. -v m

ico (109)

For non-trivial solution, expanding the determinate and comparing

the real and imaginary parts separately to zero, one gets

Real part:

=.0 (110)

Imaginary part:

(111)
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where

V $

Equations 110 and 111 can be solved for flutter boundary by

simple iterating scheme.

8.2 Nonlinear Solution

Assuming the limit cycle solution of nonlinear Equations (99)

and (100) for self-sustained oscillations of the form

q., sin ocy 4- b( cos ocy

-v b cos

where a represents the ratio of flutter frequency to rotational

frequency.

Placing these expressions (112) into Eqs. (99) and (100) and

matching the constant/ sin afy and cos a^ terms of each equations

and neglecting the higher harmonics yields six nonlinear algebraic

equations. Since v/e are interested in the limit cycle flutter

solution, this can be done by assuming a known lagging amplitude

of flutter and finding the other associated unknowns to get this

condition. Thus putting b-=0^ and a2 which now represents lagging

amplitude/ a known quantity, into these nonlinear algebraic equa-

tions,
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fll ,0

fl.2Z.
Q,

= 0

(113)

^
oc

v/here Z = (w,/fi) and the other terms in the above matrices are<j>
defined in Appendix III.

The solution of these nonlinear Equations (113) are obtained

numerically by iterative Newton- Raphson technique.

8.3 Stability Check of Solution

The nonlinear solution got above using Harmonic Balance

method is checked for stability again by giving small perturba-

tions to the steady solution

P =

v;here 3 0/ a, , , ,

is the steady solution and B ,
C

a,, b\ ,
-L. -*-

corresponding Z and a

$ , a«, £0 with same Z
C- ^ ^and cc are the time dependent perturbations.

Following the same steps like, forcing response, placing (114)

into Eqs. (99) and (100), keeping only linear terms in perturba-

tions and subtracting the steady solution, once again on matching

the constant, sin CTJJ and cos aip arranging appropriately one gets

in the form of algebraic eigenvalue
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I3 1<4 lS

s,

= A

T T T T T T
'|| Mi M5 '"M >5 Mfe 1

b,

k

(115)

This is just the same as Eq. (97). Again, the nature of roots A

will decide whether the solution is stable or not. If any one of

the roots has positive real part, points out that the solution is

unstable.
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8.4 Numerical Results

For most of the flutter calculations, Lock number of 12 is

used and values of a and C, are taken respectively of 6.0 and

.012. It is also assumed here for flutter calculations that

initial lagging angle and initial built-in incidence are zero.

X=0.1 is taken for most of the results as this inflow represents

nearly the maximum power extraction condition of the rotor. The

critical flutter boundary is obtained from nonlinear analysis for

very small lagging amplitude of .05.

Figure 16 presents the critical flutter boundary for centrally

hinged blade with no preconing (i.e. e=0. 3=0) for different
£>

inflow X. Both, simple linear solution and more accurate Harmonic

Balance solution are plotted for comparison. The region of

instability lies inside the respective contours. It can be seen

that simple solution gives reasonable estimate of flutter boundary

for higher values of lagging stiffness, v., and it starts deviat-

ing more and more at low v,. This is, mainly because in simple

solution, (j> , the equilibrium lagging angle is neglected and it

becomes appreciable at low values of v.. One can also find that

the instability envelop increases in size with increasing inflow

ratio X. This can be explained by looking at linear Eqs. (105)

and (106) that X effects the potential destabilizing flap-lag

coupling terms.

Figure 17 shows the effect of preconing and hinge offset on

the flutter solution of rotor with a typical inflow X of 0.1. On

comparison with the corresponding instability graph for X=0.1 from

Fig. 16, one can easily visualize that with the hinge offset the

instability envelop not only expands in size but also opens up at

lower end from the elliptic shape. Preconing also has an important

effect on the flutter boundary - positive preconing, coning facing

flow direction shrinks instability envelop whereas negative pre-

coning expands the instability envelop. This is because the blade

preconing effects blade equilibrium coning angle and thereby effect

mainly the cross coupling terms.
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Figure 18 illustrates the effect of Lock number y on the

stability envelop for rotor with no preconing and no hinge offset.

Unlike the forcing response, decreasing Lock number reduces the

instability region. It can also be seen that the solution becomes

unstable on the part of the instability envelop for Lock numbers

of 6 and 3.

Figure 19 presents the effect of structural damping of the

flutter boundary. With the inclusion of small structural damping

coefficients of c =£ =.005 for centrally hinged rotor v/ith no
P <p

preconing, the instability region is reduced drastically. Also

for £ =c =.01, this rotor becomes completely stable. This can be
P q>

seen from simple linear solution (Eq. (106) that the structural

damping coefficient has a very strong effect on the comparatively

low direct damping term for lagging motion.

In Fig. 20, the penetration lines of increasing rotational

speed ft into instability envelop for different wg are plotted.

Figure 21a represents the limit cycle flutter solution for toD=0.8.P
Points A and B here correspond to the boundary points A and B on

instability envelop (Fig. 20). One gets large fluttering oscilla-

tions at the very initiation of flutter and then the amplitude

reduces with increasing rotational speed. The solution becomes

unstable for part of the speed range. It can also be seen that

the flapping response amplitude is lower than the lagging ampli-

tude mainly because of, comparatively high aerodynamic damping

in flapping motion. In Fig. 21b, the limit cycle lagging ampli-

tudes are plotted for different wft at the lower flutter speed

side. The solution shows nonlinear stiffening effects for w0_ P
of .6 and .8 and softening effects for higher w0 of 1.0, 1.2P
and 1.4.
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SECTION 9

EFFECT OF VELOCITY GRADIENT

In the earlier analysis, it is assumed that the incoming wind

velocity is uniform and perpendicular to the plane of rotation.

In reality, wind is not uniform but has velocity gradient because

of earth's boundary layer. Generally, the velocity profile near

the surface of the earth is approximated by a power law relation C8,'3~]

V ItJ*
l/o I H,/ (116)

where

V = wind velocity at height h

VQ = wind velocity at height H

p = constant guantity depends on topographical conditions of

the place, between .167 to .40 approximately.

Putting the above relation for the blade spanwise position
r with azimuthal angle ty

I
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\l> is zero at the lower end position of the blade.

Using Taylor's series and keeping terms up to second order,

one can expand Eq. (117) as

V

fhJ
, v\iT~)where V represents the velocity at the hub

o

The induced velocity at the blade is calculated by equating

elemental thrusts obtained from momentum theory and blade element

theory. For small built in twist 6^ , the inflow ratio parameter

X is approximated as

(119)

where X0 corresponds to the inflow ratio at the hub and

nc(a = rotor solidity = —-)
TTK

Thus, the inflow at a particular station on the blade varies

as the blade rotates, causing periodic variation in airloads.

This acts mainly as forcing function in the flapping degree of

motion.

Substituting this new value of X in Eq. (85) to obtain the

inflow velocity at the rotor and modifying accordingly the

resultant flow velocities U and v in Eqs. 37 and 88, and once

again, on performing the various integrations for generalized

aerodynamic forces one gets the new versions of Eqs. 92 and 93

representing the equations of motion for flapping-lagging rotor

with sheared flow.
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Flapping Equation:

= I /C0 + /?*

4 G cos ^ / 2 - -

4

(120)

Lagging Equation;

. i

,, 4 p cf> £(

§/5 4 c,

O O

4
O 7

c/o _ ̂ lec, J

(121)

The various constants in the above equations are defined in

Appendix IV.
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The important difference between these equations and those-

representing uniform inflow case, Eqs. 92 and 93, is that here

in Eqs. 120 and 121, periodic aerodynamic terms are present

because of velocity gradient (the D and E coefficients terms

above) .

The nonlinear response of flapping-lagging rotor in the

presence of gravity and aerodynamic forces with sheared flow is

obtained by following the similar steps as applied for uniform

inflow case. On substituting general limit cycle solution (Eq. 94)

into nonlinear Eqs. 120 and 121, and balancing out various terms

one gets modified versions of R (Eq. 95) , which now consists of

four separate parts.

(a) contribution from inertia and stiffness, RI

(b) Contribution from gravity forces, RG

(c) Contribution from direct aerodynamic forces, RA

(d) Contribution from periodic aerodynamic forces, RV

such that

_--

RI and RG are same as given in Appendix II for uniform inflow

case and RA gets modified by replacing old C's and D's in Appendix II

with new C's and D's of sheared flow. The RV which appears because

of inflow variation at the blade is expressed in Appendix V.

The stability analysis here is also quite similar to that of

earlier case except that the periodic aerodynamic terms have to

be treated like gravity terms.
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9.1 Numerical Results

Numerical calculations have been made for some specific

configurations of Case IV to demonstrate the effect of sheared

flow on the dynamic response of the rotor.

Case IV.

3S = -.12 <|>s = 0 ug = .693 <j>DW = .0035 i = .075

Y = 10.6 X = .1 a = .023 QI = -.14 82 = .105

C0 = .005 £, = .005 Cd = .012 a = 6.0 8=0p <p o

This case approximately simulates the characteristics of NASA

Plumbrook 100 KW windmill blade with the assumption of complete

rigidity in the torsional degree of freedom.

The forced response results are plotted in Fig 22.

Configuration A: Represents the condition of the rotor being

excited only by gravity forces with uniform

inflow,

(.e. no velocity gradient, p=0)

Configuration B: Represents the rotor being excited by only

aerodynamic forces because of velocity gradient,

p=.167, R/hQ=.625.

(i.e. no gravity forces, ̂ r̂ O)

Configuration C: Represents the condition"of rotor under combined

action of gravity and aerodynamic forces.

(p=.167, R/hQ=.625, <j>DW=.0035)

In Fig. 22(a), one can find that lagging amplitude is little

effected by the velocity gradient and it is infact not possible to

differentiate the results of configurations A and C. Fig. 22(b)

shows that away from the resonance condition, the flapping amplitude

is predominantly excited by the velocity gradient, and near the

resonance condition the increased amplitude is mainly due to coupling

•from the gravity forces.

It should be noted that the presence of any tower shadow effect

would combine with the velocity gradient effect here to produce a

greater excitation of the flapping amplitude.
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PART C: INCLUSION OF FEATHERING DEGREE OF FREEDOM
SECTION 10

RESPONSE OF FLAPPING-LAGGING-FEATHERING ROTOR

In the earlier analysis, it is assumed that the rotor has

only txvo degrees of motion, i.e., flapping and lagging. In the

present chapter, the third degree of motion, feathering, normal

to the axis of rotation is also considered thus making the rotor

a three degree of freedom system.

The fomulation of general equations of motion is very

similar to that obtained earlier for flapping-lagging rotor.

The inertia part is already derived as a general case in part A

(Eqs. 29-31) and the aerodynamic forces are obtained after modify-

ing the flow components of pa-rt B to. include the feathering motion Q

The motion of the blade as angular velocities about the three

axes C, rif C from Eq. 10 are,

• *

CO,. =. .Tl(sin. B s'wcb -«- cos 6 sine cos<|>) -4- Q cosB cos4> -
.

00^ =H(siaQ coscj>- cas<9 smp sinc}>) — Q cobp s\'n§ _

• . •
GuL = .ft. cos <9 CO s p — Qs i r cp -4- <f>

Modifying Equations 87 and 88 for resultant flow velocities U

and v

U =. >t (^L cosG cosp ̂

siVicj>

\> = _n. ?z.(sm <9 coscjj — cos<9 sinp siYicj>) .4. ?ip

4- l(SlR cos <3 cos {3 _ eri M'nG cosp -»- *£ |n(sih<9 s»nc|> •<- cos Q stnjS. coscjj)

— p sincj? + (9 cos ^ cos c£ ?

The A is inflow velocity parameter which for sheared flow is given

in Eq. 119 as

(125)

and n is the distance of 75% chord position from aerodynamic center.
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The generalized aerodynamic forces are

(126)
= - " dc

(r is the same as £ and integration is on the span

of the blade)

Again, taking the built-in incidence distribution (from

Eq. 91)

0C = 9, + l±_e Q (127)

>t-»- € 'i

Like earlier analysis, expanding trignometric terms to the

third order and after performing various integrations and putting

together inertia, aerodynamic and stiffness parts, v;e get the

nonlinear equations of motion for a f lappin-lagging-feathering

rigid rotor with flexible springs at the hinge-point in the

presence of sheared flow.
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Flapping Equation:

4- X

Lagging Equation:

4

4

4

R,7

(128)

G, p 4

4G

4 G

2

4
+ G5I 8 p4> 4



Feathering Equation

«0

4 (^7 f cpfi 4 G,7

-v G

COS V S0j5 + /?0<^ + S, £*+ Sa ̂ <9 + /?, 4>® + CS^ - ^ S0) P

/ 0,0)

The various constants in the above equations are defined in

Appendix VI. In the derivation of the above equations > it is

assumed that the aerodynamic center, the e.g. and the elastic

axis lies at the same chordwise position and there is no variation

of this position along the length of the blade.
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10.1 Simple Solution

Considering small perturbation solution about some static

solution

(13D

e =• GO •*•
Substituting this in Egs. 128-130, retaining only the linear terms

in the perturbations 3, $ / 9, one gets three linear coupled equa-

tions. To simplify these equations further, one arbitrarily uncouples

these equations and considers simple forced response of a rotor with

zero twist distribution (6.=0) and with uniform inflow

Flapping Equation:

f + ?{z^»p +|(l + J- (132)

Lagging Equation:

$ -«• $ { 2^4> H> + ̂  — °C/ ̂ ^f )} 4 ̂ (€ H~]i2)^ ~G

Feathering Equation:

o(̂  + |V̂ )-s{'(8vê .|Î ,|-||e0)-x̂ }
+ fl((w^)'<U-|^^} =Ggsin'r

and static solutions are

e\ - i i L l s ~ Y \ / 2 , e \
«; •'M* TiT + ir'To
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For the forced oscillations assuming steady solution

6 ^ a, sia n> -t b, cos <f

cj> ~ at sin 4* -»- ba cos î

§ x a, sin. f •*• b, tos f
(134)

By matching and solving equations, one gets

tt, a S'Uê

b,

(135)
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From this simple analysis one can find that the flapping-

response is effected appreciably by the feathering angle 8 . It

is found that this simple solution gives reasonable estimate of

the solution, but more than that, this solution is quite useful

in giving an initial trial vector for nonlinear solution.

10.2 Nonlinear Solution

Assuming a limit cycle solution of Eqs. 128-110 for both

forced oscillations as well as parametric resonance

^ | +• a, sin. oc IT + b( cos

sr < -f- CL s"l CC<- -t- h COS

(136)

G ^ (9C cos

Here, a=l represents forced oscillations and a=j gives

parametric resonance. Substituting these expressions (136) into

Eqs. 128-130 and balancing out the constant, sina^ and cosai/;

terms from each equation gives nine nonlinear algebraic equation;

^/s
a,

= 0

(137)

The various terms in the above matrices are expressed in Appendix VII.

The solution of these nonlinear equations (137) is again obtained

numerically by the Newton-Raphson technique.
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•10.3 Stability Check of Solution

The stability check for the solution obtained through the

Harmonic Balance Method is made as done for the flapping-lagging

rotor by giving small perturbations to the steady solution and

studying the growth rate of these perturbations with time (see

details in Section 5.3).

The pertubed solution is

|0

9 = (13B)

steac^y solution for which the

b_ are the time

Since Bc0, a1Q a3Q, b30 is

stability check is being made and § , a,, b,

dependent small perturbations given to respective steady solution

components.

Putting Eq. (93) into basic governing Eqs. 128-130, keeping

only linear terms in perturbations and their first order derivatives,

filtering out the steady solution, once again on matching various

terms one gets nine linear algebraic equations

SM SI3L S,3 S,

S2| S,, •

MI

i,

S,

s,

S0

A

a,
A

A

A

A

ft
A

'm
s,

T»
T8,

To

H

I,

This is standard algebraic eigenvalue problem, the nature

of the roots explains whether the solution is stable or not. If

any one of the roots has positive real value, means perturbation

will grow v/ith time and thus makes the solution unstable.
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10.4 Numerical Results

Numerical calculations for forced response are made for

case IV (see Section 9.1) with WQ of 14.3 (i.e., WQ = 14.3 u^) for

two conditions of with and without sheared flow. In Fig. 23,

the response amplitudes represening flapping, lagging and feather-

ing degrees of freedom are plotted for different rotational speeds,

for a rotor with uniform inflow. Comparing with the results of

same configuration with the torsion degree of freedom locked

(i.e., tog-*00) from Figs. 22 (a) and 22 (b) , one finds that there

is relatively less effect on the lagging response but flapping

response is appreciably effected by the inclusion of the feather-

ing degree of freedom. The flapping amplitude is increased near

as well as away from the resonance condition and this is quite

evident from the simple linear flapping equation (132a) where

one finds that the forcing function for flapping is dependent on

feathering angle. Also, even for this relatively torsionally

stiff rotor (w0=14.3) the feathering response is quite significant

and it is of the same order of magnitude as the lagging response

or flapping response. The resonance condition, however, takes

place at almost the same rotational speed as for two degrees of

freedom case.

In Fig. 24, the response amplitudes are plotted for a rotor

with sheared flow but with the same inflow A of 0.1 at the hub

as the first case. Once again one finds that the velocity gradient

has more prominant influence on the flapping response as compared

to other two degrees of freedom. Away from the resonance condition,

the flapping amplitude is generally increased and lagging and

feathering response amplitudes remain nearly the same whereas near

the resonance condition all the three response amplitudes are

reduced because of the sheared flow.
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SECTION 11

SELF-EXCITED FLUTTER RESPONSE OF FLAPPING-

LAGGING-FEATHERING ROTOR

It is primarily intended to show here that the blade represent-

ing the three degrees of motion, namely flapping, lagging and feather-

ing, in the absence of gravity forces and with uniform inflow can get

into self-sustained oscillations by the interaction of unsteady aero-

dynamic forces with structural vibrations. The equations of motion

for flutter of this system are the same as Eqs. 128-130 except that

all periodic terms are absent (because G=0, A.=0, A?=0) .

11.1 Linear Analysis

Linear flutter analysis is worked out by assuming that the

blade response consists of small perturbation 'motion (8, <f> , 9)

about some possibly large static positions (B

ft = % + ?

<f> / )

(140)
9 =x G0 9

Substituting this in Eqs. 129-131 and keeping only linear terms and

derivatives and after filtering out the static part, the character-

istic equation of motion can be put in standard spring-mass-damper

form

M.

M-

M

M22 M23

- OQ -

00

$

00

6

4-

4-

,

CM 9

«

9

— 0
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and the static equation is

H,, ' H12

HZ, H22 H
23

H*. H,., H, a

The coefficients of the above matrices are given as

M,, = l-o

M — o

M22=

M33 = 4

C — -L2|
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= €

== |+ € + i£-X(F--+g F3 F7)

Ha, - i

Coefficients F.'s and G.'s are given in Appendix VI.
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Equation (141) can be rewritten as

M : [C]
[o]: [M] -f-

; [K]
-- 0 (143)

where [M], [C] and [K] are respectively inertia, damping and

stiffness matrices, each of order 3x3 and q is column matrix

writing

(144)

w = (145)

Substituting into Eq. (143) results in an algebraic eigenvalue

problem which can be solved numerically by using any one of the

standard subroutines. The solution will give six eigenvalues, in

fact, three pair of complex conjugate roots,

(146)

(n) gives the frequency of the rotor in the presence of airflow
*• / \

for the nth mode and Xj: represents the effective damping of the

nth mode. The damping coefficient of the rotor for any mode in

the presence of airflow can be obtained from Eq. (146)

(147)

The mode shape for each one of these natural frequencies can be

had from the corresponding lower half of the eigenvector. Also,

one can obtain the phase plot for these three degrees of motion

from the Argand diagram of complex eigenvector.

It should be noted that £=0 defines the critical flutter

condition. £J positive gives damped oscillations and z; negative

results in unstable oscillations.
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11.2 Nonlinear Flutter Analysis
Again assuming the limit cycle flutter solution of nonlinear

equations 128-130 (with G=0, A =A_=0) of the form

g -4- Q, sin

'<£ •»• az sin

0 -f Q '

-+• , cos

+ fa, cos PC

-4- fe>

(148)

where a represents the ratio of flutter frequency to rotational

frequency.

Once again, trying to find the limit cycle flutter solution

for a known lagging amplitude by setting b2
=0 and a_ as known

quantity. Placing these expressions (148) into Eqs. (128-130)

and balancing out the constant, sinaij; and GOSCCI/J terms and putting

appropriately one can get

16

fl
SI

PC

Aso
=. 0

(149)

2Here Z = (w./fi) * and the other terms in the above matrices are

defined in Appendix VIII.

The solution of these nonlinear algebraic equations (149) is

obtained numerically by Wewton-Raphson technique.
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11.3 Stability Check of Solution

The stability check of the nonlinear flutter solution is made

by giving small perturbations to the steady solution

4- cos ex: <f

(150)

where &CQ, a1(J, b1(J, <j>co/ a2Q, 9co/ a3(J, b30 and b20 = 0 with^

corresponding Z and a is the steady solution and 8 , a-, , b, , 4> ,

a,, b_, (}> , a^, b^ with same Z and a are the time dependent pertur-
£* £• \~f ~J <3

bations.

Placing (150) into Eqs. • (128-130), linearizing and subtracting

the steady solution, again on balancing the constant, since1-}; and

coscnj; terms one gets

S*i

c
~-J_̂  I

sb,

st:

Ŝ

s,

5,
A

b,

T7c

T31

T«, Tj.

(151)

Again the nature of the eigenvalues will decide whether the

solution is stable or not. If any one of the root has positive

real part shows that the solution is unstable.
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11.4 Numerical Results
In Fig. 25, the total damping coefficient c; is plotted for

different rotational speeds for Case IV with CD =6.0 (i.e., w =6.0 w,).
U U 9

The dotted lines correspond to the zero structural damping configura-

tions where as the full lines represent the configurations with struc-'

tural damping coefficients of r,0=c,=^,=. 005. For any particular
p <p w

rotational speed, one gets three damping coefficients corresponding

to three different vibration modes, but in the diagram only two

branches are shown since the third mode is comparatively highly

damped. In Fig. 26, the relative response amplitude for these tx̂ o

branches for the damped case are plotted. From these two figures,

one can find that the high frequency branch I which primarily repre-

sents feathering mode with small coupling from the lagging, is

unstable from the very beginning for zero structural damping, and

becomes completely stable with the inclusion of small amount of

structural damping. Here, the lagging response is roughly 180°

out of phase with the feathering amplitude. Low frequency branch

II which is predominantly feathering-flapping branch with compara-

tively small coupling from lagging is not much effected by the

small amount of structural damping except that the instability

boundary shifts to slightly higher rotational speed. This instability

is like classical bending-torsion flutter, and it is also found that

at the critical flutter condition, the flapping response lags the

feathering amplitude by about 90°.

Fig. 27 represents the damping coefficient £ of Case IV with

more torsionally stiff rotor i.e., u =14.3. Here one finds thaty
the high frequency feathering branch I does not become completely

stable with the addition of small structural damping but only the

instability region shifts to higher rotational speed. Low frequency

branch II which is now evenly coupled between flapping, lagging

and feathering modes becomes completely stable with the addition of

small amounts of structural damping.

Fig. 28 shows the nonlinear limit cycle flutter amplitudes for

flapping, lagging and feathering motions for Case IV with wQ=6.0.

The bending over of the response amplitude curves towards decreasing
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rotational speeds depict a typical nonlinear softening spring type

system. For — less than about 0.3, solutions becomes unstable,w,
<!>

These nonlinear solutions indicate the possibility of sustained

limit cycle flutter oscillations occurring well below the critical

speed predicted by linear theory. These might be initiated by a

sufficiently large finite distrubance, and as such may be potentially

dangerous.
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SECTION 12

CONCLUSIONS AND SUGGESTED FURTHER WORK

In Part A, the nonlinear response of two-degree flapping-

lagging rotor in the absence of aerodynamic forces is obtained.

The analysis is made for forced oscillations as well as para-

metric resonance under the action of periodic gravity forces.

The effects of various parameters like initial coning angle,

flapping to lagging frequencies ratio, hinge offset, etc. on the

nonlinear response amplitude is discussed.

In Part B, the analysis is extended to include the effect

of aerodynamic forces on the nonlinear response of the flapping-

lagging rotor. The inclusion of aerodynamic forces produce quite

significant effects on some of the configurations for both forced

oscillations as well as parametric resonance. Also, the self-

excited flutter solution for flapping-lagging rotor is obtained

after neglecting the gravity forces. The effect of the various

parameters associated with aerodynamic forces like inflow ratio,

Lock number, initial coning angle, etc. on the forced response

as well as critical flutter boundary is discussed. The effect

of wind shear on the forced response of flapping-lagging rotor

is also investigated and it is seen that the velocity gradient

produces little effect on the lagging response but it has

appreciable influence on the flapping amplitude.

In Part C, the third degree of motion, feathering, is con-

sidered thus making the rotor a three degree of freedom system.

First, the forced response of flapping-lagging-feathering rotor

under gravitational field and with sheared floxv is studied. It

is seen that even for relatively torsionally stiff rotor, the

flapping amplitude is very much increased with the inclusion of

third degree of freedom and also the feathering response is

appreciable. Then the self-excited flutter solution of this

three-degree rotor is Investigated and it is found that the

feathering degree of motion is very important for the flutter
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analysis. The effect of rotational speed on the linear as well

as nonlinear flutter solutions is discussed.

One may further extend these analyses to include

1. Tower motion

2. Blade flexibility

3. Interaction of forced response and flutter response

4. Subharmonic and Superharmonic response

5. Improved Aerodynamic Model

The inclusion of tower flexibility would involve the inter-

action of the overall vibration levels at the tower 'hub with the

supporting structure which may give rise to instabilities similar

to the ground resonance problems in helicopter rotors. The inclu-

sion of blade flexibility would bring a more realistic model of

long, thin windmill blades into the picture. The interaction of

forced response and self-excited flutter response makes the

analysis a more involved one and this interaction can become

particularly significant when flutter frequency is near the

resonance frequency. Because of low structural damping, the

subharmonic and superharmonic response may be important. The

variable inflow model taking effects of tower shadow, and yawed

flow, etc. and also the inclusion of returning wake and other

unsteady aerodynamic effects will expand the domain of the

dynamic problems of the wind turbine rotor,.

The investigation of these problems would contribute to a

better and more realistic understanding of the aeroelastic

behavior of thin rotating windmill blade.
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APPENDIX I

The various constants used in the definition of aerodynamic

forces are given below.

8

C = ̂  f rf sin eo <K
R a

Q = £ f h* sin & dh.
K

C,,,

,0

- 4

Q, = i

CIH = -C, -^c\ A

CS
3 i|
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- •< f~ 4
clh-

COS

R>

B* =

a. « -c^ -

_* <J±\
3 CL

CL

B,s =

B_ =

•-BC.0
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CB, = 8, -v- S^o1 ' a

= 83 4

= B,-

a

a.

_ i Cdo
3 7T
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APPENDIX II

The elements of response matrix 'R1 consist of three separate

parts, i.e.,

(a) contribution from inertia and stiffness, RI

(b) contribution from gravity forces, RG

(c) contribution from aerodynamic forces, RA

so that

R. . = RI(i,j) + RG(i,j) + £ RA(i,j) .ij a

R±o = RIO(i) .+ RGO(i) + ^ RAO(i)

The various elements are given as

RI(U) = fiz -M

^}= b - Nr[

RK'.s) = o

= o
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RI

, 0=0 -
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£1(5,0=0

= z+e -cc* +6*- I* •«• Nt{ ^ **((£•*•

= -&£ Z B. -

=: O

1^10(3)=. 0

== - Z ts - Nj. cc<9 (a, bz-



Gravity terms for forced oscillations

=i 0

= 0

= o

RG, (3,Z) = o

,M)= -N! {
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£<£ - Ms.

= o

= -N,M ia<

= o

= o

no



6 z T
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Gravity terms for Parametric Resonance

•RG(I, 2) = o

= 0

= (7

= 0

0



= 0

o

= - G f e - -

= 0
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= O

"RGO

^ o

= o

In the above elements
•%

0 for linear case
NI E

1 for nonlinear case
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Aerodynamic contribution terms

= o

= o

RA(4,3)*

s.

,3 +

c/0 -

f
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^^

f

fcfl (6,0 =

?^B13*£K + 3$)B|
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= o

= 6 4-

In the above elements

0 for linear aerodynamic case
N,

1 for nonlinear aerodyn'amic case
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APPENDIX III

The elements A.. of Eq.- (113) are divided into two parts

(a) contribution from inertia and stiffness, AI

(b) contribution from aerodynamic forces, AA

Thus

A.. = AI(i,j) + J AA(i,j)

AiQ = AIO(i) + AAO(i)

The various elements are defined below

= 0

= I-. e -
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= 0

= 0

flI(S,3) = 2oc(g + B<fc

= o

fir
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= 0

,3) = 0-

fllCC,4/) = 0

f)l((,,S) = 0

= o

flIO(i) =

- o

In the above elements

0 for linear case

1 for nonlinear case
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Aerodynamic contribution terms

M) = o

RR(i,2) = -NA GU

= 0

=0

C(0

=. 0

=0

= 0

cc <s Q. - C|2- -A-

flfl(3,
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= o

= o

= o

= o

120



= o

In the above elements

{•
0 for linear aerodynamic case

1 for nonlinear aerodynamic case
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APPENDIX IV

The various constants used in the definition of aerodynamic

forces with shear flow are given below: .

0, = C0 - A((CBM 4- |CB,-) + *A,0(CH, + |c,)-EB30 + E, G
Z4- ̂V8

Z

Cs = Cs 4 A,(C8H 4-i| CB,)-S( A, CM, - i

C7=

4- A,(-CBM

*̂ ^

Qo = C|o 4 ^i ̂ SM

C,4 = C,s + ̂  A, CBS

= C(S

f

1)4- E.G +3A(GC8C,4- £ BC.)
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B s=

- 2 .o , ) - (E, (CH, +

= B

= B l o - A , C H ,

3x = Ba + A' B^

B1W = B, - i A, CHlIS IH

*

B =

D =. -:

Do =
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= A2 CB,

-EC, o J.

Es =• -/ 4- BC

s, = 4 8C.
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= -1 A 2 c ,

EIS = o

CH, =
K o

sin

BH, = ^ J

I h
no J
K O

= 8H, - t-> s

= ^» J

|)S J COS

a -s

E, 4 Qo E,2 a *

r _ 1 Cd0 c
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APPENDIX V

Element Matrix RV for FORCED RESPONSE

= o

•RV(i,H) = o

= 0

RV(a,3) = 0

RV (*,</) = -

RV (2,5̂ ) =0

=0

RV3,2) = 0

RV(3,3) = 0

Rv(s,s) = o

RV(3;6) = o
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|3 A- pc
2 E(4 4 <g Els)

4- (q? + 3 ̂  ) E, * (a,1 4- bj ) E ,s - § E,o

= 0

(s,s) =

, S) = o
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=. o
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Elements of Matrix RV for PARAMETRIC

Rt/0/3) =

RV (1 ,5 )= o

ffV 0 /6} = o

= 0

5)= (gj)6 -f

2- D>5 J

= 0

= 0

? ' 5)- -£te^
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^^£1/0,2) = 0 « • *

,
2 z I5J



=. O

RV (Mi 5)

RV (M,6)

lo

, 0 =

RV (s, s)

R V ( 5 , 4 )

= 0

RV (6 ,3) = g^s + it £r

= 0

_ J-

f 6 , 6 ) = cj£6 + f | t?

E" +k- E"

130



= 0

Rl/O(3) =

•RVO (s) = o

R V O ( 6 ) = o
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APPENDIX VI

The various constants used in the definition of aerodynamic

forces for flapping- lagging-feathering rotor are given below

Fa. = 2 U0Ci

=

= -C,

F7= -IC/^CB

^ A,

F1S = -

,l= 1(|CB34-CBZ)
R 132



F = 1 CB.r^q — , I

FaA = -C, -

F = -r

= - H CB,
R 2

- CB,
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a \ 3 R

G,=

4-2|.(A08C3 4- A, BC,')

-2

R a

4-2 BC, 4- 2 8C

-2

,s
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Z + A,

r = w0 ( «.
«iq -o- \ •?

- (A0C2 + A, CH,") - a 5.1 BC3

^2M =

G2

G.

f - _. Cdo _ -i
^28 ~ "a" 2

= - H- CJc, €.
3 -57 R

= fc,

4- A, CH. .- 2 8C, ̂  ̂  I 6C

= C,

'37
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- - 2 1 &C,

= - 2.

= -28C

=o

= - BC,

= 0

= AZCB, +±|

= ± >a % cs2

•f 2. e.
R

=i O

No = - AZC( -«• i EBi

i?I3 = o
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/?,5 = 0

I?,, = o

= — A2 C8,

C. B

Ra, =

=°

= i A2 CB,

eg

= -Az C8,

So

S,

f

= 2 E2 + x A2 BC, + 2 A2
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"7

SS = -2 £ A 2 8C 2

^ =

So"

SH -

s,e = - 2 ± A2 BC2
r\

— 2

- A c

5,, = 2%,

S2o = -A2c,

^•5 -* ^ — J

BC,

BC,
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BC,

a
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APPENDIX VII

The elements of response matrix 'R1 for flapping-lagging-

feathering rotor consist of four separate parts

(a) contribution from inertia and stiffness, RI

(b) contribution from gravity forces, RG

(c) contribution from aerodynamic forces, RA

(d) contribution from periodic aerodynamic forces, RV

such that

R... = RI{i,j) + G RG(ij) + I RA(i,j) + £ RV(i,j)

R._ = RIO(i) + G RGO(i) + J RAO(i) + J RVO(i)
1U o o

The various elements are given as

= o

= 0
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R T ( 2 , \ } =

£1(3,1) = 0

141



= 0

=°

=. o

= o

= o

-^^
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=0

RI C ^ / l / ) = 0

RZ (6,5 = 2

= 2+e -

R I ( 7 , 2 ) = 0

= 0

* NX f

= 0

= o
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KI

Ni^ r / f^^^
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Rro(0 = -

R I O ( s ) =
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Gravity terms for forced oscillations

KG (i,7) = o

%) = -L + J-

=0

RG(2,2} =

= o
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KG (3, 2) =

£6(3,3) =

£6(3,5) = 0

=1 o

147



RG(S,2) = o

£6(5,3) =. o

RG(S,S) = °

,7) = /f ̂

EG(S,«?) =

= 0

RG
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= o

R G ( 7 , 2 ) = -

KG (7,3) = 0

KG (7,5) =

RS(7,6) =

=r O

= o

= o

RG (g, 3)

KG (* , f )

=o

=°

/<G
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KG (9,3) =

= o

(9,9) = 0

-0

/?GO(2) = o

RG O (-3 ) = o

KGO ("7) =
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Gravity terms for Parametric Resonance

RG (I, 5 ) = 0

= 0

X ^ j + ^ ^

= 0

f ^) 4 /Vz f

1= O.
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/? G (</; 5) =

RG

/ ?G(S ,6 )= -

5,7)= O

5, & ) = °

= 0
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£6(7,0

/?G(7,2)

G f 7, £ ) =

RG

RG

RG
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R G O O ) =°

R G O ( 2 ) = o
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Aerodynamic contribution terms

RA(»,2) = o

'',3)= o

f

RA(i,S) = o

/?A ('',•?)= o

RA(2,|) = O

=0

=0
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RA (3, 2) = - Dcfc3 4 <|> f:64. St pn-v pt4>c F23 * pc' F2M 4-

, 3) = - ('F, + *g

R/«C3,'»)= o

Rfi ("3,5)= - ^^V -*|

- f^^^-
f?A(3 , O = -(

+ f'
RA(3,7) = 0

- NA{ « b.b

**>,- 0,

f

o

o
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Rfl(S,i) =

(?flC5,7) =

2 Cc

/V «•

=0

f 4 ̂ Ga7 + S f ̂  + 3^a

*?^^

3L («* 4- 3

4- 1: b,fc3 G32 4. f b,

/Z * ̂  f ^^

157



/?fl(7,2) =

/?fl(7,5) = o

RAC7/6) = °
* fl C7.7) =-y

=o

I fal 4- ̂  ) F8 +f«A-» ̂ ^1

«^f^^-^

)6^^^

,7

•*-f Q.^G,g

0 = 0

RACS.sV-Fo-JIF,-

f

K a, - f
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=o

^(3a,2+bf)G7 -v K fa,bl-i-aib1XFao.,.<S,,')

= -* C«fe FJ3 + (I GI3 + /f £ b, b

4 K

-

= o

= o
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Rfi Ofr ) = ^o + /S'G3 + ̂  4 (PC
3GS + £ ̂  G6 ^ yf sc G? -^ 9b (9C Gg ) + /VA 1 fa,̂  bf

KflO fS) = o

±tf+^

= o
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Periodic aerodynamic forces terms for forced oscillations

2 b,

RV (',6) = - j (2<£

/?V (',7) =0

a? l?lo

R V ( 2 , Z ) = 0

RV(2, 3) =0

= o

= 0

b̂ ^̂
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•'•3W^+ 2(a(q5 + 3fc,b3^10 +(30,^-0^)^

-f^O,Q3 4 S^)/?,, +^Q,i,/?a 3f2f3Q^-ff,fc I)^ s

=o

2 i i^) s i£-t(«i<?3+^^^)S / 7

^)^s^^^^
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,2) =r 0

,3 = 0

/?l/C8 (S) = o

0

0

a,

,̂ ^^

^^-Qji),) R|720,

^
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(Q.\

= o

(6 ̂  s, 8) -,. (a, a3 - b, l̂ y s(7

Note:

RV(i,j) for i and j varying from 4 to 6 can be obtained from

RV(i-3/ j-3) by replacing R. with -S^ in the expressions
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Periodic aerodynamic forces terms for Parametric Resonance

RV C'/s) =

RV (>,(>}=

-^fc«^tf)^-i(«a-^^,,-^(«^-^

3) = -

= O

:= O
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,

RV/C7/2) = 0

^ V 7 , S = 0

RV(7,5) =o

= o
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RV

l^aW

, .s
o 1 •- N'A T< I '

^£ l
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£1/0(2):= 0

= O

a-̂ )̂ ^̂

RVO(6)-0

Note;

RV(i,j) for i and j varying from 4 to 6 can be obtained from

RV(i-3, j-3) by replacing R. with -S. in the expressions

168



APPENDIX VIII

The elements of matrix AA for flapping-lagging-feathering

rotor consist of two separate parts

(a) contribution from inertia and stiffness, AI

(b) contribution from aerodynamic forces, AA

Thus

+ | AAO(i)

The various elements are given below:

f)I(M) =

fl I («,*!)=

169
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= o
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(«?, 0 = o

/i i C^7)=

PlO(z) =

fl/COO= Ni

flio(s)=
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Aerodynamic contribution terms

AAO, I) = -tf - f Q

= 0

flfl(i,s)=o

(-2,1) = -

/?/) C-?,s) = o

fift fat) = o
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f f f -f

flfl(l,S)=o

fl/3 (</,<?)= o

f
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4- J-ccaQ,Q,

- , S

* '

/ ) / )CS,7)= <2,

f
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^
°

— o

f

flfl

+f Gao_a

S 3

= o

flfl (8, ̂  ) = o

flfl fa 7) = QiF,, -j.C2<9t Fs

.
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