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ABSTRACT
The nonlinear cguations of motion for a rigid votor ragtrained
by threc flexible springs representing, respeziive] chie tlapring
lagging and feathering motions are derived usi.g w2t cgua-
tions, for arbitrdry angular rotations. Thesa ced to A

cornsistent set of nonlinear equations ucing nw.
third order. The complete analysis is div.ided into tir
A, B and C.
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Part A consists of forced response ci tw.a~dorgree Ilapl
lagging rotor under the excitation of puce gravicationsl fisl
(i.e., no aerodynamic forces). Both forced cwcilliations ars
as parametric resonance are investigated using the Hzimonie
method and solving the resulting nonlinear alcenraic euunuic
numerically by Newton-Raphson iterative technizu
initial coning angle and flapping to lagging freruency ratic
discussed. For relatively small initial coning aucle {abzui
the nonlinearity becomes softening spring type and large coaple
responses are possible for rotational frequencizs sigrificantly
lower than the lagging frequency.
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In Part B, the effect of aerodynamic forces on the dvnamic
response of two-degree flapping-lagging rotor is investigated.
Significant aerodynamic effects are found for some of the previous
forced oscillations and parametric resonances. Also, sclf-excited
acrodynamic flutter instabilitiec are obtained after neglecting
the gravity forces. Effects of vaious parameters like Lock number,
inflow ratio, initial coning angle, structural damping, etc. are
qlSCussed. Also, the effect of a wind shear velocity gradient is
investigated, and is found to produce little effect on the laygging
responsc bBut appreciable effect on the flapping amplitude.
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In Part C, the effect of third degree of motion, feathering,”
is considered. First, the forced response of flapping-lagging-
feathering rotor under gravitational field and with wind shear
flow is studied. It is found that even for relatively torsionally
stiff rotor, the flapping amplitude is increased and the feathering
response is appreciable. For the self-excited aerodynamic flutter
instability, it is found that the feathering motion can reduce the
lincar instability speed appreciably. Also, the limit cycle flutter
solution of a typical configuration shows a substantial nonlinear
softening spring behavior. This reveals the possibility of sus-
tained limit cycle flutter oscillations occurring well below the
linecar instability speed if large enough disturbances arc given to
the rotor.
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SECTION 1
INTRODUCTION

For centuries, wind energy systems have been used as sources
of power in different forms like sailing of ships, pumping of
water, grinding of grain, generation of electricity, etc. In
the middle of the twentieth century, the interest in these sys-
tems declined because of the poor economic viability with other
power generation systems. However, with the recent energy crisis
and also because of readily available technology of fixed and
rotary wing aircrafts,wind power is being considered as one of
the potential sources 8f clean nondepleting energy.

Many types of wind power systems have been tried in the past
to trap the thinly distributed wind energy. Most of the wind
machines can be broadly classified into three categories depend-
ing upon the orientation of the axis of rotation, as Horizontal-
axis wind rotor, Vertical-axis wind rotor and Cross~wind rotor.
The Majority of these machines are based on the principle of
Airfoil lift. At the present time, more attention has been given
to the Horizontal-axis wind turbine partially because of its
better theoretical understanding. So all the latter discussion
and analysis is related mainly to this type of machine. (For
general material see Refs. 1-8.) .

Because of the low density of air, large amounts of air must
be tapped to provide an appreciable amount of power. It is
generally true that the cost of power produced is reduced with
increasing size of wind driven plant, i.e., increasing the size
of the rotor. However, one of the prime design problems of the
big wind turbine system is the dynamics of rotor blades and the
supporting tower and this has direct bearing on the operating life
of the rotor. To keep low the cost of power production it is
essential that the rotor should have long efficient life, i.e.,
subjected to less vibratory fatigue loads. Thus,there is need to

understand the dynamic characteristics of the wind turbine systemn.



In some aspects, the dynamics of the big wind turbine is
guite similar to that of the rotary wing aircraft. In the past
three decades, a lot of research has undergone to understand the
various dynamic or aeroelastic problems of helicopter and tilt
rotor aircrafts, see for example Loewy's review paper [9] and
other Refs. 10-23. A good deal of techniques developed in the
formulation and analysis of the aeroelastic problems of rotary
wing aircrafts can be used to study the dynamics of wind turbine
rotors. However, all the results of rotary wing aircraft cannot
be transformed directly for wind turbine because of differences
in some of the parameters like rotational speed, tip velocity
ratio, stiffnesses and weight properties, etc. In addition there
are certain specific aspects of wind turbine dynamics which have
to be looked into individually. For example, forced response of
wind turbine blade under periodic forces due to gravitational
field and sheared flow effect and also impulsive forces due to
tower shadow effect are quite important problems, particularly
for big wind turbines. A good general picture of various dynamic
problems concerning wind turbines is given in Refs. 24-26.

There is little literature available related directly to
the dynamics of wind turbine. Ormiston (27] has made a simple
linear analysis from the uncoupled flap and lag equations for the
forced response of wind turbine rotor under the excitation of
gravity forcing function and also due to velocity gradient cffect.
The influence of blade number and hub articulation on the blade
and tower stresses is examined and also the basic scaling relation-
ships with respect to the length of the blade are discussed. Kaza
and Hammond (28] has formulated the general linear flap-lag equa-
tions for flutter stability applicable both to the wind turbine
rotor with velocity gradient as well as helicopter rotor in for-
ward flight. Two types of hinge sequences for flap-lag motions
are used and the equations with the periodic functions are solved
using the Floquet-Liapunov method as well as the approximate



method (time averaging of periodic functions). It was seen that
the velocity gradient has little effect on the flutter boundary
where as hinge sequence for flap-lag motions has a strong influence
on the flutter stability of this two degree of freedom system.
Friedmann [29] has derived the general coupled nonlinear flap-
lag-torsional equations of motion for mcderately large deflec-
tions of a pretwisted cantilevered wind turbine blade with the
incoming wind having velocity gradient as well as gust components
in all the three directions. The methods to solve these equations
are mentioned. Miller [30] has obtained the linearized version

of the nonlinear flapping-lagging-feathering flutter equations of
rotor by considering the motion to be small perturbations about
possibly large static solution. The.importance of various physi-
cal quantities involved in the flutter and divergence of windmill
blade is discussed. The effective damping plots are obtained for
various configurations from the eigen analysis of the flutter
~equations. Dugundji ([31] has given a good review of the whirl
stability problem of wind turbine rotor mounted on a flexible
tower. The general linear coupled equations of motions are
derived for flapping—lagging rotor with two degrees of moticn of
tower head. The solution of these equations containing periodic
coefficients using Floquet theory, for two bladed rotor particular-
ly, is discussed. Some experimental results of small windmill
model are given. In Refs. (26,32,33), tﬁe autheors discuss the
various aspects like design, fabrication, analysis, testing, etc.
of 100 KW NASA Wind Turbine also discuss some of the dynamic
problems pertianing to this wind turbine.

For most of the aeroelastic analysis of rotors, the basic-
ally nonlinear equations of motion are linearized by retaining
only important static terms. Then it becomes much easier to work
on the linearly coupled equations. However, there are some non-
linear analyses in the literature. Young {34] has made a quali-
tative analysis of the second order nonlinear equations of flapping-

lagging rotor by the approximate method. Hohenemser and Heaton [35]



have used the stepwise numerical integration scheme to solve the
second order flap-lag equations. Tong and Friedmann (14] has made
an exhaustive nonlinear analysis of flap-lag as well as Flap-Lag-
Feathering rotor by the multiple time scales perturbation method.
Another method, Harmonic Balancing, is quite widely used in the
linear dynamic analysis of the rotor mainly because of its simpli-
city (e.g., Refs. 15,22,36). Dugundji, etc. [37,38) have used
Harmonic Balance Method to solve the nonlinear panel flutter equa-
tions as well as to obtain the nonlinear forced oscillations
response of the beams.

In thehpresent report, nonlinear dynamic analysis is made for
an isolated blade of wind turbine with no tower interaction. The
blade is assumed to be completely rigid and is restrained by three
flexible springs at the hinge point represenﬁing, respectively,
the flapping, lagging and feathering degrees of motion. It is
further assumed that the blade c¢.g., aerodynamic center and
elastic axis lies at the guarter cherd point and there is no
variation of any of these along the blade axis. A particular
hinge sequence of feathering first (from rotation axis), flapping
second, and lagging motion last is followed. However, one can
expect different results with changed hinge sequence [17,28]. The
equations of motions are derived using the energy approach (i.e.
Lagrange’s equations). Keeping nonlinearity up to third order,
the consistent nonlinear differential equations are obtained.

The complete analysis is divided into three parts, A, B and C.

Part A consists of forced response of flapping-lagging rotor
under the excitation of pure gravitational field. No aerodynamic
forceé are considered here. The blade can, however, have initial
feathering angle setting. Both forced oscillations as well as
parametric resonance are investigated. The forced oscillations
response takes place at the frequency of the forcing function
(i.e. rotational freq.) where as for parametric resonance the
response frequency is one half the forcing frequency.. First,



simple linear solutions are worked out from the uncoupled flap

and lag equation to get some basic understanding of the possible
response of the blade. Then nonlinear limit cycle solutions are
obtained for the flapping-lagging equations by applying the
Harmonic Balance method and solving the resulting nonlinear
algebraic equations numerically by Newton-Raphson iterative
technique. These solutions are checked for stability to see
whether they are physically existent or not. The stability check
is made by giving small perturbations: to these steady solutions
and studying the growth rate of these disturbances with time under
the assumption of slowly changing functions. If the perturbations
grow with time means solution is unstable. The effect of initial
coning angle and flapping to lagging frequency ratio on both
forced response as well parametric resonance is investigated.

The comparison of linear and nonlinear solutions near and away
from resonance conditions is discussed.

In Part B, the effect of aefodynamic forces on the two-degree
flapping-lagging rotor is investigated. Quasi-steady airfoil
theory is used to obtain the aerodynamic forces. First forced
response of rotor is studied under the excitation of gravitational
forcing field and in the presence of aerodynamic forces. Again,
the nonlinear analysis of flapping and lagging equations is made
like Part A for both forced oscillations as well as parametric
resonance. The effect of various parameters like Lock number,
inflow ratio, coning angle, structural damping, flapping to
lagging frequencies ratio etc. on response amplitude is investi-
gated. Then the self-excited flutter response of this torsionally
rigid rotor is studied in the absence of gravitational forces.

The equations of motion are the same as the first case except
that all periodic terms are absent in these equations bhecause of
neglecting gravity forces. First simple linear analysis is made
and then more rigorous nonlinear solutions are obtained by using
the Harmonic Balance method. The nonlinear flutter solution is
slightly different from that of forced response, here, for a

known lagging amplitude the solution is worked to obtain the
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corresponding flapping amplitude, the flutter frequency and the
stiffness of the configuration. The results are presented in

the form of stability envelopes. The effect of inflow ratio,
Lock number, coning angle, structural damping, hinge offset, etc.
on the ciritcal flutter boundary are discussed. The behavior

of limit cycle flutter amplitude with changing rotational speeds
is also studied. In the end of Part B the effect of sheared
flow on the forced response of flapping-lagging rotor is investi-
gated. Expanding the velocity profile power law relation and
retaining terms up to the second order, and comparing the elemental
thrusts obtained from momentum theory and blade element theory,
the inflow at any point is expressed in terms of inflow at the
hub, blade azimuthal angle and the radial distance of the point.
The eqguations of motion here get modified and these contain
periodic aerodynamic terms. Again, by nonlinear analysis the
effect of velocity gradient on the forced response of the blade
is studied with and without the gravity forces.

In Part C, the effect of third degree of motion, feathering,-
normal to the axis of rotation is considered, thus making the
rotor a three degrece of freedom system. The general equations of
motion for this flapping-lagging-feathering rotor in the presence
of gravity forces and with sheared flow are worked out. First
simple solutions are obtained, then nonlinear limit cycle solutions
are obtained for the forced response of the rotor by the Harmonic
Balance Method. The nonlinear solutions are again checked for
their well—poéedness. The response amplitudes of a typical rotor
confiqguration with the three degrees of motions, for two cases
of with and without sheared flow, are compared with those of the
same rotor with the feathering degree of motion locked. Then the
seif-excited flutter solutions for flépping-lagging—feathering
rotor are investigated after neglecting gravity forces and also
considering the uniform inflow. First the linear flutter analysis

is made by assuming the motion to' be small perturbations about



some possibly large static solution. The damping plots are
obtained for various configurations from the eigen analysis of
the linearly coupled equations. Then nonlinear flutter analysis
is made by the Harmonic Balance method. The behavior of the
limit cycle flutter amplitude with changing rotational speeds is
studied.



PART A: NO AERODYNAMIC FORCES

SECTION 2
NONLINEAR EQUATIONS OF MOTION

The rotor blade will be considered rigid with root hinges as
shown below. The flapping and lagging hinges have the same offset
‘e, and the C.G. of each blade cross-section is assumed to lie on
the longitudinal £ axis of the blade. No aerodynamic forces will
be considred at this time, since the main purpose here will be to
assess the effects of the gravity forces on the rotating windmill

rotor blade.

Hinge Joint —
l
Crg;fé;;:) Rotation angle

P

p A3 Feathering -0

Rotét1on s l Flapping -8
axis ~—~ .

ke e — Lagging - ¢

For convenience in setting up the nonlinear equations of
motion, the no-offset-case (e=0) will be derived first, then the
effect of the offset, e, will be added later. '

All equations and all subsequent calculations in this section
will apply for the hinge sequence shown above, i.e., feathering 0

first, flapping B8 second, and lagging ¢ last.



2.1 No Hinge Offset Present

When no offset is present, the absolute location x, y, z of
any point on the blade, &, n, ¢, can be defined in terms of four
axis rotations involving the Euler angles ¥, 8, B, and ¢ respectively.

These are shown in the sketch below.
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Multiplying out the various rotation matrices above, gives the
following relation between the fixed axes x, y, z and the blade

axes £, n, r namely,

[~ ! ] 3
eV nBernd , ‘Qm)*aqﬁeiw¢ : - et anmB -
x b Gt a8 Bl 1 = iPainD stnpaind |+ aifaib anf | | ¢
—ainPerd gt~ atomBoed
' I
; At (2 B ot : ﬁA;HQJQ@AXM<? : ”ALNPAA~F
l ‘3' —cam‘f,;,;,.am‘m@m4> ' +m\rmem5m¢ v~ Nl in pq
s Rm0mb | eV ambnd |
. !

= e w e wm cm  w e ae e e e W em ® wm m w @& e e ®w = = e 2w w e

—&QGMM3M¢ Yo B CU“‘@ j
+ M@Q,Q_CP

(1)

It should be noted that the inverse of the above square matrix
is eqgual to its transpose. )
From the above relationship, the absolute velocities %X, y, 2

of any point £, n, z, can be found by differentiation to be,
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The kinetic energy T of this rotating blade is,

« T

T:i§{7’<1+vy +.5£L-}olm (5)

The evaluation of Eq. (5) is extremely tedious as it involves
many trigonometric terms in the squaring process which later
combine together. To circumvent this, an alternative expression
is used for kinetic energy T based on the fact that the blade is
in pure rotation about the origin. It can then be shown that the

kinetic enexgy T is also,

> —_—
T = 3Liw =+ 3T,w, + L+ I5w, (6)

where w mn, mc are the angular velocities of the blade about

gl
the &, n, T axes respectively. For a flat blade with the section

C.G. on the £ axis, the product of inertia terms IEn Q.Ing ﬁilcg'ﬁ 0,
hence only the first three terms need be retained.

To evaluate the angular velocities mg, wn, wc, in terms of the
coordinate velocities ¥, 6, B, ¢, one notes that the total vector

velocity w can be written in two ways,

w = Wt + WL, + Wely (7
e

(8)
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From the rotation transformations between the various axes,

the following relations exist between the unit vectors,

t;' = 4w Z‘?”- + Cowf Cgy

Uyr = @B Tz = awf Tas

Tyr = '7:?3 )
7:%7_ = Aan B ng + B Lz

tx3 = CcRA? ~l; = Amwd? Z’l

7:%3 = Awm Z? + wad Ly

Tas = Tg

Placing these into (8), reducing all unit vectors to ‘., Zn, Z.C'

and comparing with (7) gives the angular velocities as,

[Of = 5?—(%\.6/&/;443 +500.6.4/M,(,)[o<’_¢> + ém@m(P - é W‘!”
w,n = SZ(MGC«"‘?."!’ ~ ¢ 0 A/:w@,é,:.u#)) "'é o 2 M‘qu ..-é (o««_q) (10)

SU comB o ~ éM(Z + P

S
L
!

»
where ¢ ¥ §¢ is the constant rotation speed of the rotor. Using
the above expressions for angular velocities, the kinetic energy

(6) for this blade with I&n = InC ~ ICg ~ 0 becomnes,
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(11)

°
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The internal potential energy U of this rotor blade arises from
torsional springs ke, kB' k¢

which are placed at the three hinges'
of the hub. This gives,

- - - .
U= 3%, (070) + 38 (p8) + 1hey (442

(12)
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where Os. Bs’ ¢s are the initial settings for no spring moments.

The gravity forces give rise to an incremental work 6W as shown

in the sketch below,

%.
A
erh“y acts along X axis

SU A ¢
oW = jm% §x dz (13

m = wmass/in

The incremental displacement 6x can be expressed in terms of the

incremental variables 66, 8B, 6¢ using (2) as,

5%

x St

I
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+(_m(‘LA,:,,;(3 G + Al Al B CO‘W) 3(3
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+[ ete. ]71' - [ eTe. ]3’
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Since the blade section C.G. is assumed to lie on the § axis,

then n = ¢ = 0 in (14). Placing (14) into (13) and integrating
gives

(1

g\/\f @6 §6 -+ QBS@ + Q¢é\c{> (15)

where,

i)
@
|

= %53 W (o AP e + AinB aim )

£
w
I

% S [A)M‘}’ A,stmpcoq@ ~ o (in B coub)]

(16)
Qq, = %S [ML}'(WOMPMQ; + ¢ B aﬁd’)
- Com\"(m@m@]

[

static wnbalance = - X ™M E A.%
aboul X axis "o

wn
93
]

If aerodynamic forces were also present, additional aerodynamic
moments Qe, QS' Q¢ would be added to (15).

Gathering together the T, U, Qi from (11), (12), (16), and
placing into Lagrange's equations

w) _ T U Q.

+ =
ﬂ( 29,0 3%& 0. o
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gives, after some algebra, the nonlinear large deflection eguations

of motion as,

A Equa:

L3 )

[(I%C«ﬂz:q: +Ihw’;<f>)m:—@ + I~3A«(./wz§}
(In"_Ié)"im@W2¢ - ¢ I, 6B

- 66(T; cn's T, ein'd = I3) aim 2p
0 & - ' . »
= B (Ta L) e 29+ ST (- T,) AdnB kg i 20
+ (I? ,4,4.,.24) +I,’Co°f<,b)(,¢<.9 + (I% m"(;, +I,]A«&3<:>~I-g)m9 Coﬂ.?.g]
\;.J

% 2 L 2 .
+ -‘2—752, [<I§ coa” & + I,lmlqo) Al Ao B~ (Igaimqs + I,lanq':),wzo

+ 52 ¢ [(Ir]lé)(—‘i CoLOAUMLE a2 ~ pun O o2 B cov 26 )+ Lgain0 an

+ G”‘” L3) 020 dmp aim2é + T con’p M']_e] « Je, (6-6))

= . D¢ smt (000 tim B and + ainb aind)
(18)
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IiAJh:cF b Tyand) + 0 (T, Ip)4 eepainld

)Am2<l> + GCPL(I L) coxBer 2 + chm@]

* (Tn"Tg) A B tin aim 24 1
$ [(I Ty )(Aim2p aim € + con 24 oD win) * Izmeﬂ;mg]
v 4 SE[-(Tye + Tyoie)er o ain2f + (BT ain2oempainlt
+ Igmeng] + /k@(e Bs)
= 9P [W*’ (im0 comf ) — couf (ainp cmﬂ

(19)

4> Ec‘mo~ <

¢ I‘S - 0 Iganp - éét(f,,-]‘.i)m@cm2¢+ Ty cm@]
¢ 2 - ! \ 2 i .2 \ .
= 6 (‘L’\—I?) z COQ-PAMVZ(# + B (I%‘I;) T Anm 2P

+ 20| (1T ) (B emp e 2 - 4 m8 ain 2 ain2¢) = Ty #inB v
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‘ﬂ{g [(I»,'I;)(WGMM + e 4B e 2d) + I% Coe 8 aim @]
* L ST (T I) (0 0 im2é — co0uinlp ain2 |

t A 20 Mm@ on 2 ) 4 Ao, (&-¢,)
= o 5.3 {- A (MGM@W.C}, * (20 =) alaads (e W;;)}
‘ (20)

The preceding equations apply to arbitrarily large angular
deflections of a rotating blade with no offset.

2.2 Effect of Hinge Offset

When an offset, e, is present, one introduces an additional
axis system X,Y,2 which now represents the fixed axis system.
The origin of the previous x,y,z system now circles about the Z
axis at the offset distance e, while maintaining its axes parallel
to the XYZ axes. '

Z

Fixed axes — XY %
Z .
A
X = x + e we¥
\ .Y
e\\\ _ Y == ‘3»4'6_41;1\'\-‘{/
) s ,
- N Z = 2
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The velocities of the two axes systems are related by

L4

X - e amy ¥

b
(f

Y = fg/+e-m\,"“}” ‘ | (21)

z

AN
I

The kinetic energy T of the rotor blade is given by,
~

T

2 .
n > 2 2 52
ZL{X + Y + %4 } dwn -
Q .
Jij 1= zeaimd XY + € ity B2

It

+L}z+7_e ot C’?,‘;’ + e.zarfl,b Y él} dm

This can be regrouped into the form,

g
o2 o 2 .

N R L.

2
+e§l§q{%mﬁ"—’§@w\f’}dm + izeszj\clm

20



The first term above represents the kinetic energy of the blade
found previously and given by (11). The third term can be dis-
carded since it is a constant, and will not contribute in Lagrange's
equations (17). The second term represents the additional kinetic
energy TA due to the hinge offset. This can be further simplified
by taking ¥

0 in these equations to give,

L
T, = en [ (3) dn

(]

Introducing y from (3) 'into the above gives,
I

+ (—aim B con B ) 2B

+ (Me,@.\@ A b + Coe B wzd?) 57-2?’ _]

(25)
where SC is ﬁhe static unbalance as in (16).
The additional terms in Lagrange's equations (17) coming from
this T, are, '
0 Equa : Q
. A S .
£ Equa : SL e Sg A 3 m¢ (26)

§3 Eque ¢ szze_ngF A &
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These terms are to be added to the left hand sides of (18), (19)
and (20) respectively, and represent the sole contribution of the
hinge offset. It can be seen from (21) and (14) that no additional

gravity force terms will result from the hinge offset.

2.3 Summary of Equations of Motion

The nonlinear equations of motion given by (18), (19), (20),
(26) for the rotating blade can be simplified somewhat by expanding

the trigonometric terms to 3rd order, i:e.,
. L 3

I

Coa. A =~ 4L - %;«

and also by noting that for these blades,

I§ <« I,

Then considering only terms to 3rd order, the nonlinear eguations
(18), (19), (20), (26) reduce to,

6 Equa:
é’[ra* In((;“q”lﬂ * EI*}‘P - ¢ I, 6
+208 T, + 266 I, - 254 I+ 294 T, ¢

(g4 +00™-0p") + I, 0]
* ey (0-85) = 98 aimd(p- £ ¥

®

ot
—57”552‘+9¢>
(2V9)
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Eua.:

BT, (1-¢") + 6§ I,¢ - 28éT,¢ + 2641,

~0 1,p -228 1,8 + 29T, (p+ 04)

—_

+ SZL[I,I(B-3§@3—~ B -80 + Bp) + 5,8

+ Jeg (B-8:) = 95 ,o,;mn;/( 4
+ %Sf‘é"'q’("@“k EZ%‘*@ 5’&2) (30)

<F 153351 ;

° o 2

& T, - 61,p - 20p T, -6 T,& « & 1,4
*152(5[111 Xy +- I;e] - zsz'é I, (g+0¢)

© 2 [1,(0p+ 0% - 5'9) + e 5,0 ]
Fhg(vd) = g8y (1 T0 8 _0pg)

3 2
+ 95, ot (- + 2 e
y o5 cont (-4 c v ¢ 7)) -
(31)
Equations (29), (30), (31) represent the final nonlinear 3rd order

equations to be investigated. It should be noted that in reducing

the offset terms (26) tc 3rd order guantities, the offset e itself
was considered a first order quantity.
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SECTION 3
LINEAR ANALYSIS OF FLAPPING-LAGGING ROTOR

‘To gain understanding, the simpler flapping-lagging case will
be examined before going to the full three degree of freedom case.
A linear, small deflection analysis about a large static deflected
position will first be conducted before examining the complete
nonlinear analysis in the next section.

The basic equations of motion for this flapping-lagging case
are obtained from (30) and (31) by settinq é and g equal to zero.
The 6 itself is retained as a constant initial hinge setting for
the blade. It will also be convenient to nondimensionalzie the

time variable in the standard way by introducing ¢ as,

—~ o d o
= = - = 2
Y = 2t ()—Qd\{,_ﬂ() (32)
Under these assumptions the basic nondimensionalized equations
become
B Egua :

B (1- 4% - 28¢¢ + 2% (@+09)

*B(1+&8 + v ) + 0 -
B ( P ) (33)

¢
tg(Er Vi)t B v 04 -~ B = (30)



where the following nondimensicnal parameters have been introduced,

kA
ess _ emli/e 3

é = - ~ ~ = _e_ for un;fm/m
Iy m2®/3 FA) ( blade
Vé, = Lk = ©e
st 1 s
—— (35)
Vv, = _LJ:'E _ e

5
1T
F’m
Y
i
/ﬁ\
&
~
>
{
Fg
[

- (fbr unytorm
20 S blede

4
- 4
gl :

In the G above, Wpend represents physically the natural frequency

of the blade hanging as a pendulum with no stiffness k, present.

¢

Equaﬁions (33) 'and (34) represent the basic nonlinear equations

to be investigated for the flapping-lagging case.

3.1 Static Solution

A static solution to (33) and (34) can be obtained by neglecting
all derivatives terms and by setting G = 0. Under these conditions,

the equations reduce to,

z
Ve Bs

I

(L+@+vy-0-2e-¢")p + 04
9@ + (E . "\"; + ez._ Bz.) 4) — ’V'('; 475 (36)
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For a given e, 6, ¢_, B _, vB, v these nonlinear equations can

’
be solved to give tie szatic soiution ¢ = ¢o' B = 80. The

solution is most easily accomplished by iteration, i.e., first

setting 62 and ¢2.equal zero in the paranthesis terms, then

solving these linear simultaneous equations for B8 and ¢, then N
correcting the paranthesis terms with the previous 62 and ¢2

then solving for B and ¢ again, etc.

3.2 Small Perturbation Equations

Having found the above §tatic solutions Bo and ¢o’ one can
" then investigate small perturbations of the nonlinear equations

about these static positions by assuming solutions in the form,

+

< W

8 = &
d =, +

Here, E and Z represent small perturbations about possibly large
static positions Bo and ¢O. Placing (37) into (%i) ipd (34),
retaining only linear terms in the perturbations 8, ¢, and cancelling
out the previous static solution (36), resﬁlts in the linear

equations,

(L-4)8 + Z(@a*‘e#’o)&? + (LrErvi-g-26-4)F

* (6-284,)% = |

= [go(1- ‘f: #.4) - (ae@e - (60d)F | mins ¥
lap(t- & “50) G(1-%-4)F + (abt)d [ent

26 | (38)



clu(,u.'
(o Ne] ©
P - 2(e.+094)B + (6-2p9)0F

~S

r(E vy +6-p,)0 =
= [a(1-2-%0nt) - (a00)F + q(%or)d | ain
c[ah(-E-E) + (ahp)E - a(-E-8)F] ey
~ » (39)

~ r~
These equations in B and ¢ represent linear coupled equations

with both forced excitation and parametric excitation present.

3.3 Simple Linear Solutions

One can obtain some simple linear solutions of the perturbation
equations (38) and (39) by arbitrarily uncoupling them. This will
give an indication of the source and rough magnitude of E’and ;1
Later a more accurate coupled linear analysis can be made. And
of course, later still, in the next section, a complete nonlinear
~

,Ehe B equation, when uncoupled from the ¢ eguation by setting
all ¢ = 0 in (38), is,

analysis will be made.
~o

(L-8)E + (L+E+v -0 -28 -4 )F =

= &

‘Fas(t-B2-#) —a(1-&-4)F] Y

= [&s(i-— E;L, b - (G9g,) é’] AP (40)
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Two types of strong oscillations are possible for this type of

equation, a forced oscillation near § z’mN and a parametric
instability in the neighborhood of the first parametric instability
region, Z»ZmN. In here, w,. represents the natural frequency

N
of this equation in flapping, namely,

(,ON ~ S'Z.\l(]_-i—€+V§—9"_2_@;~_¢oz>/(i_¢:-) (41)

For the forced oscillation, one assumes approximately the

steady state solution, .-

Yo d

B = Q,M\{’ + b, cony (42)

Placing into (40) and matching sin ¥ and cos ¢ terms gives,

I’

2 2
qo(1-8 - %-¢
a" -~ 2 2 6
2z ra
Sy = - Z
e +Vp -0 Eo (43)
- Br_ b
L —qR (-2 - %)
l ~~
e +'1"';—5 "‘ZBQL
The coefficients above can also be rewritten using the definitions
of G and Vg in (35) as,
o $L 2 z
o Pe] -
a, =~ (C“)Pﬁhd 6 L Z z 6
t N
We 7 2 2 —
e0 - (Fy (o7 r2e - B)
@ (44)
2 -

RO AT
’ N K 2 —_
o 1-(5)(e"r2pr-2)
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Equations (44) give simple estimates of the forced oscillation
amplitudes in flapping. It is to be recalled that total amplitude,

A,= V_2 2 . It can bhe seen from (44), that resonance will
B al+bl

occur when the rotation speed reaches,

QL 3 { ' (45)
6+ 26, - €

Since the denominator in (45) must be positive this resonance in
flapping can only occur if '
—
L —

o + 2@: > e | (46)

This may well occur for small hinge offsets e.

For parametric instability in the first (and strongest)

instability region, one assumes approximately the steady state

" solution,

@ = a,,qm' % + b,Cdm (47)

M€

Placing into (40) and matching sin y/2 and cos ¥/2 terms gives
the equations,

- ~gF
)_'i(i—q)j‘) + 1+ &+ 19;/\(2,@;” e S (¢ %z- ‘i‘_:g‘)]a\

+[~'2;C=_;Qﬁa] b, = 0 (48)

[';_Q@(?olq_l + ["i‘-(i"?f) + 1L+ € + vg -~ 97‘_2?;;—__ b
-x‘-%(i.—%?’“i)g)]b’ =
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These homogeneous equations in ay and bl have the solution given

by (47) only if their determinant equals zero, i.e., if,

.

3.3 z = ]
[4_ -;;d%-l-ei-’)f‘;—e-z.@a_, (49)

_(@"[(1- B ) e (08) ] = 0

This equation can be solved for v2 by bringing the second term

: 8
to the right hend side, then taking the square root of both

sides, and rearranging to-give,

2. —

_ _3 e A . 2T ot G o Po 2
V, =-2-&+ 0+ 24425 £ 8 (1-@_ ) + (66

This gives two solutions corresponding to the two boundaries of
the first instability region. The boundary with + G is the one first
reached here. Noting from (35) that G can be expressed as,

2

w =

G = 2 Paud ’VE (51)
We

one may rearrange the criterion (50) to give,

(52)

This defines the rotation speedsat which parametric resonance in

flapping occur. Since generally (w /wB)2 << 1 for windmills,

Pend
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this can only occur. if,

2

6"+ 24, + 26 > + e (52a)

Hy

which is generally impossible to meet. Hence no parametric
resonance is expected in flapping.
Va4
Looking next at the lagging case, the ¢ equation, when
~ r~

uncoupled from the B egquation by setting all B = 0 in (39) is,

o
o
®f

+
= [Fa(1-£-% e 0p.b) v G(e-08)F | ainy
+[-ab(t-B-8) - q(-B-8)F ] et

-2

Il

= 2 2 ~
+ Vet 6 - B )P

The natural frequency of this equation in lagging 1is,

Wy = sz\g € + Vy + 8 - B _ (54)

and strong forced oscillations occur near  ~ w while the first

NI
parametric instability region occurs near @ C.ZtDN .

For the forced oscillation, one assumes approximately the
steady state solution,

~r

$ = a, 4wt + b (55)

Placing this into (53) and carrying through as previously for the

Vad
flapping B case gives,

31



Wé (56)
YR - gt
b ~ wP..ﬂ«i (j) 1- "62':_ "éi
Equation (56) give simplé/estimates of the forced oscillation
amplitudes in lagging. It is recalled that the total amplitude,
b=— . i
A§ /af + bj From (56), resonance will occur when
]
2 zj { (57)
= T _n*
W 1-8 + B -0
This resonance in lagging will occur if
B — 2 .
1+8 > &+ 0 8
This condition is always met in practice, hence large lagging
forced oscillations are distinctly possible at the rotaticn
speed given by (57).
For parametric instability in the first instability region,
one assumes approximately the steady state solution,
~ ;
Ly W
¢ x At + b i (59)

Placing into (53). and matching.sin ¢/2 and cos Y/2 terms gives the

equations,
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— b 2 2 G
[-L+e+v;+e*(aoa.z__

: (
A

£ - 5—@)1%
(¢,-06)] by O (6o

Fe(e-oa)]o, v [-4+ & + v + 07 -6

Settlng the determinant of these homogeneous equations equal to

zero as previously for the flapping 8 case gives,

— 2. 2 & c«').z-l
Vi = kT o0 gt G(U- K aod)

Using the stability boundary above and expressing G as in (51)
previously, (but with reference to w¢ now), the criterion (61)
may be rearranged to give the rotation speeds for parametric

resonance as,

5
— ) w L] o P2
o o | LT (L-E-E) v (eon)
W ~
1 — z 2
~ — € -0 4+
\ =2 B, (62)
!
Since generally (mpend/o¢)2><<‘l for windmills, this parametric
resonance will occur if, -
[ = = %
:}_— + @o > e + b (63)
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This condition is generally met for small offsets e, hence
parametric resonance in lagging is distinctly possible at the

rotation speeds given by (62).

To end this brief discussion of simple linear solutions, it
may be of interest to introduce some simple physical interpretations
to some of the results, equations (41) to (63). The criteria for
strong forced oscillations in flapping (46) and lagging (58), and
the rotation speeds at which these forced oscillations occur (45)

and (57), come simply from the requirement @ = w This can

No

easily be shown by setting © = w, in (41) and (54) respectively.

N
Similarly, the criterion for the first parametric instability

region in flapping (52A) and lagging (63) can be shown to come

from the requirement = 2w The rotation speeds at which these

N‘
parametric instability regions first occur (52) and (62) are

. 2 2 i
slightly less because of the (wPe d/wB) and (wPend/w¢) factors.

/w,)” > 0, then these rotation speeds

2
If (wpgng/vg) ™ > 0 and (wp, 4 )

also occur at Q = 2wN.
Another quantity can be given a simple physical interpretation,

namely, the (w /‘ms)2 factor appearing in (44) and (52). Consider

Pend
a blade held horizontally against gravity and restrained at the

B hinge by the spring kB as shown below.

The angular deflection BDW under its own dead weight is given by,
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3 — '%S'n (64)
dw Xh@

where sn = fg dm is thie static unbalance about the n axis. The

natural frequency w, of this blade is defined as

B
Py (65)
Iﬂ
Solving (65) for kB' placing it into (64), using the definition
2 : , _ R
(Wpeng) =9 SE/In given in (35), and noting that § < S, results
finally in
2.
B = (w”'w') | ' (66)
Dw _—
We ~

Thus, the (wPend/wB)z factor simply represents the static deflection.
B of a horizontal blade under its own dead weight. Similarly it
can be shown that,

n

¢ = [ Wred (67)
DW —————

u3¢
These BDW and ¢DW give simple interpretations of the forced

amplitude oscillations (44) and (56).

In summary, the simple linear analysis in this section has
indicafed that gravity effects are likely to be more important
for'lagging motions than for flapping motions, and that both strong
forced oscillations and parametric instabilities arc possible for

lagging at the rotation speeds given by (57) and (62).
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3.4 Complete Linear Solution

complete linear solution of the .coupled small perturbation
equations (38) and (39) can be made for more accuracy. For the
case of forced oscillations, one would assume the approximate

steady state solution,

B. + a,Aw't + b coe¥

R ™R
R

R

b, + At + b, coed

The higher harmonics, siﬁéw, cos2y will be neglected here.

Then placing these into (38) and (39) and matching the constant,
the sin ¢, and the cos ¥ terms of each equation results in six
equations in six unknowns, Bc, ay bl' ¢c, 8, bz. The Bc and
¢c are included in (6%) to allow for small centershifts from the
static values Bo and ¢o. The solution (62) will now include the
effects of the small second parametric instability region near

Q zle in addition to the dominant forced oscillation resonance
there. The six linear equations can be readily solved by inversion
to give the forced oscillation amplitudes in (68). Also, the
determinant of these equations can be evaluated numerically for
different values of rotation speed 9 to find what Q makes the
determinant equal zero. This would then represent the boundary

of the small second instability region.

Instead of developing and presenting these coupled linear
equations here, it will be more convenient to present and solve
them later as a subcase of the complete nonlinear eguations to
be given in the next section.

For the case of parametric instability in the first instability
region, which is always the strongest instability region, (see

Bolotin [40]} one would assume the approximate solution,

36
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3 4 e &
e = q >+ b =

(68N)
S pust W

and obtain the appropriate four equations in the four unknowns.
The higher harmonics sin3y/2, cos3y/2 are neglected here. The
determinant would then be examined numerically to find what
rotation speeds Q make it equal zero, thereby determining the
stability boundaries. Again, this linear solution will be
obtained as a subcase of/the complete nonlinear equations in

the next section.
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SECTION 4
NONLINEAR ANALYSIS OF FLAPPING-LAGGING ROTOR

The linear solutions given in the previous section serve
only as a guide to the small amplitude behavior of the rotor
blade. When the amplitudes become large, the nonlinear  terms
in the equations will serve to limit the predictions of linear
theory. This is particularly true of the forced oscillation
resonances and the parametric instability regions where infinite
amplitudes are predicted by linear theory. Accordingly, the

complete nonlinear equations (33) and (34) will now be examined.

-

4.1 Torced Oscillations

For forced oscillations of eguations (33) and (34), one seecks

limit cycle solutions in the form

@ T OB v A A + b, cox ¥

(69)
¢ b + a, et = b, oW »
The higher harmonics, sin2y, cos2y, etc. will be neglected here.
The Bc and ¢C above represent the total centershift from zero
and would now include the static solutions Bo and ¢0 plus any
additional centershift due to the oscillation amplitudes, a, by
a, b2. Placing these expressions (69) into (33) and (34) and
matching the constant, sin ¢, and cos ¢ terms of each equation
and discarding the higher harmonic terms, gives after much algebra
and trigonometric reduction, the following six nonlinear equations,
— . 3 ( 1
Fn Fzz F-ls Fl4— F;s' Fié. 6¢ Fl°
= . e . a F,
Foo Floa f;3 . " + { 10? = 0
T R L b, | Bo|
. Fap . (70)
F+' - - = - ¢c 4'0
—~ _ . N . . E.
FS( - Q. 50
= - - bl - F
L"’g; F(;la L b7j L 69




where the elements Fij are given as,

Fo= B5Z v e E-d-3E-d - N fn) s g(de s}
Fo = G486

Fs = G(s-8 %) - Ng { et « f(alv 26}

0 - N {Q(a,_+ b,b,,}

F G304

Fle = ~Ga6b — NG {gaa]

N
.fs.
i

-

Il

1l

P = NG L (ab rab)]

Fo = 3¢ B + & -0 -257~ N [ (@b« £ (a0}
F, = 0 | |

Fe = ~NG {4 (abv b))

N

® 254 - N{bb}
Fo = -z(@c+ 6¢.)
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i

i

i

i

i

o - N ia,aﬂ b,b;,}

G104

-G 5 6% = NG § pan]

Z o+ E + 0 - BF |

-G % (4 -98)

G(4- B~ &) - N@{—-(Q.+3b‘)+4-(%+b>}
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FS‘\ = —'NC‘J\{;‘;(C&.b + Q b,)}
F,, = 0 -28.% - Nfbbj
F53 = 1((3r.'*'6¢’¢>

F54 = —-NG‘i-L(Q‘b‘+qu,_)}

F, = 7+ 8- L+ o - - Nfs(aruDf
Fse = © )

F,o= _Nq{ (aa,_+3l>b)}

Fc,z = —7-((3¢,+ 647(_) |

F, = 0~ 284 — N {q,a.,_}
Foo= G (- 8-t) - NEg(aratd+ (et
Fosg = O |

-F(,(,"—'-" ‘7+e—l+9*€>c_+ N%—';,:(Q, bz)}
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]
Q
W

- e 28 - N{ab,- a,b]

~Go(L-E-E %) Nﬁ{e[-‘é(aa’.‘w’;)*‘é(?at«»b’;ﬂ}
5 = NG ie L+ (aiby +a,_l>,_)}

Fo, = ~2¢ — Njo(ab,- a, b))}

Feo = @& (1—%’-_&’&;_:1':9@0%) - NG {—g(za’;w’;)— i@(z&,cez+blzapz}

- NG { L LA azbJ}

The nonlinear terms appearing in the Fi. expressions have been
grouped to provide a reasonable symmetry. .
also have been chosen.

g l:ﬂ
o
If It

T

N

o
)

Other groupings could

In the above elements the following definitions have been
introduced for convenience,

z |
Z o= Vv, =
¢ %
2
' (*og)
(:5@ = 9‘2_@. (71)
We
N = v $or linear case
L for Wonlinear case
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For a given configuration defined by the six parameters 6, B8 _,
¢ € @

5 S
s B' pend/w¢) = ¢py
equations (70) for various values of rotation frequency ratio

and (w one solves the nonlinear

Q/w¢. In evaluating the coefficients, it is convenient to use

the relations,

{
Z = (sz/%y- (72)
z_' .
Low 4
G = -——-»—-k:;:’”g L = (Pznv -

-

The solution of the nonlinear equations (70) is best accomplished
numerically by using an iterative Newton-Raphson technique, which
uses some initial estimate of the solution to begin the process.

P 9, = oy

S C S

a; = bl = a, = b2 = 0. One may be further guided by the sinple

linear solutions (56) and (44) given in Section 3.3 However, one

As a start,one may use the trial solution Bc = B

must realize that for nonlinear equations, multiple solutions

may be found in certain cases. The particular solution obtained
would depend on the initial estimate in the iterative computation
process. Solutions would probably vary with frequency as shown
below,

A

2 Multiple soluTions

for same SL/“’CP

A n'.[arlTu.cte

Az.: \I a::* b:

The effects of various parameters such as ¢ BS, 9 etc. could

DW'’
be assessed as desired. BAlso, the complete linear case mentioned
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in the previous section 3.4 could be worked out by simply setting
N = 0.

Finally, it should be mentioned that some of the 1limit cycle
solutions obtained will be unstable and as such, have no physical
recality. These unstable solutions can be checked formally by a

stability analysis or may be inferred by experience.

4.2 Parametric Resonance

For parametric instability in the first instability region,

one assumes a limit cycle solution of (33) and (34) in the form,

~ ¥ v
B = B + ayawm 3 + b (73)

d = P + a, it + b=t

The higher harmonics siny, sin3y/2, etc. will be neglected here.
Placing these into (33) and (34) and matching the constant, sin ¢/2,
and cos y/2 terms of each equation and discarding the higher harmonics,

gives again .six nonlinear equations,

. ’ — r \'
Fu‘ P;z. P,z. P 14 P,g Plb €. ( Plo\
P:u P:.z P;_?, A < a'? + < on? - 0
PSI sz. Pz - i . b, P
.. 3 F
Fkl - v . 7 40 (74)
Ps.' ? T e * - - OZ_’ {DSOJ
N P()l hd - - ' Pﬁ(’_J k bLJ L PGO ,
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where the elements Pij are given as,

Po= BrZ+LlvE-0-36l &
=N f (st e (e el) - G5 (@) + e ﬂ}

O

v
‘4
)

P|3= Q

Pla = & - N fangz"" b b, - G(%.(O‘laz"b:bz)}

Pe = 0

P, = O

F, = 0

_ 5Ty LT -gt *_24% ¢ Be _ P

Pop = gt %+t 9“1&*;0~Q('§—;—-5§;)
‘Ni'li(af""biz)*‘ (H Q;,-i-b") -—'—L Q;,_*-B(Ei)%

Pao = @296

P, = ©

P?.s’ = 9—'2@‘47;—% G’l Gc_dl)c. g% E‘bp_}

PZ-C’ = eCP& + G‘l_lj'_e(bc.



Par = ©

P, = G296

P, = B B+ ErEO REOSEL S ra(s-5-%
N{Ji(a‘-ﬂo)*r—’(%*“b>+Cntz(b \'3bz,)J’

Pase = O

Pos = B.+ 94 + G 0P
Pap = & -~ 2B “%6\17;(;540(. - N i%Q,QLZS

p.o= 0 - Njaa+ bk ~ G (% bk ]

P, = O

P4z = 0

P, = Z+ero -8 N £ 3 () -G g0k
oL (e-b)]

Pes = 0

Pac = ©
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Ps, = O

FS‘L = 9 - 2-(34476“‘- Giii.@cc#c_ - N %58" b; b?_}
Pg; = @+ 94’; * G{JZ.9¢°
Ps, =

@
t_g* B _ .
ngzz——;—_+e+9_(3°..q<_zx_’_. .____*)

——U
4
I
l
@O
~f-
N
a@..
{
@
W
N,

P, = ©

P, =-6.-6d + G 0%

Py = O - 28,9, -G LBt — N{%Q‘Q?’§
vPH—": o |

Pee = ~G35(R-08)

Pe = Z2-4%r €+ 0 - B + G‘(Ji_(?}_c%"

3

B N ? T(E: (Qsz"*‘ ¥ b;z) <+ 61 T‘-L<3b,z'+ b;’)}
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Péo = 0

In these elements, the same definitions (71) and (72) are used
as before. The equations (74) are solved as previously for the
forced oscillation case, only now, one is guided by the simple
linear parametric instability solutions (52) and (62), and one
seeks solutions near Q/w¢ ~ 2. These steady state limit cycles,
appearing at roughly twice the rotatioral speeds Q of the forced
oscillation resonances, may be equally as severe as the forced
oscillations. It is to be no£ed that the actual vibrations them-
selves occur at roughly w = m¢ even though the rotational speed
here is roughly Q % 2w¢.
Other nonlinear subharmonic and superharmonic solutions can
be investigated in a similar manner by introducing equations (69)
or (73) with additional harmonic terms present ii.to the basic non-
linéar equations (33) and (34). One would then harmonically
balance these additional harmonics which would lead to larger
size nonlinear algebraic equations in place of (70) and (74).

Such subharmonic and superharmonic solutions for simple beams

were examined by Tseng and Dugundji [38].

\
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SECTION 5
NUMERICAL RESULTS FOR NONLINEAR FLAPPING-LAGGING ROTOR

Numerical results using the previous nonlinear analysis of

Section 3 are obtained for the following confiqurations:

CASE I : %:0 q—;zo wp=.7! 417)W=~088 Q=0 e =.l
: — —_ J - - . Q:O o _
CASE II: B =I5 cg_ Qg =TI %w" 088 € =1
. = .1 = ) = i = . = —:-
| case IIT; g 5 ¢$=o Gy=I4 q}w* 088 0=0 €=-I
The ¢Dﬁ = .088 represents a relatively flexible lag rotor, i.e.,

the case for which w,=3.37 w®
. ¢ ~ pend.

5.1 Forced Oscillations 4
First, simple uncoupled solutions are calculated for the

different cases using Egs. (36) and (44). Thenthe linear and
nonlinear solutions are obtained from Eq. (70) by computer. For
the compution of nonlinear solutions, the corresponding linear
solutions are used as initial guess as far as possible. The
results for the abhove three cases are presented in Tables 1-3.
From these results, one can see that the simple solutions give
reasonable estimate of linear solutions, particularly, where
coupling motion is weak. Also, lincar solutions agree well with
nonlinear solutions away from the resonance region. This is
qguite apparent from the fact that the’linear theory is good for
small amplitudes and bhecomes inadeguate for large amplitudes
which take place near resonance condition. All these solutions
are checked for stability by giving linear perturbations to the
steady solution and then studying the growth of these perturbations
(discussed later in Section 5.3).

In Fig. 1, the solutions are plotted for Case I. Tor this
configuration of zero coning angle, the response is uncoupled and
one gets only lagging amplitude. Here it can be seen that the
linear and nonlinear solutions are quite close except near resonance
(i.e., Q/w

-~

~ .95 to 1.15). Arrow mark on the graph is a resonance

¢
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point obtained by linear theory. The nonlinear solutions becone
unstable for A, greater than about 1.

In Figs. 2a, 2b and 2c are respectively plotted lagging
amplitude, flapping amplitude and center shift Sc for coupled
response of Case II. Here, one can find a large shift of non-
linear behavior from the linear one particularly after the ampli-
tude started increasing. At large amplitudes, the nonlinear
resonance curves bend towards decreasing frequencies depicting
a typical nonlinear softening spring type system. From Fig. 2a,
one finds that for lagging amplitude, the higher frequency branch
becomes almost flat in the overhang whereas lower fiequency branch
becomes unstable after maximum slope. Similar strong nonlinear
characteristics are also visible for flapping motion in Fig. 2b.‘
Further it can be seen in Fig. 2c that Bc the mean angle setting
about which limit cycle oscillations take place increases with
increasing amplitude. These curves show that small initial coning
angle of the order of 9° can produce an appreciable change in
the nonlinear forced response of the blade.

In Figs. 3a to 3c, the results are plotted for Case III.
This physically signifies a system in which lagging hinge stiff-
ness is lower than that of flapping. Here, also, like Case II,
one sees the softening spring characteristics for large amplitudes.
In fact, the nonlinear response for case III1 appear to be more

violent than Case II.

5.2 Parametric Resonance
The numerical results are obtained by solving Eg. (74) by

computer, for the same configurations for which forced oscillation
response results were obtained. These results are plotted in
Figs. 4-6.

In Fig. 4, corresponding to Case I, results are plotted
for linear and nonlinear solutioﬁs. Like forced response of
Case I, (i.e. zero coning angle) one gets here also only uncoupled

lagging motion. It is found that there is distinct unstable band

50



for Q/w¢ of 2.52 to 2.64. The linear solution predicts infinite
amplitude in this band whereas nonlinear solutions give two
limited amplitude branches which try to bend toward each other
in this region. However, for higher lagging amplitude (-~1.4),
the nonlinear solutions become unstable. The trivial solution

of Bc=al=bl=¢c=a2=b =0 exists for every Q/w¢ except for this

instability band whire trivial solutions becomes unstable.

In Figs. 5a to 5c¢, results are plotted for Case II. With
a small coning angle (~9°), there is hardly any change in the
linear response but there is distinct change in the nonlinear
parametric response of the blade. Nonlinear response is coupled
one with lagging motion more dominant as compared to flapping
motion. Like forced ogéillations of Case II, the nonlinear
parametric resonance curves for large amplitudes bend towards
decreasing frequencies, again, depicting a typical "Softening
Springs" type system. The higher frequency branch for lagging

motion, A, becomes flat and extends to lower frequency region

and lower¢frequency branch becomes completely unstable. Again
the trivial solution is stable cxcept for Q/w¢ of 2.52 to 2.64.
In Figs. 6a to 6c, the results for Case III are plotted.
The results are just similar to those plotted for Case in II in
Figs. 5. Again one gets the coupled response with strong lagging

motion.

5.3 Stability Analysis

The nonlinear solutions obtained by Harmonic Balance method
for forced oscillations as well as parametric excitations are
not always physically existent. One has to make stability check
on these solutioﬁs to find out whether any of these can be a
physical reality. So, these solutions are further investigated
here for stability by giving small perturbations to the steady
solutions and studying the growth rate of these disturbances under
the assumption of slowly changing functions. The solution will

be unstable if the growth rate of perturbations with time is



positive. By slowly changing is meant here that the increase
of a function during a period is small as compared to the average
value for this period, i.e.,

(X}

a,
[

Q,

<< { ek

4,
T 27 ; (75)

1

<< A 21

)

See Bolotin [40] for details.
First, considering the stability of forced oscillations,

one can write perturbed solution in the form

B = g+ B(w)+[a,+d(w)]sinw +[b,e b, (4)] cos g

¢

(76)

I

0, + B +[a,, +8,00)] Sintp v [by + b )] cos

where BCO’ alo'b10’¢c0’a20'b20 represent the stgady—sfate
Eolytign for which stability check is being made, and Bc’al'bl’
¢c,a2,b2 are the time dependent perturbations given to respective
steady components. To study the growth of these disturbances,
the above equations are substituted in the basic flapping and
lagging equations (Egs. 33 and 34). Then retaining only linear
terms in perturbations and their first order derivatives and
subtracting the steady-state solution,once again on matching the
constant, siny and cosy terms from these two equations, one gets
six linear algebraic equations which can be concisely put into

matrix form as

D, D, Ds- - D;W B By €2 Ba- - By ?
A ’ /Q\|
])2l . Q EZ\ ) i ) o
D ,‘bl E 2 i ; [:l
3; R - | $
I%‘ ¢ ' Ey - ’ ) }
a

~

(o o
Nwj
o
——
> Q)
N
S
[m my
SN
o
—
NU‘)::

(77)
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Putting,
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(d 5

(78)

Substituting th;s into the above Eg. (77), results in an

algebraic eigenvalue problem which can be easily solved using

any standard eigenvalue subroutine.

eigenvalues -- if any of the
this means perturbation will

solution as an unstable one.

The solution will give six
eigenvalues has positive real part,

grow with time and this marks the

the stability of parametric excitation

On similar lines,

solutions are checked by putting,

B = B +EW) 1 [a,+ d(v)fsmy. (80 + b (w)]eos

q):

Tt Q) ¥ [G + @) ]singe [b o Ben)]esy T

Following the same steps like Forcing Solution we gef here also

an algebraic eigenvalue matrices.

- S _ — A
An AIZ -7 "'Aw R Bn Bm._ N B% B
6 _
Az\ Appg - - - Azé - B Baam = 7 g ,(
h _ b
= - . . B 1, = 1 N - -
- - : R Rk (80)
- - @ - L. a,
E —
Ao - Aal L7 - P L%

Again the nature of the roots N will indicate whether the solution

is stable or not.



PART B: "EFFECT OF AERODYNAMIC FORCES

SECTICN 6

FORMULATION OF AERODYNAMIC FORCES

airfoil.section can be written,

where

dL=%0V a ¢ du (6-2)
2
dD=}50 Ve a ¢ du (&)

ac

section lift curve slope, Ia

blade profite drag coefficient
blade chord
air density

resultant velocity, MU2+V2

local blade built-in incidence

inflow angle, ":an"l

g4

i

dL

The aerodynamic forces are obtained using quasi-steady

airfoil theory. The elemental 1lift and drag forces acting on

(81)

[r is same as §&]

As shown in the above figure, U,v are flow velocity compoﬁents
along blade axes n and ¢ and Gé—aiis the effective angle of incidence.

Resolving the aerodynamic forces along the blade axes, one gets

dN = dL wsoe — dD b'm,oc‘.

dC = dL binoci + dD covoc;

) 54
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Assuming the effective angle of incidence is small (i.e.,
below stalling angle), such that

8‘-'— K = sin (GL'OCB

ca 2 .
and also considering 5 —39 Xj <<1l, the forces dN and dC can be
written as v

di= §fac dn [:Uzsin@t.—- vUcorg, - %_IQVU]

: (83)
dc=z £{ ac a”-’:Uz%l-_g +VU5\Q@£—VZ(COSGL-—-‘5%’)]

—

From Eq. (10) of part A, the angular blade velocities about the
three axes &, n, ¢ are given as,

a)g = Q(sing sind + cos8 anﬁ cob <{>)-— < s'm.qa

w‘i = Q(sind cosdp ~ cosB sinp sinqo)-—é o (84)
W = Qcos @ cosF+<i> IYa
\wf“k

“q
1
The inflow velocity through the rotor is,
U.i = —)Q R L? (85)

which can be resolved along three blade axes as

Y = ..“fg 7{ + “"QT'Z s Ui ;4' (85a)



where

u‘-g = _/ID.R(COSQ Sing Cos¢$ + sinG sin )

Wi

_Asz(-ane ﬁnp sing + sin® cos¢)

ugg: ~AS.R cos B cos B
In the above, X is the inflow ratio parameter and is assumed

here constant over the disk area for a uniform approaching wind stream. *
Introducing the blade hinge-offset effect, the velocity of

the hinge-point is given as

(86)
which can again be resolved along the three blade axes as,

U, = - 2 d —
h u%g g + Q&Q t + uhg { (86a)
where

“ag‘-‘— ea(-sin® sing cos¢p + os8 sind)

uﬁQr-QSl( sng sinB sng + ©s8 Coscp}

U= —eq s cosp.

The resultant flow velocities U and v for any point & on the
blade is then,

U= h_oug —-U.L.Z + uh’z'

-
-

n(f1<0osO Cosp + $) + AR (- 036 Sing sing 4 sing o5 d)
+eQ(s5ing sinp snd + cos O cosd)

(87)

~RWy - Uig + Uy

it

h(s@ sing smd ~ sin 6 Co'scp) +h’(3 cwsd + AQR cos@ P
, (88)
- sing 0% .

*
This is strictly true only for an ideally twisted rotor. For
other roctors, there may be sowme variation with r.
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Like part A (Eqg. 27), expanding the trignometric terms to third

order in above equations weé get

Usan(- G- By vnd + JaR(0-po- & 0F) ren(opp-6- &)

-
2
v=-an (0-€- 08 pg)snpl- £, ar(- ¢-£)-ea@-€-98)  (s9)

With the inclusion of aerodynamic forces, the generalized
forces QB and Q¢ in Lagrange's equations (Eq. 17) have the
additional contributions,

(QP)&&Q = COS(‘D jth
span : . (90)
(Qq))m,w.: - g"z.dc
: span

One may assume the built~in incidence along the blade span is

9. = § + Ree g (91)

¢ - hie
where 61 is constant incidence along blade length and 62 alone
represents the ideal twist distribution.

After performing various integrations and combining with

Egs. 33 and 34 we get the nonlinear equations of motion for a
flapping-lagging rigid rotor with flexible springs at the hinge-
point in the presence of airflow as

Flapping Equation:

Bu-4)- 2Bd e + 20(p+09) *BU1+E + )4 0¢-2F ¢

0 2 3 1 2 . 2
_vﬁq,’ + Qgp yp g _._);3 B +G(-6 + % + 9_2,5_ + 9{{’_)51nv+5(3—%3,f§)wsqr
= %‘f[co +§2C5 + q)zcg + ﬁ<PC7 + éCS +4¢;qu+ éﬁq; C[0+F352CH

BPC, + B G3 rPE Gy $'cs -E9 g *‘fc’zCnJ (92)
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Lagging Equation:

°0Q X3

¢+ B -2B(BrOd) +P(T+ W) v OB+ §p - Bzl &
W &+ G(1-F - & 4 gppYsiny G(¢-& - 8F ycosy
=-Y[g+ EB +F B +BPB + BBy +$B, +BRP B+ BB,
P e bern, e, Pa. +Bdc 1P Fe)
(93)

In above equations, vy = pacR4/In is the Lock number and, CB and
;¢ represent structural damping coefficients for flapping and
lagging motions, respectively. The other constants are defined

in Appendix I.
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SECTION 7
NONLINEAR RESPONSE OF FLAPPING-LAGGING ROTOR

WITH AERODYNAMIC TI'ORCES
Seeking a general limit cycle solution of nonlinear Egs. 92

and 93 for both forced oscillations as well as parametric resonance
in the form of

]Bz E + Q sin ey 4+ b oS oy (94)

bx ¢ Q,sin ocy  + gaﬁxw

where o is the ratio of response frequency to forcing frequency.
Here a=1 represents forced oscillations and o = % gives para-
metric resonance. Substituting these expressions (94) into

Egs. (92) and (93) and balancing out the constant, sin ay and
cos av terms of each equation and neglecting higher harmonics,
gives six nonlinear algebraic equations, '

~— 7 — ‘1 r~ .}
RH Rlz. R|3 R\q R\s RlG ﬁ<-‘ RIO
Rz, Raz st = - B Q Rzo
R'_z,‘ Rsy_ - - - - b‘ RZO
‘ +-
RL“ . - - - - - CF(‘. R‘(O =0 (95)
R5| - - - - - /QZ RSO
Rei Rez ~ T = Re b, Reo
! I

The various terms in the above matrices are defined in Appendix II.
The solution of these nonlinear algebraic equations (95) can

be again obtained numerically by Newton-Raphson technique.
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Stability Check of Solution

As discussed in Part A, the nonlinear solution got by
Harmonic Balance method has to be checked for stability to prove
its well-posedness. Once again, here the solutions are checked
for stability by giving small perturbations to these steady
solutions and studying the growth rate of these perturbations
with time under the assumptions'of slowly changing functions.
(See Section 5.3 for more details.)

Writing the perturbed solution as

B = B+ é’(‘k) + [a, + ﬁ‘(ty)] sinecy 4 [bw + '{;‘(Ly)] cosSecy
o .

t

b0t B + [y + G sinct + [ b, + b(w)]coscy
' (96)

where Bco’ alO' blO’ ¢cO' 2507 bZOAls fteafy s?lutlon for which

stability check is being made and Bc' agr bl' ¢c’ 32, 82 are the
time dependent perturbations given to respective steady ‘solution
components.

These equations (96) are put into basic nonlinear equations
cf motion (92) and (93). Retaining only the linear terms in
perturbations and their first order derivatives and filtering
out the steady solution, then again on matching the constant,

sin ap and cos ay, one gets six linear algebraic equations.

r 7 T i - 17 7
Sy Sz S Siy Sis S% é T T2 Ta T@ 1; .rg E
Sat Sa S;y - - - q, T Ra Ty - - - én
T 1L I AR O
s - - . -lla T - - - - -||&
T A 1 e T A
- 4L - 4L 1N




writing g . W ( _ ]

g &

g &

A T —
b B e
N = - (98)
9 %

a, a,

A -

b b,
L L

substituting (98) into (97) results into an algebraic eigenvalue
problem which can be solved by using one of the standard subroutines.
Solution will give six eigenvalues A and the nature of the eigen-
values will decide whether solution is stable or not. If any of

the these eigenvalues has positive real part means perturbation

will grow with time and makes the solution unstable.

Numerical Results

Numerical calculations for forced oscillations as well as
parametric resonance with aerodynamic forces are repeated for
most of the configurations of Part A. Once again

Case I. E: o <E=o &3‘3:.7! (EL-J:'O% 8 =0 é =.l
Case II. B =15 <E=o &5 = T q;Dw=.033 | G=0 €=

. .‘.0‘5 - X = 1\ - = é-=‘
Case III E q%~o Sy -y (PDW 038 B=0

For aerodynamic characteristics, Lock number y of 12 is

used for most of the results and the values of ‘a’ and Cd are
taken respectively of 6.0 and .012. °©

7.1 Forced Oscillations Results (a=1l)

In Fig. 7 results for Case I of zero initial coning

angle with aerodynamic forces are plotted. Here A=0 represents
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a configuration with zero inflow velocity. It can be seen that
for this case of no inflow; response is uncoupled and one gets
only lagging amplitude, which is quite similar to that of no
aerodynamic case (Fig. 1). Here also the amplitude shoots up
near resonance (%~ ~ 1.05). However, with the inclusion of small
inflow ratio of kg.l, the amplitude is well bounded. Also, with
inflow, response is coupled, though the amplitude of flapping
motion is comparatively much smaller except near resonance (Fig. 7b).
Further, in Fig. 7b, Bc the mean angle about which limit cycle
oscillations take place, is plotted and Bc has negative value
because of thrust direction for this positive inflow.

In Fig. 8, the lagging amplitude response fdr Case II
with aerodynamic forces is plotted. Here positive A represents
configuration with initial coning angle facing into flow direction
and negative A the case of initial coning angle facing along the
flow direction. For A=0, the response amplitude is entirely
different from that of no aerodynamic case, Fig. 2a. With the
presence of aerodynamic forces, the instability overhang region
completely vanishes. Though the amplitude increases near %~ ~ 1.05,
but it is bounded with flat peak. The peak value is higher¢for
negative A as compared to positive A. This can be explained with
the help of Fig. 7b that with positive A, the coupling is reduced '
by decreased Bc and for negative A the coupling is amplified by
increased Bc. It is found that the flappihg amplitude response
though smaller in comparison to lagging amplitude, the peak for
negative A is quite higher than that for positive A (not shown in
figure). Further, it is seen that the solution for A = -0:1
becomes unstable in the peak value region.

In Fig. 9, the results for Case III are plotted. For
this configuration of softer lagging hinge stiffness than flapping
stiffness, the behavior is Juite similar to that of Case II in
eliminating the violent overhang instability region with the
presence of aerodynamic forces. Here the peaks for lagging

amplitude are comparatively sharp but are of nearly same magnitude
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for the three different cases of A=-.1, 0, .1. This is mainly-
because of higher flapping stiffness, the average coning angle Bc
is not too much effected by the small value of inflow, A=+.1.

Figure 10 illustrates the lagging response for a typical
configuration of Case II with A=-0.1 for different Lock numbers,
v. Here, one can see that by reducing Lock number, the behavior -
of forcing response tends towards that of no aeroaynamic case
(Fig. 2). For Lock number of 3, there is little overhang towards
left depicting a typical nonlinear softening effect. Again, the
higher frequency branch remains stable in overhang region whereas
lower frequency branch becomes unstable.

In Fig. 11, the effect of structural damping on forced
oscillations with no aerodyndmic forces for Case II is presented.
For small value of damping coefficients c8=c¢=.01 encloses the
stability branches (see for comparison Fig. 2a). The behavior
is quite similar to that shown in Fig. 10 for low Lock number.
This means that the aerodynamic forces can be looked as if they
add the equivalent structural damping to the system depending

upon Lock number y and inflow A.

' . 1
7.2 Parametric Resonance Results (a=3)

In Fig. 12, the results for Parametric Resonance of
Case I in the presence of aerodynamic forces are plctted. There
is a distinct band of instability for zero inflow and the response
is uncoupled lagging motion. From stabiliE& analysis one can see
that tge trivial solution of Bc=al=bl=¢c=a2=b2=0 is stable for
every'a— except in the instability band where trivial solution
becomes¢

aerodynamic forces (Fig. 4). The two instability branches bend

unstable. This behavior is quite similar to that for no

towards each other and the higher frequency branch also becomes

unstable for large lagging amplitude (A,..75). However, with

the inclusion of small inflow A=.05, th?s instability hand
completely vanishes. A '

Figure 13 presents the response for Case II. With the
inclusion of aerodynamic forces with no inflow, one can see that

the behavior of rotor is quite different from that of no aerodynamic
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solution (Fig. 5). The overhang instability region gets completely
eliminated and the two stable solution branches joins in the in-
stability band resulting in the limit cycle amplitude. The

response is coupled but the flapping amplitude is of an order of
magnitude lower than the lagging amplitude. Again with the inclusion
of small inflow, the instability band vanishes.

"Figure 14 shows the effect of Lock number on Parametric response
of Case II with A=-0.1l. For Lock number y=12, there is no instability
region, but for y=6 and 3 there is instability region with overhang
towards left examplifying a typical nonlinear softening effect. Out
of the two branches of solution, the higher frequency branch is stable
while the other branch is unstable from the very initiation. The
other noticeable thing about these graphs is that with the increase
of Lock number, not only the instability overhang and peak amplitude
reduces but also the instability band shifts towards the right.

Figure 15 illustrates the effect of structural damping on
parametric oscillations of Case II with no aerodynamic forces.

Here the solution is not very different from that of no-damping
case, Fig. 5a, except that the two branches of solutions shrinks

in the overhang region.
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SECTION 8

SELF-EXCITED FLUTTER RESPONSE OF FLAPPING-LAGGING ROTOR
In the earlier sections it has been shown that a rigid rotor

restrained by two springs at hinge point representing flapping
and lagging motions can get into large nonlinear response due to
gravity forcing excitation. Here, it is intended to discuss that
this torsionally rigid rotor, in the absence of gravity forces

can also lead to self-sustained oscillations caused by the inter-
action of aerodynamic forces with structural vibrations of

blade.
. The equations of motion for flapping-lagging rotor for flutter

can be rewritten from Egs. (92) and (93) by eliminating gravitational
effects.
Flapping:

Bu-$)-288 ¢ + 238+ 09) + BU+E + %)+ 00
_2{33§62.__§$+2C‘3 o—-zfé
._”[co + BCs + $C +BPCy ¥ B Cy dcg + BB Qwﬁ?cu

FREG, + PBO Cy +<{>§CH+<;><§>C\5 deCBchpC‘} o)
99

Lagging:

¢ + é¢—ze(5+@¢3+¢(€+>’¢)+&F+G¢ B'P
T2, % $ - %

;_%[o,‘,FBS;.zPB +(5q>8 +BB +<PB +;?>(3<PB+BISB

* éq)l B + q(;B‘F BIS + (PIZIBW * (PCP BlS+ ﬁCPC, +¢ %ﬂé BC‘] (100)

8.1 Simple Linear Solution

It is sometimes advantageous to deal with simple solutions to
get the feel of the nature of phenomena and then later on using
these simple solutions as a guide one can make more rigorous

analysis. Here also first simple linear solution for self-sustained
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cscillation is worked out by assuming that the small amplitude -
motion is taking place about possible large static positions
BO and ¢0.

P =R +B
- g (101)
¢ =¢ +¢
where 8 and 5 represents small perturbations. Placing (10l1) into

Egs. (99) and (100) and keeping only linear terms in perturbations

and their derivatives and subtracting the static solution results
© in

g Equation:

B
+PO-/R) = L[ E(R G + 9Cq) + $(2c, +8C)

2

’5‘( Cg tBRCo +BC, + ¢ Ca)+P(Cq +BH Cis *‘%zC,L{'vC{D:C‘S)]

FU-8) + 28(8+09) v 24 F + B(+8 -0 28- )

(102)

5 Equation:
go o 9, ~ ~ 2 2 2
B r2al, % d -2FE+0Q) + FO-2BR) +P(E+% +0-F)
’ 2 2
=~ X[F(R&+RE) + P8+ BB FEELRE R R
2 2 2 —
+¢(8‘1"' %42 B;s + B Bm + 4% 8!57]
' (103)
and static solution eguations are
2 2 2,
RO 8 v -0 -2 €) vge =g Yo v £, + dc, +8c)
BO + @(54—){;16"—-:) VC;S»-X(B-;- 84-(@(364-[3’953)
2 ° 7 (104)

These equations are further simplified by considering a rotor
with ideal twist distribution (only 62) and with no hinge offset
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(e=0) and also assuming that the static equilibrium angles 80<l
and ¢0<<l so that Bg.and ¢0 can be neglected. Equations 102~

104 reduces to

-~

B Equation:

) < Blay)ad

R PRTRIE TR T AR
5 Equation:

¢ +B(-2B +IG§L - 1!3},) + $[%(2%9_ +Q@2.7\)+QC¢ y¢]+(.y;;\_/§l_%)£§ (106)
=0

and static equilibrium equation

2 2 : ‘
%(H % ) = )}ﬁ ps + %(91—/‘)' _(107)
For the critical condition of flutter
~ . t o
Bl _ gt F (108)
$ ¢

substituting in Egs. (105) and (106), gives characteristic equation

(iou)z+ {w m.é + mﬁ {e mé} + om, B
: =0
; .7 - (109)
LW n,g - | QY + iw ng + Ny |0
L

For non-trivial solution, expanding the determinate and comparing

the real and imaginary parts separately to zero, one gets

Real part:

Y 2
w ""'OJ ¥ -+ n » - - ° -
(Mg + 1y + My Ry - Mg rlia)Arm33 Ny =0 (110)

Imaginary part:

wing + m.) — X _ (111)
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where

M= bl Mp= vy
W!q’) ::{E—\%Qz+‘_(‘62\_ mq): :g('%
Ny = -2@ +Y6, _ YA
B ° < 3 n, = 2 _
[ 3 ¢ ){P X3 E

ng =g_(2%<_>_+ 2@2/\)4-2){?{4,

I 2
B - T Lg-N+yg)

Equations 110 and 111 can be solved for flutter‘boundary by

simple iterating scheme.

8.2 Nonlinear Solution

Assuming the limit cycle soiution of nonlinear Equations (99)
and (100) for self-sustained oscillations of the form

Pz~ B + @ sinxy 4+ b cosxy

¢= § + O Smecy + b, cos cy (112)

where o represents the ratio of flutter frequency to rotational
frequency. ' -

Placing these expressions (112) into Egs. (99) and (100) and
matching the constant, sin ay and cos qf terms of each equations
and neglecting the higher harmonics yields six nonlinear algebraic
equations. Since we are interested in the limit cycle flutter
solution, this can be done by assuming a known lagging amplitude
of flutter and finding the ‘other associated unknowns to get this
condition. Thus putting b2=0; and a, which now represents lagging
amplitude, a known quantity, into these nonlinear algebraic equa-

tions,
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- T )
Q" qn. 'ql3 Q,,_' nls giG Bc A*O
nZI Az:. - - - 'Au e nzo
As, - ) B - N R Azo
+ =0
Ay - N - - - Q Ayo (113)
Ase - - - - - z Ag,
ng ~ - - - H“ . x Aéo
L J L L
where 72 = (w¢/Q)2 and the other terms in the above matrices are

defined in Appendix III.
The solution of these nonlinear Equations (113) are obtained

numerically by iterative Newton~Raphson technique.

8.3 Stability Check of Solution

The nonlinear solution got above using Harmonic Balance
method is checked for stability again by giving small perturba-
tions to the steady solution

ﬁ = %o + é(‘f’) * [Q,°+ a,(q/)] sinecy  + [bm—»/\;l(qz)] Sy (114)
o= @+ C,\Eg_(‘v‘) + [y + Q)] sy + ['l;z'(w-)] cos oy

17 ¢c0' 5 and b2=0 with corresponding Z and o

is the steady solution and B_, a,, Bl' ¢, 85, b, with same 2

where‘BcO, al, b a
and o« are the time dependent perturbations.

Following the same steps like forcing response, placing (114)
into Egs. (99) and (100), keeping only linear terms in perturba-
tions and subtracting the steady solution, once again on matching
the constant, sin a) and cos oy arranging appropriately one gets

in the form of algebraic eigenvalue
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- - A ~ - - -
Sw S: S5 Sw So Sofl| T T, T T T Tl B
Sa Sz Sz - - - &, 7;( Taa - - = = En
Su S; - - " T|lh% _ 1 W - - - - - b,
S I -0 N I I
Sep  ° - = - - @, T, - - - - - a,
Ser - - = = Slth S D - T E

: R L

(115)

This is just the same as Eq. (97). Again, the nature of roots A
will decide whether the solution is stable or not. If any one of
the roots has positive real part, points out that the solution is
unstable.
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8.4 Numerical Results .
For most of the flutter calculations, Lock number of 12 is

used and values of a and Cd are taken respectively of 6.0 and
.012. It is also assumed hére for flutter calculations that
initial lagging angle and initial built-in incidence are zero.
A=0.1 is taken for most of the results as this inflow represents
nearly the maximum power extraction condition of the rotor. The
critical flutter boundary is obtained from nonlinear analysis for
very small lagging amplitude of .05.

Figure 16 presents the critical flutter boundary for centrally
hinged blade with no preconing (i.e. e=0. BS=O) for different
inflow A. Both, simple linear solution and more accurate Harmonic
Balance solution are plotted for comparison. The region of
instability lies inside the respective contours. It can be seen
that simple solution gives reasonable estimate of flutter boundary

for higher values of lagging stiffness, v and it starts deviat-

¢I
ing more and more at low v¢. This is, mainly because in simple
solution, ¢0, the equilibrium lagging angle is neglected and it

becomes appreciable at low values of v One can also find that

the instability envelop increases in s?ze with increasing inflow
ratio A. This can be explained by looking at linear Egs. (105)
and (106) that A effects the potential destabilizing flap-lag
coupling terms.

Figure 17 shows the effect of preconing and hinge ofiset on
the flutter solution of rotor with a typical inflow A of 0.1l. On
comparison with the corresponding instability graph for A=0.1 from
Fig. 16, one can easily visualize that with the hinge offset the
instability envelop not only expands in size but also opens up at
lower end from the elliptic shape. Preconing also has an important
effect on the flutter boundary -~ positive preconing, coning facing
flow direction shrinks instability envelop whereas negative pre-
coning expands the instabilit? envelop. This is because the blade
* preconing effects blade equilibrium coning angle and thereby effect

‘mainly the cross coupling terms.
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Figure 18 illustrates the effect of Lock number Y on the
stability envelop for rotor with no preconing and no hinge offset.
Unlike the forcing response, decreasing Lock number reduces the
instability region. It can also be seen that the solution becomes
unstable on the part of the instability envelop for Lock numbers
of 6 and 3. ‘

Figure 19 presents the effect of structural damping of the
flutter boundary. With the inclusion of small structural damping
coefficients of cs=c¢=.005 for centraily hinged rotor with no
preconing, the instability region is reduced drastically. Also
for c8=c¢=.01, this rotor becomes completely stable. This can be
seen from simple linear solution (Eq. (106) that the structural
damping coefficient has a very strong effett on the comparatively
low direct damping term for lagging motion.

In Fig. 20, the penetration lines of incréasing rotational
speed { into instability envelop for different 58 are plotted.
Figure 2la represents the limit cycle flutter solution for 58=0.8.
Points A and B here correspond to the boundary points A and B on
instability envelop (Fig. 20). One gets large fluttering oscilla-
tions at the very initiation of flutter and then the amplitude
reduces with increasing rotational speed. The solution becomes
unstable for part of the speed range. It can also be seen that
the flapping response amplitude is lower tBan the lagging ampli-
tude mainly because of, comparatively high aerodynamic damping
in flapping motion. In Fig. 21b, the limit cycle lagging ampli-

tudes are plotted for different w, at the lower flutter specd

B

side. The solution shows nonlinear stiffening effects for BB
of .6 and .8 and softening effects for higher aB of 1.0, 1.2

and 1.4.
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SECTION 9
EFFECT OF VELOCITY GRADIENT

In the earlier analysis, it is assumed that the incoming wind
velocity is uniform and perpendicular to the plane of rotation.
In reality, wind is not uniform but has velocity gradient because
of earth's boundary layer. Generally, the velocity profile near

the surface of the earth is approximated by a power law relation (8,3]

v (&Y |
v, = \H, (116)
where
V = wind velocity at height h
Vo = wind velocity at height HO

constant guantity depends on topographical conditions of
the place, between .167 to .40 approximately.
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Putting the above relation for the blade spanwise position
r with azimuthal angle y

v (ﬂo.—ncosv)P

- = 11
v o (117)
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Y is zero at the lower end position of the blade.
Using Taylor's series and keeping terms up to second order,
‘one can expand Eq. (117) as

. 2
=~ L Dk - »r .
VR {0 f0() | = Vb fecosy (118)
h P
where Vm represents the velocity at the hub, V(?é)
o

The induced velocity at the blade is calculated by equating
elementa; thrusts obtained from mcmentum theory and blade element
theory. For small built in twist 6;, the inflow ratio parameter
A is approximated as

X _
Alr,w) = A, + A,Q%) + A, %.cosq/ (119)

where ), corresponds to the inflow ratio at the hub and

- _ 2
A= gD (RY(), + 20)

: (0 = rotor solidity = 2%)
A, = ~p %—(ko+ %?) TR

Thus, the inflow at a particular station on the blade varies
as the blade rotates, causing periodic variation in airloads.
This acts mainly as forcing function in the flapping degree of

motion.

Substituting this new value of A in Eq. (85) to obtain the
inflow velocity at the rotor and modifying accordingly the
-resultant flow velocities U and v in Egs. 87 and 83, and once
again, on performing the various integrations for generalized
aerodynamic forces one gets the new versicns of Egs. 92 and 93
representing the equations of motion for flapping-lagging rotor
with sheared flow.
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Flapping Equation:

Bl-¢') ~2fF¢ +25(B+0¢) +B(1+& +75) +e¢—§—ss-se"
~5¢1~+2(ny3 F F Gaing(-0+L0% 20B  L0D) 4GC059'(.3 FE-1BD)
Y{G+pGdG + Bl +fG + PG +EBIG+ BRC,
B9, + $E9E, + $5°C, + $# Cs- B el +éa)

+ Y cosy{ B +'57“D5 + D, +RP D+ B f<§Dq + BRI D, +EE°D,

+EPD, +PBPD; + G ED, + PF D] 1201

Lagging Equation:

$ 4B -5 (B+09) + $(E +) +0B +07°b~Fp +24, Y

b +Gsing (I-£6°- L ¢’ +98) +Glosy (b~ Ep~456p8)

%

O ’V ~

pb B, +EBE,

(XJ?

+$ 5,

e

~Y{E +FB +¢8 +po8 + £ 5

0

+PP B, +PEPp B pF B

o

2~ 9 © °2(‘ o2
b B, +BPC + a_lo_,g BC,}
- %costr{eo*BzEs *‘PZEQ +BPE, + B Eg + $E9 +EBD E,

o a 2 o o 2 [« (121)
+BBE, +BPE,+ PRBPE, + DB £+ P ¢1E,S}

The various constants in the above equations are defined in
Appendix 1IV.
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The important difference between these equations and those.
representing uniform inflow case, Egs. 92 and 93, is that here
in Egs. 120 and 121,-periodic aerodynamic terms are present
because of velocity gradient (the D and E coefficients terms
above) .

The nonlinear response of flapping-lagging rotor in the
presence of gravity and aerodynamic forces with sheared flow is
obtained by following the similar steps as applied for uniform
inflow case. On éubstituting general limit cycle solution (Eq. 94)
into nonlinear Egs. 120 and 121, and balancing out variocus terms
one gets modified versions of R (Eq. 95), which now consists of

four separate parts.
(a) contribution from iﬁertia and stiffness, RI
(b) Contribution from gravity forces, RG
(c) Contribution from direct aerodynamic forces, RA
(d) . Contribution from periodic aerodynamic forces, RV
such that

Riy = RI(i;§) +RG(i, 1) +XRA(LE) + X Ry(i,j
; (ir3) (6 3) 4 # g RV(ug) (122)

R = RIO(C) + RGO(L) + _;CRHO(L‘) + %RVO(C')

RI and RG are same as given in Appendf% IT for uniform inflow
case and RA gets modified by replacing old C's and D's in Appendix II
with new C's and D's of sheared flow. The RV which appears because
of inflow variation at the blade is expressed in Appendix V.

The stability analysis here is also quite similar to that of
earlier case except that the periodic aerodynamic terms have to

be treated like gravity terms.
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9.1 Numerical Results

Numerical calculations have been made for some specific
configurations of Case IV to demonstrate the effect of sheared

. flow on the dynamic response of the rotor.

Case 1IV.
BS = -,12 ¢s =0 wB = ,693 ¢DW = ,0035 e = ,075
Yy = 10.6 A = .1 g = .023 91 = ~,14 92 = ,105
= . = . = Y 2 = . =
CB 005 c¢ 005 Cdo 01 a 6.0 8 0

This case approximately siimulates the characteristics of NASA
Plumbrook 100 KW windmill blade with the assumption of complete
rigidity in the torsional degree of freedom.

The forced response results are plotted in Fig 22.

Configuration A: Represents the condition of the rotor being
excited only by gravity forces with uniform
inflow.

(.e. no velocity gradient, p=0)

Configuration B: Represents the rotor being excited by only
aerodynamic forces because of velocity gradient,
p=.167, R/ho=.625.

(i.e. no gravity forces, ¢ 0)

DW
Configuration C: Represents the condition of rotor under combined
action of gravity and aerodynamic forces.

(p=.167, R/ho=.625, ¢Dw=.0035)

In Fig. 22(a), one can find that lagging amplitude is little
effected by the velocity gradient and it is infact not possible to
differentiate the results of configurations A and C. Fig. 22(b)
shows that away from the resonance condition, the flapping amplitude
is predominantly excited by Ehe velocity gradient, and near the
resonance condition the increased amplitude is mainly due to coupling

from the gravity forces. ~
It should be noted that the presence of any tower shadow effect

would combine with the velocity gradient effect here to produce a

greater excitation of the flapping amplitude.
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PART C: TIHCLUSION GOF FEATHERING DEGREF OF FREEDOM
SECTION 10
RESPONSE OF FLAPPING-LAGGING-FEATHERING ROTOR

In the earlier analysis, it is assumed that the rotor has
only two degrees of motion, i.e., flapping and lagging. 1In the
present chapter, the third degree of motion, feathering, normal
to the axis of rotation is also considered thus making the rotor
a three degree of freedom system.

The fomulation of general equations of motion is very
similar to that obtained earlier for flapping-lagging rotor.

The inertia pvart is already derived as a general case in part A
(Egs. 29-31) and the. aerodynamic forces are obtained after modify-
ing the flow components of part B to include the feathering motion 3.

The motion of the blade as angular velocities about the three

axes &£, n, ¢ from Eq. 10 are,

(A)g = N (sin B s'mcp + cos B sing cos ) + 9 COSR cosS b ~ ésinc{:a
(123)
W, = Q(sing cosd - cos@ swp sind) —§ cosg sind R wsd

OJZ.—._Q cos § CosB — ésing +q’>

Modifying Equations 87 and 88 for resultant flow velocities U
and v

U = n (5 c0sQ cosB+d- @ang)+AQJ2@cos@anFsm¢w+an@cOs¢)
+ esnu(sng smp swxcp + Cos§ cosP)

L . : . (124)
b = _Qr(sn@ sP—cosg sinp sind)+ hB os¢p 4+ 10 COSE Shd
+ AR cosQ cosB - en ving cosp +F[{Q(Sl'n(9 SN + Cos § sinR cosd)
— g sind + 0 cos B cos cp}
The X is inflow velocity parameter which for sheared flow is given
in Eq. 119 as

2
Anyw) = A + A (E) + A, & cos (125)

and n is the distance of 75% chord position from aerodynamic center.
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The generalized aerodynamic forces are

(QF%W_ = coso .(h. dn

<Q¢)A2}w = — jh. dC
(Qelp, = SO5P sing frdN + sinp {ndc

(r is the same as & and integration is on the span

of the blade)

(126)

Again, taking the built-in incidence distribution (from
Eq. 91) .

9‘: = 9'+R+e9

127
e & (127)

Like earlier analysis, expanding trignometric terms to the
third order and after performing various integrations and putting
together inertia, aerodynamic and stiffness parts, we get the
nonlinear equations of motion for a flappin-lagging-feathering
rigid rotor with flexible springs at the hinge-point in the

presence of sheared flow.
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Flapping Equation:

Bl-¢") + équ - Zﬁt‘/‘;cp + 24;5— 80;3’ -26§,82+2c;§(,8+94>) +B(1+& + lf;} +0P

2P BOBE t U BE - B + G hinu(-0+ £07+ LOB 4 10T+ G (B~£F-{p4)

-_-g.{:—;ua5+g@+gsl+a¢‘+ge’+gg¢+g;aeugcp@uqud:e + Fo B

FRPO+ F, 00+ Faf + R P + R0+ B BO+F, B8O+ Ry pp + F
S 2

8
q
+ 5 804 5,60+ B+ g BF B BEr R B0, pd R, dp

© 2

t BqPbd
_— 9 o 02 ° ° o 2
TR PEe 4 By a g 8 Ry $EB 4R T

+ B b8+ B, §pd+ 0RO ¢ £, 890 + B, P +HPS+E, B8R

¥
+ '§‘CO’3W{’€0+ Ry E +R;Q+ R3 ?z+ RH<P2+ R5@2+ Rgﬁq) + R'( E@ "“R%ct’@ + RQ k3¢9
+ Rio &2@+ Rud’z@ + ﬁz@3+ R\gé + qucto) -+ R\SSO —‘-Q!s B¢+ R\? }g@"‘Ql‘& é“)

o o o ° o o o o
+ RqP0 + R:@B + R0+ R 86 + Rz BRD + RZL& i3$2+ Ris @CPZ*R:(,?@’-
+ Ry PP +Rg S+ Rq b + Ryo PO oy S b + 8,808 R840l
(128)

Lagging Equation:

oQ

00 %o X 02 o g -
P08 -20E-0 +BP~20(BP+RmO)~2E(B+OP) +P(E+ 1)+ 06+ 0P
B 20% G~ b 4G iy (1-30"- £+ 0pP) +G cosw (P {1 OE")
==L [Go+ GP+Ga0+ G B+ Gy + G0+ G B +GrpO + G5 b +Gq PPO+ Gt B'G
+Gnds>z8 + G\2@3+G,3\% “'Gnch’ “'Gnsé + Gy é¢ + Gy é@ +Gig P *G\Qi;@ + Gzoéﬁ'
* 6o+ 6,68 +Gaa BRE ¥ Gy BE GasBd's Go BB + Gy s Gos B

G d ¢ + Gao PO+ Gy OBD + G32§;38 +Gz2 840 + Gz, BP + 6353’@’*63@38?’
+ G31 C?’Qodﬁ + Gzg ‘;Pz-* Gyo 52'* Gq\éﬁ + quéé""GLBgéC? *qu(Pgﬁ +qué2

_%(_05({:{8” SiB+ S0+ 83;52+sq ¢’+Sssl + SR +S;BO + SgPl + SqRPS

+ S B9 +S) 56 + 5,65+ Sz B J-Su{(?’ + S,Sé +Sie gd +S) ée +Sig B
+ S B0 45,068 + 5, 8¢ + S, 08 ¢ Say BED + Sy B, BE + Sy BE"
4+ SarBBb ¢ Sig BB Sq PE + S20$8” ¢ S5, §pch + 51,080 4533 S 6}
' | (129)

80



Feathering Equation:

(ke84 6) +Fo— P + 205+ 2656 — 28 R + B4 23 (B + R 0)

FBP + 0 (Rm—Br 4 Ron 20 ) + 2 { Y R § ~ 2 R Qs =G AN (B~ B L B6% Lpd6h)
= Z{GoB+ B9 +G B4 F BP+GaBO+ RO + (4 Gg) 6 + G 59 + 5 HO
(Rt G $R) B + (R~ £ R)F +E 0% + (R4 Gy) Be'+ (G- £ Go) B°
+ GoPO™ iy b + G DB +Gs BB +As 8P + G BF + A B b +G £5S

+R B 4 F, BP0+ Gy BRO+ Fybpd + G5 bR 4 Fy S +Gad po
+ (R +G2|) é,ﬁqs *Gzoeﬁz+ R §¢2+ Gzzgﬁ@ + Fzz §dPG ““qu é%ﬁ

[+}

00 oo o o a2 ° o2 o
+ 5, BFP+ B 601G, bp 4 B b b2 Gus $8p +a S re, B
* Gméﬁz*Guzé@c’F +GﬂeézB}

+ )é’.cosv{sopueocp S B S, BO+ RO + (S - £5)B +(Ry— £Ro + S, ) B
+ (St RYBTE+ (R~ L&) + 508 + Rs ' + 57 B0 +(Rr255)BbS
+ S. BB +S,L,<£B +Ry pP + 5.555 +SuEBP +S, ERO+R, B bO
+ S ¢ B+ Siq PRE +Rq P o6 +Sz°9°[32+(Rzo +52,)G°ﬁ¢ +Szz§[3@

+ &28¢@} P , (120)

The various constants in the above equations are defined in
Appendix VI. 1In the derivation of the above equations, it is
assumed that the aerodynamic center, the c.g. and the elastic

axis lies at the same chordwise position and there is no variation
of this position along the length of the blade.
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10.1 Simple Solution

Considering small perturbation solution about some static

solution

B =
¢ =
6 =

(131)

@ O ™

+
34

éaagm

Substituting this in Egs. 128-130, retaining only the linear terms

in the perturbations é, 5, 5, one gets three linear coupled equa-
tions. To simplify these equations further, one arbitrarily uncouples
these equations and considers simple forced response of a rotor with

zero twist distribution (ei=0) and with uniform inflow
Flapping Equation:

E +,E{ZZ:F)JP 4-1(!-;-% )}+f3{l+é_+l§}: G@osinq/-GE(,os(y (132)

i

%

Lagging Equation:

o0

2 2 ~ 2 ,
o+ b { 21;4, % +%f._ %c_l_o(u-%%)} + G(€ +Yy) = ~G Siny—Gahcosy (132b)

Feathering‘Equation:

(132¢c)
+8{ (4 YR, ~B" o} = GEsing
and static solutions are
Vig _
B~ 2E RN
Y 2
I+ € + %
Y f Gl 2
¢~ Bo-F{L(+8e)_2p]
— > -
€ +1¢ .
2 (133)
B & R 8+ X{ Ui 2 2)a X ]E - T2+ 8)g




For the forced oscillations assuming steady solution

E ~ Q Sny -+ b, cosy
Ef; ~ QU Sy + b, cosy
8 = o siny + by cosy
(134)
By matching and solving equations, one gets
~ GO (E+)3) - '
a, » S8 (E+%) - aplayay + X(1+ £ &)
— 2% 2
@+ ) {2y +X(1+42)
b = —G@o{lfp%-&:}(/-k%%}—-G/'g’(é-+)é2)
— 2.2 : y e 2
(e+){3) +{2(}BVB+§K(H§E>}
L, —G(€ +ys—1)—G Y
, (E+v-0-6q {2ty + X L1+ £ )}
— 2 2 Z
@ - fibn+ ¥ @ (s
b, ~ G{2V¢(¢ + .Zﬁ %Q(('f' %%)} ~G%(E+V4§—I)
-— 2 2 2
(Z i1y + {20 Y+ X So(14 £ 2)]
a3 = G%(ﬂny@z—zgz) -
2—. 2.2 7 1 2
(Rngi=26") +{24o R + L L(E2 +34-280) +Y ¢ ]
-G Y 1
b B[R G R v X L(RA G -2Ea) 4 L)
2 2.2 vy
Ry —28") + {25 %RM““;%(ER’L'Q“‘B“%E&)%I%Z}
(135)
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From this simple analysis one can find that the flapping-
response is effected appreciably by the feathering angle eo. It
is found that this simple solution gives reasonable estimate of
the solution, but more than that, this solution is quite useful

in giving an initial trial vector for nonlinear solution.

10.2 Nonlinear Solution

4

Assuming a limit cycle solution of Egs. 128~130 for both

forced oscillations as well as parametric resonance

B = + Q Sinccy 4 b cosocy
g ' ' (136)

=

&G

+ O, S &y + b COS

0 =~ 0. + @, sinocy + b, cos xw

Here, a=1l represents forced oscillations and a=% gives
parametric resonance. Substituting these expressions (136) into
Egqs. 128-130 and balancing out the constant, sinay and cosoay

terms from each equation gives nine nonlinear algebraic equation;

Ry Ra R3z Ry Rs Ry Ry Rg Ryg B Qvoﬁ

Ra1 Rz Raz - - - - - - @ Rz0

Ryt Ryy - - - - - - - by R3o

Ry - - - - - - - - e Ryo

Rs\ - - - - - - - - a, + Rss =0

Rev - . - - - - . . b, Rso

Rt - - - - - - - - & R1o
A ) ) . Koo (137)
Ry - - - ) ) - Ry b, Rao

L. N I R .

The various terms in the above matrices are expressed in Appendix VII.

The solution of these nonlinecar equations (137) is again obtained

numerically by the Newton-Raphson technique.
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10.3 Stability Check of Solution
The stability check for the solution obtained through the

Harmonic Balance Method is made as done for the flapping-lagging
rotor by giving small perturbations to the steady solution and
studying the growth rate of these perturbations with time (see
details in Section 5.3).

The pertubed solution is

B = B+EBw)+ [q,+ 3,(0/)Jsin v + [ b+ 'L,(LV)J cob Xt
b = b+ By + [a, + o)) st + by +5,(1)] cosocy

8 = @co +§c((§/) + [aso-f- as<q')] Sin ocy + [53°+g3((y)] wsxy (138)

Since B s 8yg +ree+ Aggs bag is the steady solution for which the
stability check is being made and Bc’ ajs bl e ee e 83 are the time
dependent small perturbations given to respective steady solution
components.

Putting Eq. (93) into basic governing Egs. 128-130, keeping
only linear terms in perturbations and their first order derivativés,
filtering out the steady solution, once again on matching various

terms one gets nine linear algebraic equations

|
|

[ . [ 2 7]
Si Sz Siz Syt - S B I; T, Ty T lig %
A A
Sz2) Sz © oo - Szq f' T Taz ' g'
S ‘ b, -I;I .
3 E - $
SL“ : "ﬂ ,gc
. a, = TSI a,
St N R
b, T . by
Set N T 2
St % no- %
Sgy e Q, TS‘ - a,
. L Seol | B T A
> e L N

This is standard algebraic eigenvalue problem, the nature
of the roots explains whether the solution is stable or not. If
any one of the roots has positive real value, means perturbation

will grow with time and thus makes the solution unstable.
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10.4 Numerical Results

Numerical calculations for forced response are made for
case IV (see Section 9.1) with uw, of 14.3 (i.e., wy = 14.3 w,) for
two conditions of with and without sheared flow. In Fig. 23,
the response amplitudes represening flapping, lagging and feather-
ing degrees of freedom are plotted for different rotational speeds,
for a rotor with uniform inflow. Comparing with the results of
same configuration with the torsion degree of freedom locked
me+m) from Figs. 22(a) and 22(b), one finds that there
is relatively less effect on the lagging response but flapping

(i.e.,

response is appreciably effected by the inclusion of the feather-
ing degree of freedom. The flapping amplitude is increased near
as well as away from the resoﬁance condition and this is quite
evident from the simple linear flapping equation (132a) where
one finds that the forcinq function for flapping is dependent on
feathering angle. Also, even for this relatively torsionally
stiff rotor (ae=l4.3) the feathering response is quite significant
and it is of the same order of magnitude as the lagging response
or flapping response. The resonance condition, however, takes
place at almost the same rotational speed as for two degrees of
freedom case.

In Fig. 24, the response amplitudes are plotted for a rotor
with sheared flow but with the same inflowik of 0.1 at the hub
as the first case. Once again one finds fhét the velocity gradient
has more prominant influence on the flapping response as compared
to other two degrees of freedom. Away from the resonance condition,
the flapping amplitude is generally increased and lagging and
feathering response amplitudes remain nearly the same whereas near
the resonance condition all the three response amplitudes are

reduced because of the sheared flow.
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SECTION 11

SELF-EXCITED FLUTTER RESPONSE OF FLAPPING-
LAGGING-FEATHERING ROTOR

It is primarily intended t6 show here that the blade represent-
ing the three degrees of motion, namely flapping, lagging and feather-
ing, in the absence of gravity forces and with uniform inflow can get
into self-sustained oscillations by the interaction of unsteady aero-
dynamic forces with structural vibrations. The equations of motion
for flutter of this system are the same as Egs. 128-130 except that

all periodic terms are absent (because G=0, Al=0, A2=0).

11.1 Linear Analysis
Linear flutter analysis is worked out by assuming that the

blade response consists of small perturbation motion (é, 5, 5)

about some possibly large static positions (Bo, ¢o' 60)
p=8+B | |
P=%+d (140)
g = Qo‘f'g

Substituting this in Egs. 129-131 and keeping only linear terms and
derivatives and after filtering out the static part, the character-

istic equation of motion can be put in standard spring—mass—damper

form
i M, Mz Mlaﬂ pgﬁe ] r‘C” Co o GCs ﬂ réﬂ
2 M2 Mas g + | G _sz Caa Eg
Mz Ms, Mas g G Gy Gs &
L JL 4 U B ) N
ko ke ks | [F]
+ lhy kaa R ||| =0
%3; &’32 40?33 g
- Jd L Gu1)




and the static equation is

- m [__ -
Hu le H|3 é yﬁz Ej * g FO-
Hy, Haa H, ¢ = Yp ‘Ps"‘g-Go
LH31 H32 Haz Qo )(92 @S RWL (’qz)

The coefficients of the above matrices are given as

M” = [0
M= ©
M|3 —_— %
le: (]
Mao = I'0
r‘43z = "'é

Gz = 2B —Z(Fy +B Fig + 8 Fq)

Gs = “?Z(F'/-s +B ho + B Byt 8, F:;z)

Cp= 28+ X (Gz +h G+ QG +BGy,)

Ca= 2 Yo +E(Guy+BGig + % SGiq + BB Gpp + BGag)
C Y

23 = ?(Gfs +EG20 +92 GQ‘ + Qo Gzz)

2

B -SI(.‘POF;s *éGla)
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Ca= 2Bk +2 Rulo— X (EGHy + R Fy)

(3= 12 (s%f‘)'m-%{éc';!s +$As +§%(6°+G2,)+,§ZGQ°4—<}56,+ £ 0GB —“} .

&., = t+é’+u;- —g—(ﬁ-t—?g@*—‘g%-&-@oﬁ,)
ka= 6,-L(2gF +BE+6F)

byy= B -X(R+ER+G&R) 06
2
by = R (14 %)+ BB X{BC + 4R+ BY(R +Ge) " £16, r g K+ 2050 1E st
Hy =1+ @+ Y —L(F+R R fR+6F)
He = 58— X(BF +6F)

Hy = §6 +X(6 +£Gs* ,G7)

Ha = €+ U5+ L(BG, +BG +,Gg)
H = L
13= 7B+ L(G+6Gs)

Coefficients Fi‘s and Gi's are given in Appendix VI.
\
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Equation (141) can be rewritten as
So

R EE R R R CIH US|

PR

where [M), [C] and [K] are respectively inertia, damping and

stiffness matrices, each of order 3x3 and q is column matrix

i} - 12

(144)

O -G w

writing

ol -

Substituting into Eg. (143) results in an algebraic eigenvalue
‘problem which can be solved numerically by using any one of the
standard subroutines. The solution will give six eigenvalues, in

fact, three pair of complex conjugate roots,

5 (n) (n) )

A= ' (146)
Ag + i A

x§“)

for the nth mode and kén) represents the.effective damping of the

gives the fregquency of the rotor in the presence of airflcw

nth mode. The damping coefficient of the rotor for any mode in

the presence - of airflow can be obtained from Eq. (146)
_ -

{ _ A (147)

aJAZ-#Rﬁ

The mode shape for each one of these natural frequencies can be

had from the corresponding lower half of the eigenvector. Also,
one can obtain the phase plot for these three degrees of motion
from the Argand diagram of complex eigenvector.

It should be noted that =0 defines the critical flutter
condition. ¢ positive gives damped oscillations and ¢ negative

results in unstable oscillations.

90



11.2

Nonlinear Flutter Analysis

Agalin assuming the limit cycle flutter solution of nonlinear

=Q) of the form

equations 128-130 (with G=0, A=A,
B =~ B 4+ asinxy 4 b cosocy
¢ 2 ¢ 4+ @ sy 4 b, cosocy
8 =~

= g + Sin XYy + Eg o5 Xy

(148)

where a represents the ratio of flutter frequency to rotational

frequency.

Oncexagain, trying to find the limit cycle flutter solution
for a known lagging amplitude by setting b2=0 and a, as known

quantity.

and balancing out the constant, sincy and cosay terms and

appropriately one can get

Here 7 =

defined in Appendix VIII.

Placing these expressions (148) into Egs.

1
!
™

DX

P
w

(128~-130)

putting

]

1
o

(149)

(w¢/§2)2 and the other terms in the above matrices are

The solution of these nonlinear algebraic eguations (149) is

obtained numerically by HNewton-Raphson technique.
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11.3 Stability Check of Solution

The stability check of the nonlinear flutter solution is made

by giving small perturbations to the steady solution

B = B + /'g‘(q,) +[a,+ é\,(Q’)JSiVl ecly + [ by + %.(cv)] Cosocy

A A . A ) -(150)
P = f +p)+ [Tt Au)] sinay + [by + b(¥)] oSy
A A . A
g = @co+ @c(q’)')" [a.Bo + as(q")] Sitecy + [b_go + b3 (q/)] cas oy
where B a7 blO’ ¢co a,07 eco asq’ b30 and b20 = 0 with

~

corresoondlng Y/ and o is the steady solution and B Al, 17 ¢c

ayy bz, ¢c' a3, b3 with same Z and o are the time dependent pertur-

14

bations.
Placing (150) into Egs. - (128-130), linearizing and subtracting
the steady solution, again on balancing the constant, sinay and

cosay terms one gets

_— 4 — - - 2 -
Sy S Sz Siq P Ty T2 Tz g 2
A A
Sz S, f' T Taa %
b, Fs
S3, Ss, $ T - - 2‘
- < . $
Sy, o= | T - - - - 2 (151)
SS\ - - ’b\z . _ _ N - - )
L ) 8. I B
S‘h . . S /[;3 9 - - - ) —E i)\
—— B CLC,- - 3 S— ! -i . 3 -

Again the nature of the eigenvalues will decide whether the
solution is stable or not. If any one of the root has positive

real part shows that the solution is unstable.
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11.4 Numerical Results .
In Fig., 25, the total damping coefficient ¢ is plotted for

8 w0=6.0 w(?).
The dotted lines correspond to the zero structural damping configura-

different rotational speeds for Case IV with w.=6.0 (i.e.,
tions where as the full lines represent the configurations with struc-
tural damping coefficients of CB=C¢=C9='005' For any particular
rotational speed, one gets three damping coefficients corresponding
to three different vibration modes, but in the diagram only two
branches are shown since the third mode is comparatively highly
damped. In Fig. 26, the relative respénse amplitude for these two
branches for the damped case arc plotted. From these two figures,
one can find that the high frequency branch I which primarily repre-
sents feathering mode with small coupling from the lagging, is
uﬁstable from the very beginning for zero structural damping, and
becomes completely stable with the inclusion of small amount of
structural damping. Here, the 1ag§ing response is roughly 180°
out of phase with the feathering amplitude. Low freguency branch
IT which is predominantly feathering-flapping branch with compara-
tively small coupling from laggiﬁg is not much effected by the
small amount of structural damping except that the instability
boundary shifts to slightly higher rotational speed. This instability
is like classical bending-torsion flutter, and it is also found that
at the critical flutter condition, the flapping response lags the
feathering amplitude by about 90°.

Fig. 27 represents the damping coeffigient ¢z of Case IV with
more torsidnally stiff rotor i.e., 56=l4.3. Here one finds that
the high frequency feathering branch I does not become completely
stable with the addition of small structural damping but only the
instability region shifts to higher rotational speed. Low frequency
branch II which is now evenly coupled between flapping, lagging
and feathering modes becomes completely stable with the addition of
small amounts of structural damping. |

Fig. 28 shows the nonlinear limit cycle flutter amplitudes for
flapping, lagging and feathering motions for Case IV with 56=6.0.

The bending over of the response amplitude curves towards decreasing
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rotational speeds depict a typical nonlinear softening spring type

system. For g— less than about 0.3, solutions becomes unstable.

¢

These nonlinear solutions indicate the possibility of sustained

limit cycle flutter oscillations occurring well below the critical
speed predicted by linear theory. These might be initiated by a
sufficiently large finite distrubance, and as such may be potentially

dangerous.
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SECTION 12

CONCLUSIONS AND éUGGESTED FURTHER WORK

In Part A, the nonlinear response of two-degree flapping-
lagging rotor in the absence of aerodynamic forces is obtained.
The analysis is made for forced oscillations as well as para-
metric resonance under the action of periodic gravity forces.
The effects of various parameters like initial coning angle,
flapping to lagging frequencies ratio, hinge offset, ctc. on the
nonlinear response amplitude is discussed.

In Part B, the analysis is extended to include the effect
of aerodynamic forces on the nonlinear response of the flapping-
lagging rotor. The inclusion of aerodynamic forces produce quite
significant effects on some of the configurations for both forced
oscillations as well as parametric resonance. Also, the self-
excited flutter solution for flapping-lagging rotor is obtained
after neglecting the gravity forces. The effect of the various
parameters associated with aerodynamic forces like inflow ratio,
Lock number, initial coning angle, etc. on the forced response
as well as critical flutter boundary‘is discussed. The effect
of wind shear on the foréed fespénse of flapping-lagging rotor
is also investigated and it is seen that the velocity gradient
produces little effect on the lagging response but it has
appreciable influence on the flapping amplitude. .

In Part C, the third degree of motion, feathering, is con-
sidered thus making the rotor a three degree of freedom system.
First, the forced response of flapping-lagging-feathering rotor
under gravitational field and with sheared flow is studied. It
is seen that even for relatively torsionally stiff rotor, the
flapping amplitude is very much increased with the inclusion of
third degree of freedom and also the feathering response is
appreciable. Then the self-excited flutter solution of this
three-degree rotor is investigated and it is found that the

feathering degree of motion is very important for the flutter
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analysis. The effect of rotational speed on the linear as well
as nonlinear flutter solutions is discussed.

One may further extend these analyses to include

l. Tower motion

2. Blade flexibility

3. Interaction of forced response and flutter response

4. Subharmonic and Superharmonic response

5. Improved Aerodynamic Model

The inclusion of tower flexibility would involve the inter-
action of the overall vibration levels at the tower hub with the
supporting structure which may give rise to instabilities similar
to the ground resonance problems in helicopter rotors. The inclu-
sion of blade flexibility would bring a more realistic model of
long, thin windmill blades into the picture. The interaction of
forced response and self-excited flutter response makes the
analysis a more involved one and this interaction can become
-particularly significant when flutter frequency is near the
resonance frequency. Because of low structural damping, the
subharmonic and superharmonic response may be important. The
variable inflow model taking effects of tower shadow, and yawed
flow, etc. and also the inclusion of returning wake and other
unsteady aerodypamic effects will expand the domain of the
dynamic problemé of the wind turbins rotor.

The investigation of these problems would contribute to a
better and more realistic understanding of the aeroelastic

behavior of thin rotating windmill blade.
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APPENDIX I

The various constants used in the definition of aerodynamic

forces are given below.

R
=43
C"'R"[n sin Q, dn.

R
Cz=é‘gjn’sin9° dn
R N
C5='g;_4rh. sin 9° dh.
C.‘z l + Sdy

Q.

Cs= = = G Ao+ &) -3 CBB +CB(A- &6) + L CB (Mg +&A- 5’29)

G = -%_zcz(A9+%)~§.c3%(a)\e +g.)—ce‘e +§C82(,\—q%e) +Cg, (Ao +,\§.—§3@)
2

Cr = =2G(A= £6)-2¢,(£9 + A & - £6) - B, ~CB(40 + &) + B A (4~ 2 &)

. - 2 ' 2
Cg = ~CB(I- - cs}_,\e - % g (1- @i )

= .- 2 . € 2 L &
Cq = 2¢ (v )+ UGE +2GE(-Fy + 80 -CBZ)\(l—-_Si) +CB &0,
Co= €8 A
C, = 1 Cg g

= 3
C Cg, +.2_C81%

Cls.: ~CB, - 2AC,
C[q ‘= "C( +'!2‘ CBZ. A

Cs = ~G -G &+ 7 CB A

2
= -0 3 2 2
Co = 0)+2CA(0-268%) 3¢, £(1-6") + ;N 6™+ zcs)\g.(@-géea> +c3§;1((-el)

203y _er ) 2 > 3 2 3 2 ot 3
+(B (9 50 ) _4CB]_/\<I—28 ) +2C8 %(@- %.6 )-—C% A(@~%—® RS )%(QG*‘),{NC%%(@‘;’S)
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Bs

I

~ U (ix O g e) +5ao ~G(A-&9) ~1c,(Ne +AE _eg)-B A8

+ BG, )\()\-— 2 %9)
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= ~ A -28G
= "’li'cl + BCIA

= —%C‘—C.’.% +- Bcz)\

_% U

L

= *cé.oad-"‘c)_/\
2

2

R W =

Q0

:%&{l—@z-»l,\s —t—/;\(G—.i-e) 33.%_’-) qu ZG)+2e(\6)}

_c,(e—%@3)+c2{/\(( 20') - 26(8~——8)}-;-C{Az(@—%@)4—/\%(1—282)—;%(@—%—8 )}

3 2 2 Y
_RCG acz{z)\(G" 20)-286}+ 82 %x(e—%g-es),)\‘(._e )~ €6 7}
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APPENDIX TII

The elements of response matrix 'R' consist of three separate

parts, i.e.,

(a) contribution from inertia and stiffness, RI
(b) contribution from gravity forces, RG
(c) contribution from aerodynamic forces, RA

so that
_ A s Y .
Rij = RI(i,3j) + RG(i,]) + 3 RA(L,3])
_ . . Y .
Rio = RIO(i) + RGO(i) + 8 RAO (1)

The various elements are given as

RI(L1) = @ 2 + e R g o f (@) + h(a e )
121(:,2)..—; 0

RI(,3)=o0

RI(LY) = 6 ~ N { ag, + b,

RI(,S5) =0

RI(1,6)=0
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RI{2,1)=0

RI(22)= 2 +(1- e Y- )= 2@ - 0+ B - N {yEee) - L= (3 v ) o2 @35

RI(23) = -2 éo’pﬁ §g
RI(2)y4) =0
RI(1S)=0-2¢ B — NI{Jib,b,_(H-ocz)}

RI(2,6)=— 20 (B + 5¢)

- - w wma = e =

RI(31) =0

RI(3,2) = 20€ @ lE %'P

RI(33) = &, 2 S O B T NI{LI(a%»fbj) vL(-od Ny +28) - e’ (a}- ’2)} |
RI(3W)=0

RI(3,5)= 2« (B+0¢)

RIGE)= §-284 --’Nl{oc(a(bl-qz‘o(‘)}

.- e - e = = ==

RIGN) = 6 — Ny { Qe+ b5, }

RI4,2) =0

RIY,3)=0

RLOey= 24 E ¢ 8 B~ K- )Y
R1(4,5)=°

RI{y,6)=0
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RI(5,1) =0

RI(52)= 0-28¢% ~ N, { Lbb (140"}

RI(s,3)= zoc(é+scg) |

RI(s,4)=o0

RI(S,5) = 2+€ ~ x* + g~ 8" « Nl{ﬁoc’(a,z-» 35) ¢ (24 ¢ b’.)}

R‘I(S,G):‘- “ZOCJ_Z_ ¢¢

RI(C, 1) =0

RI(6,2) = =2 (B+ 6 )

RU63) = 8 =284 - N fLaq (et
RI(u) =0

RI(6)S)= 26¢[F L

-
RIC) = 248 —octe 0™ - g2 o N {5 (304 - 4(aF 436}

P e m e m aw ™ oem om e e = o e e

RIO() = — &5, 2 B — NI{—',:G..Q,_(HOCZ)}
RIO(2) = O
R1o(3)Y= o
RIO()= -2 - N { 6 (a b, - 2, b))
RTO(s)=0

RIOGY =0



Gravity terms for forced oscillations

Ra(1H,1) =0
RG(1)2) = %_GGE
- L 2% 2
Ra(13)= G(5—~ B - &)~ N { & (ab+b} +al +34))
RC’I(')L’)=O

RG(1,5)= $GO¢

RG(L6)= ~LGaB ¢ - NI{%CL‘QL}

- e e m o mw e wT o

Ra(y!)= — Nx{%(a‘bf'azb')%
RG(32)= 0
Ra(y3)= 0o
Rg(z,qu - N; { %.(Q(bz+al\3,}}
RG(3,8)= 0o

RG(?,G): o]

2 (

RG(3N) = G(I—- gf— 322) - Ne§ %(Qh 3B +a; +3‘o’;3}
R&(3,2)= 0

RG(3,3)=0

RG(3,4)= —N; { %(a‘az+3b|bz)§

RG(3,8)=0

RG(3,6)=0
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Ra(42)= Lg

A%

®
RG(Y4,3)= “3GR¢ - NI{G
< ke

RG’(“‘:“I) = 0

Re(y,s)= ~%G((E.“G£Bc)

Ra(4,6) = G(é—

Lo
e
—

- B &
k3 %)"'Nr{

G (o2 '
T (@W+ 3 Q2 g bi)}

- -

RG(S,! = ‘
) NI{‘[‘G'(leL*‘sz,)}
QG(S,Q) = 0

Ra(s,3)=0o

Ra(s,4)y= —
NI {-E’-(Ql b,.-y Qll’z)}

EG(S,S‘)::O

A
-
= e e
S

QG(G,S) =z 0

’ QG(Q,‘): 0o

1TNno



RGO(1) = 0
2 2 1 2
RGO() = —GO(I- & - B &) + ] G2(3a 4 b 3+ 5]
Re0 ()= N { G9( b, + a:h)f
ReO@U)= 9
2

2 G (3> _ G9(3q,
Reo(s)= G1- £~ £ +0g¢) - Nz{ & (3¢} + 1) - § (32,2, + b,bz)}

R60 (€)= =N { Gagb, = G2 (e, + b))
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Gravity terms for Parametric Resonance

RG(LIY = N { (el -6 + a5 -5,
RG(1,2)= o

RG(1,3)= 0

RG(LY)= N {% (a,a,~ b, Ez)}

RG(,5)="0°

rm e m e e om e * Em e = e o

~ L - 2
RG(2,2) = -G(3 -f,é“if_) +NI{%(Q,+BQZ)}

RG(2,3) = 168

-RG(2;Lf)= 0
RG(2,5)= zGE ¢
~

RG(2,6)= LG8

RG(3,1)= o

RG(3,2)= LGRS

— 1 2 2 2 1

RG(3,2)= G(% 1:2_ - gg) ~n {64438

Rc(3,5)= LGP0

RG(3,6)= -1 GE ¢ 10



RG(4,1) = Nr{ _fﬂ(a‘az
RG(Y4,2)=0

RG(Y,3) =0

Ra (4,u)= N { &(¢

—blbz)}

_h=+a:-b‘)§ |

2

RG (4,5)=0
RG{(4,6) =©
RG(5,1) =0

A = @ m e m e e e e e =

RG(G,‘): 0
RG(6,2) = E‘-G(eg
RG(6,3)= ~4GE¢

RG(G,‘{): 0

RG(6,5)= -—;—G(C}Z—

o8 )



RGO(1) = NI{ C;L'Q(a,b‘+ le,ﬁ}
RGO(2)= ©

RGO(3)= o

ReO()= =Np { Eayb, - G (ab, + 2;b)]
ReO(s)=0

RGO (6= o

In the above elements
0 for linear case

1 for nonlinear case
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Aerodynamic contribution terms

RA(L) = =N, {oC(Q‘bz— Qb)( S - c,q)k
RR(\,z):-.o
.RR(I,3)=O

RAGY) = = Ny { (@b~ a,b)(Ca - )}

RA(1,5)=0
RA(1,6)=0
RA(?,I):O

RA(2)3) = ocCq + R Cq + RIC, + X § Gy + NA{ C.E_(a;‘+b’:)c,‘+%<.‘(3a;+b:)(}z
+0Clor |2

| I'—(a,_+b,_)qs}

RA(2)4) =0

RA(YS)= -2 - B( +N,\{ %Q‘b‘(ClQ— ch)}

. . 2 2% 2
RA(26)= xCq + cCBP Cy+ B Gy +x ' G +NA{—/9$(Q(—5,)C‘° + £aa, C,3+€C‘_1.(3qf+b‘2)qH
+ 2 2

P T
B

RA(3,1) =0
_ 2
RA(3,2) = ~oclg ~ B g~ acf™Cy— g Cy — NA{%C(le- b )G +.%€(Q:+3b:)Cn_+%‘_(a1,_—-6:)c|5}
RA (3,3) = _Zé CS - ?C-’ + NA{—;:OCszL C,z%
RA(3,4) =0

RA(BSY=—ocC, - 2 g 12 ,
S ) 3 Oc‘/fgfz('w - B Cy - mﬁezqs—NA{%(ﬂ,--b,)C,o + "zi- b,sz,s +.°L‘£(a,"+3blz)C,('
; 22
v .i:’f(a.,_+ b,_)c,s}

RE(3¢)= ~2¢¢ £ “Nn{%‘a:é (Gio - CIL/)}
i13



RA(y2) =0
RA(4,3)=0

RACK, W) = Ny { < (@b, = (B, - £

RA(M, Sy =0

- - m ® e e = e . e o e ==

RA(S,1) =0

< /2

RA(S5,2) =2BE; +$ B + Naf L by B }
RO(5i3)= =y <p B~ cf'g- g 8, + -2 88, - 230 +6)8, + Kel-5)8,}
RA (S,q):o

RR(s5,5)= 248 + EB + N {—z-'-vca.b,(sm— 8,,)}

2 2 2 ’ . 2 2
RA(S,)= B -xpe B -xp'g —xd B+ ’\’n{%f-(?';b: )8, § % By~ (3% + b )8,

2
RO
RA(6N) =0
CRA(6,2)= o By 4+ xé‘{?,_ Blo + “’E_lgu + “‘?@1% ...NR{%Q(thf)B“+%.(Q;+36:)8‘2+%(a1_b:_)BIS}
RACE)Z 226 + $8 —ny{dwab B ]
RA(64)=o
RA(65)= o By + g B, + 0cg’B, P B+ Nq{_‘;—c(@——b’;)sm* Lbb B, + %C.(q}+3t>f)8
+ %(Qi"‘ b;_) BIS}

RA(66)= 2B  +B B 4+ Ny {‘3‘; Wb, (8,,~ B'O}
114



RAQ(1) = — Co—BCg— B¢ - BH Ty — Ny { £(ai+5)Cs +4(dh + B¢ + L(at,+bb) C,

~L a(a,ay + BB CB, + L (Al b Cn%
RHO(Q) = Q
RRO(3) = o

RAO(1) = & + B B+ € B + £ 48, + ML {(T+E)By + H(@ 488+ S(mia,4bb ) e
+Lac'(a,q, + bh) ¢ + Led(ada B Cdo _L @R )Bcl]}

RAQ(S) =0

RAQ(6)=o

In the above elements
0 for linear aerodynamic case

1 for nonlinear aerodynamic case
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APPENDIX III

The elements Aij of Eq.. (113) are divided into two parts
(a) contribution from inertia and stiffness, AI

(b) contribution from aerodynamic forces, AA

Thus
Ajy = AI(L,3) + %AA(i,j)
- 3 l 1
AiO AIO (1) + 8 AAO (i)

The various elements are defined below

AT(LO= 148 - 67~ 2 g~ ¢ - N[ ha + a4 b
AL(1,2) =0

AL(1,3)= 0

AL(LY)= O —Nx{a,az}

AT(,S) = @ (B~ £)

/11'(1,6).-_- Nl{a.sz} o
RI(2,1) =0
- - 2 2z 2
AI(2,2) = |+ € - = 8"~ ¢ (1-") - 2B~ NI{ %2(3—oc‘) +L(af+ b})}

RI(2,3) = —20c cTprg‘ {P

AI(2,4) = ©

AI(2,5) = ﬁ;a,
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AI(3,1)=0

AI(3,2)= 20¢ G,IE 4;

AI(3, )= 1+B -0~ O~ C{i(l~oci)~2%1_Nl{%:.((,3a¢z) L@ 8
RI(34)= o

AI(3,5)= &b,

AI(3,6)=0

AT(4,1)= 6 — Nr{a‘dz}

RI(({,Z):O‘

AT(43)=0

AL (1)=& + 6"~ " — N { {0~ ™Y+ B
BI(45)= &~ ¢

AI(%6)= N, {e q,_b,}

- - e e e e = e =

AI(S,I):O
Ar(s,2)= 8 —zpﬁ

<

AT(s,3) = 20c(B +6¢)

RI(S')‘() =0
AI(s,5)= a,
RI(5,¢)= o'
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m(éﬂ-: 0

AI(6,2) = —2(B + 6 ¢)
AI(e,3) = B~ 28¢
AI(C,4) =0

AT(,S) =0

AL(e, L) = 2.[2 q, Z':P

HIO(?') =8Q7—_ chgaz
RLO(3) = 2:ca, (B + 6 ¢)
Aro(y) =o

ATO(S)= G &~ ot + 6= gy v arf@tea8) - (3G 4]

QIO(Q) = _N[{i’_alb’a'z_(l-kocz)}

In the above elements

0 for linear case

=
I

1 for nonlinear case
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Aerodynamic contribution terms

I
Qo

AA(L L) =

AR (L 2) = -NA{ % (Cq - oCZCBJ}-

AR (4,3) = — NA{“E% (- S‘f + C.Q reega, (- Cia 9?3_)}
RA(1,4) =0
RA(1,5) =0
AR(1,6) =0

AR (2,1) = - a,Cy

AA(2,2) = —-28 Cs - ¢4

AN(%3) = 0c(C5 + BB Clo +BC,+ F C2) + Naf (a0 B, + E ) (Sélz“ Cl's)} '
AR(2,4) =—2Q;CG

AA(2,5)= 0

AR(2,¢)= N, { Laba, (G- C;ﬂ} Y

-t e e e e e
- . e e e 4 em o

AR(3t) =0

MA(32) = = o (Cy +BP G + B'Cy + € G2)~ Ma{S (@ +6) ¢, +a, (Cy+ G}
AA(3,3)= —2B (g — ¢ C, |

AA(3,4)= 0

HR(?’/S) =0

) _ 2 T3
AN(3,6) = -a,(Cu+BB Gy + B Gy + P Cs) _NA{Q_qg(a’.‘-bf)C,°+%z(a,‘+3bf)c,q+ 4. c,s}
: .
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AA(4,) =0
AR(L2) = N { Ga(e, + o&c,)}

AR(Y,3) = NA{ocﬁcQ,_(— Bog)+oca, (-8, + %3)}

RAY,Y) =0
RA(Y,s)= o
AR(4,6) =0

P Y I R

AA(s,2) = 28 BS + q%B,,
AN(s,3) = — (B + B¢ B, + B8, + € 8,) ~ M{ £(a+8)g, + 5 ¢ (38, 65)]

AA(S,4) = 2a, B,

AR(5,5) = o
AAR(s,6) = -Na{%alb.qz(e’:o—gw\)} g
RA(6,1) =0

AR(6,2) = oc(B, +BY &, +B™8, + £ By) +NA{—;’9“§(51+ B) +E(a+ 5) 8,.}
AA(e,3) = 2 B + ¢ B,

AR(64) = o

AA(¢,5) = o

: . , n
AR(6.6) =0,(B + B¢ B3 +E7‘3w+4213.5) +Nq{%13:s + g_z(a.‘—bf)gm + %_z(ahzb,)Bw}
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ARO(1) = - (C, + g‘c; + 422% +ELG) - N { Ji(a,hé,’)cs + tdicg + x‘q;c,}

ARO(2)=0

ARO(3)= 0

AAO() = B + BB + & B +£¢ B+ N30 B +ofa} &b — @t + ) +(al+5)Es}
ARD(s) = o

QAO(Q) =0 : . )

In the above elements
0 for linear aerodynamic case

1 for nonlinear aerodynamic case
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APPENDIX IV

The various constants used in the definition of aerodynamic

forces with shear flow are given below: .

~

G= Co— A(CB,+ £CB)+2A0(CH, + %c\)~EB3@ +E 0%+ a)\‘ez(ca‘1 + %cel)+ ,_3-758393

-840 6%(cH, + €1)

Cs= Co+ A (CB,+ £ RCB)-8(\ H - % EB))

o= G +A(&§CB +£CB)~AB(2CH +3&C) +EB,O
Cr =Gy —2A,(CH, + %c,) + EBS—:L‘E,e_a)h@(csﬁ € c8)
G = Cg—~A CB.O

~ 2
Co= Cq + A (-CB, +2 CHB + 7 CB,E)

Co= Co + A CB,

EL:: Ch

Ca= Cy

Gs = Ca—2A,oH, -~
Cy= G+ A B,

& = g A (ns € C)~ECs +3A, deg(¢ + §)+EO +246(BG+ £ BQ)
_ : , ;
+0Y( Cz.‘{-"Es +EC3) -2 )\, 0°(cH, + %c‘)-%%._/\‘g (%+ %) ~2€9
3
_g-)\‘G(BCq+%BC‘) |
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ES = BS—)\l(CH1 ""i}:%c‘) +EC3_%E|8—)‘|S(BCH+Z%BCI+ % Cd‘,)‘

a

R
i
n
!
Ni=

e A c -2 5 Ao( + &) -6(zE + A, BCy)

~ | L o
B, = B,.,-Z%C'i.o)\‘(ﬂs-+ %)—<E|+ A, BG)— 2 e BB + 246 (CHi+ 2¢,)
és’“" B, + A (-2BC + BCH, + 6% 8Cy)

Y 1

B,= Bq + AcH « 2 g -3 CNE)

B = B —A CH

10 1o | |

5 @
813 - Bus' % O /\l
glq = B;q - _5 )‘l CH\
Bs = Bg
~
D= k(e §8) + 1h0(G+ )~ ERE +ET +2hi(CE  § )

3
"%A283<C“" %C,_\) + -%— EBHS
Ds = A(ce + % % CBZ) + 0(-AC + 3 E8,)
D o= %1,(c8 +288)~4,08(2¢+3 8c,) +EBS

D, = -20,(C + §C;) +EB—2E,0 —2A0(ce,+ g cs,)

D= —,\ZCB‘S
D, = A (-8 +2G0 + 3 B g

123



io 2 !
D“= o
Dn.: ©
Dy = -246
Be= 1) cg
D

E.= A0+ 20) -k, +25:4,6( + 42

Eg

E,

E

T

2

€)+E,8+2),0(8c+ £ BC,)

o © 2
PO B EC) 2N 0O £0)- 4 @ A6 (e 48 ) ~2 €, 6

3R 3 2

~$4,0%(BC, + EBG)

= —=A_(C 1 _e_ —_ .
A (G +4 £CG)+EC~1E,0 —AZS(%J, BC, +2 £ Bc,)
= 4L
2 % A2.C.7. - %9' ’\zG(H' ’85 %)—@(J?:E1+’\z BC')
—~
= =2 Cdo r
& A (1+ %% ~(E,+2), BQ)-—-Q% Ec6 +2A,8(C+ %cz)

= A(-28¢ 4 GO + 8, 8")

= /\Z<Cl + 2 %‘°@ __Jic|g2)
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]

BR, ~ 2 S&b
4 f n {/\f(%)” + gAz(g:)L +2), A, (%)z} sin §, dn
4 ofl{ ), do (%) + 2,2, | sin g, dn
b AT AT <2 s
e an{a Ad v 2 AZ(%f}cos Q. dn
5 fn{ () ) e ad (2 “ldn
- !R&{zmzz s b h (&) Fdn

B+ Lo Es.

E, + %o E,

E, -7 SEs

£,-4 e,

125



APPENDIX V

Element Matrix RV for FORCED RESPONSE

RV(‘,‘) =0

RV(L2) = —4 (D + @ D+ B0, * € D,) — M £{(88+26b)D.+ (@4 H) D,
"’(sz+ 3":):[)12 - gz Dls "'Qba bz ch}

—Fcbs—' %CQD'I

RV(1,3)

RV(HY) =

|
(o]

RV(1S) = ~4(Dy + BT, + B0, + $ DY) ~ My §{(0+28b)D, +(@+36)D,
+(q’i+bi)Dls ‘bTDw —ibl b D,

RV(1,€) = ~&D -3 ED,

CRV(2,1) = = Ny f 1300, B B)(D+2 D) + (@ - B) Dy + (6 -5 Dy
RV(2,2)
‘Rv(z,s) = 0

RV (2 4) = — Ny {L(aa,-b8)(D,+2D,) + §(@-K)D, + 5(ai~ RN
RV (2,8) = o -

RV (26) =0

0

!

Rv(3,1) = - NA{""—((sq'bz- QZbI)DIO +Q bl.‘DHA—_‘:z szzDB +J?:(3azbt “lez)—Dl‘i}

RV (3,2)
RV (3,3) =0

0

Il

RV(3,4) = = Ny {4 abD + £ (3ab,- 4D, +§(3%ub-ab) D, + azbzb,s}
Rv(3,5) = ©
Rv(36) = o
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RV(L{,|) =0

: L

Rv(%2) = 3%( Eg+ B¢ S %ze‘\+q§ En.) * "% NA{(O"QI"'zbtb;.) Elo*’(q‘ *'b')EH
+(Q;+3S1)E'2 - L52. EIS “th b:. Eiq’%

RV(43) = BEs + LR Eq

rv(h ) = ©

RV ('4:5) = 'E(Eq + @‘E E’l3 + Ez E;q + (ﬁ, EIS) + NA%{ (2, + anbszB
L (@43 )E, + (G+B)Eg - B Eg-28b Ep

RV (4,6) = $E +LBE,

RV(51) = NA{ Jﬁ(alax_ b bz\)(Em + 2 EH) * %(Q‘z—b?) Eu + z“-(q;‘—b:)EG}
RV(S,2) = 0
RV(5,3) =0

Rv (5,4) = NA{ﬁ'(d\Qz“bu b)(Eiz +2 Ei2) + _'l;(o,f_bf> Eiwo 4"|i<0‘;:’bi)E‘5}
Rv (5,8)=0

-~

RV (s,6)=0

RV (1) = Ng{ $(30b-0b) Eq + AL E, + Lab B, + £(30b-b,) ‘Em}
Rv(612) = ©
Rv(6,3) = ©
RV(GH) = Naf hab Eg + £(30b-0b) B + L (305 -0b) Eg v 4b B}

1}

RV (6,6)

(0]
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RVO(1) =
R\}O(Z) =—NA{—2’_-(alb"Ds + azbz D@) + #(a(bl + azbn)D’i}

$ D) ~ N, £{(@ 43k ) +(@+3b)D,

Clc

RUO(3) = —(D + B, + ¢ D, + 8
+ (a,qz + 3[;1[32)97}
RVO(S) = NA{%(Q‘b,ES rab E) +i(ah +azb,)g7}

RVO(6) = Eo + BE + @ E +BRE, +N £ { (0 +3b)E; +(2 +34)Eg

+ (2 a, +3bb)£ }
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Elements of Matrix RV for PARAMETRIC RESONANCE

RV = = feb rab)(0,420,) v 2 gy, - § %D, ]
Rv(h2) = o |
Rv{3)= o

RV(L9Y = —n fLab, «q,b)(D, +2Da) +Lab D, . La,p D,S}
RV (,s)= o

RV (1,6)= o0

RV(2)I)=: 0
RV(2,2)= EDS"EI'

RV (2 3) = —T:'(DB + é(’(g 10 *'/‘EZDH * 35'92) - NAL—:_{Q‘QZ‘Dlo+a'2Di| +a;~ DIZ}
RV(2,4) = o

Rvns)= € +{gp

2,6’ = "'!‘ 2 2 Iy
RV (2,6) H(Dq+chJD‘3+;gDW+¢C>QS)_NA%{4,CLZD,3+(Z,2D,9
2

+a; p.1 _

RV(3,|) = 0
2

Rv(2) = -4{D . een . pp * R Daf ~Mog{ann, 6, 5]
RV(3,3) = --(é’DS +4 qgl)’)
RV (34) = o



RV(4,1) = NA{ .‘lg(o"b1+a’-b')(gno+ ZEH) + Lza‘bl Eu + Lzal bz. EIS}

RV(LI,Z) = O

RV (4,3)= ©

RY (4,4) = NA{—%(Q,bza-sz‘)(E,ngz Ei.) +qia‘b, Eo +Lab, E
RV (4,5)=0

Rv (4,6)= 0

RV(s,1) = o

RV (5,2) = ~(BEs+LqE

2 1 2 3
RV (5,3) = t(E + BERE, +BE, +¢ E,;) +MNa L,{a,azE,o+ Q, E“+CZZ_E,2}

RV (5,5)= —(®E+ S EBE,)

. 2 2
= [
RV (5,6) = L(E +BQEs+E Ly r ¢ Es) +M Llaa, B+ 4Ly +% E{S}

RV (6,1) =0

RV (&) 2) = 7:_( ES * ECE E‘°+ Einl'*qiE:z) +NA'§ {b«szlo +bz,E”+b: E,z}
RV (6,3) = BE,+ £ Eq
RV (6,4) = o0 ‘
Rv (€,5) = ﬁL(E‘i ¥ 54{6,3 4_%-:&-“ *‘"EzEls)"LNA{T{b'sz:s"Lbll Em+sz15}

RV(é,G): (EEG_‘__)L:E_
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RVO(1) = Ny £ { (=)D, + (a2 - B) D, + (% &G = bb)D}

Rvo(2) = ©

Rvo(3)=o

RVO (4) = - Ny & (@251 ) Eg + (2= 5,)E + (2% -4 B)E;}

RVO (5) =0

RvO(s) =0
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APPENDIX VI
The various constants used in the definition of aerodynamic

forces for flapping-lagging-feathering rotor are given below

z
F=20C +2 %cz +8.Cy = (A, CB, + A, CB) - &( }\OC33+A‘cg|)

RL
£ =- %(ce2 + %csa)

o= 2(AC+A ) +2 %(,\ocsafxic‘) +CB = (A cB, + EB,) + 2 %CBL+ %11 c8,

= =0 =26 +(A08 + A CB) + L &(4,CB,+1C8)

/ 2
fe = —%Cz* %zcs + 3 5(A.C8,+4,C8)
! i
= Rh-2h
2 kX
R=-G+ (A El) -2 %C,_* %-CB *2(ACB, A cBy) + 2 F (A Byr ) CB)

Ro= =2 (AC,+ A CH) =2 & (A,Co+ A\ C)-CB, + (A <8+ EB,)- e cg,
Fr=-1(4C8,+Ac8))
fg = _?';L (CB, + %ces)

2 2
Fa=-2(4C+E)+28¢ + 2 %Ca—z/(/\c,-cezw\‘cs.‘)—z & (4,854, C8)

' 2 1 2
Fo= = (A G+ A ) -4 €8 + 5 (A (B, +EB) - CB -3 %css
2 2
Roo= = (MG +A )~ 2 _g.(,{oc3+ AC)—£c8, + L (4, c8 + 583)-%C82—--£-§2C83-
_ 2 y e 2 ez
F, = —g(Aocz + 4, cul)—%%(}(ocf,\‘c‘)_%cs. +.§_(Aocs3+ E83)~3~%C82-3——-,_C8

Fs = - (B + £¢8)
Fy=2C+2 gg‘cz." (Ao CB.+ A, CBy)

Rs = -‘% (cs, + £ C8;)

Fe = Ri(%c33+ CB,)
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6= — (A8, + A CBy)

Fe= -1 cs'2

Fa = 2(ACo + A CH) + CB + Z C8,
E, = - 2 % C, + (A,CB, + A.CBO—K:
P, = —8 - §8,

Ba = "%(Ao 8, + A, CE')

Bz = (ALBy+ A, C8Y)

c8

Fy =

Nij—

— 1
Fz..s - —ECB' +—§—CB,_—-3 Fl3

—_ 1
F:Zé - ?%C81+—(§-—CB|

G = ~2(A,C, + A, CH)—CB

Fo = =G+ L (A CB, + A, CBY)
e = —%Cz —'—'I Fu.,
Fh = =G - €0, + 4 (A (8, + 1 BY)
Fay = =2 (AeCy+ A CHY)
F, = -C8-£ B,
s = — (A CB, +4,C8y)
Ry = —C&
| By = —%- C8,
Fs(, = C§
Faq = —CB, .
Bs = ©
Bq = -3 fs
R = 726G
Fys = ~% R \
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2
um o1+ 3 & +2€0) + (1o v A C) + S(AG+AC) ~(E B, +EC)

o

G = _Zi{ %cs_zuogchr,\\gc,),ch}

Gom Se(BA+81) +2 % 2(Rh+A) -G+ (AGrE) R - €0, +2(A B AEG)
+ 2

_E(A 8C3+/\ BC)
2 _..2
Gy= - %_o(n. L e) - (A +,\,u1,)—12-%(/\°cs+)&‘c‘) + (A2 BC,+ ECS) élisc_,,
Go=-2%k g(2+%)-7§(AC 2+ AC)

G5='-%(l+—§-%+zez o (2 A+ Eg)=2(AG+ ACH) —2 £ (ALs + \,C) - 86

+( X% BCy + EC;) — 2 £ BC, —E'z * BC,
6= G (1 + 34) —2 & §(RhrA) € -(RGHE)TRGoEABG T hEC)
G, = %(Aoca,w\lc‘) +2%(8c2+%8c3)
Gg = f_(c2+ %c3> -2 ﬁR_(AOBc_3+ A, BC))

Gq=_2Cd°(2,\+Es)+qfdoe(2+€§+z()‘c+ACH)+2 (AoC3+ A, C)

€c C,+A8
-G.°=-%%(%Ao+%m+%~—(* SFEYFEGHE S G- (ABG A cq)
3 Clo € (21,4 A)+ 50— S( G +E)+EC+ 515G
G“=—-§él.(‘3)\+ )\)—2 o (24,4 M) +4C -3 .+ 58
(XDBCZ-'-/\! ch)
2 ye
Go=~2%(Sh+EN)- 3% W (2h+ A) +3CG—5 (KNG E) 535G
v %

%z Co =% (A.8C + X, BC) - % & (A BG + A, 8C))
C

Gy = G+ ‘eR‘ 2 =2 (MeBCG + A Bc‘i)

Gy = 2%@(1+ 1¢) +(ACa + A CH)

GIS =

||

(a+ % C3)—2 -?'Z: (A, BC; + )\yBc,)
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G.= — % ic3 4-21()\°gc3+,\,ec,)
(Ac + A CH) +2BC +2 & 8c -1c
G\Sz %Cz

e
G = Sa(3hs TR) -G &G

Gpo = —2 %3((4- 4 %)—- (A°C2+)\.CH.)—2_2_: BC,
Gy = G+ §C—2(ABC ¥ X, BCY)

Gyp = %(AOC3+/\.C|)+2_Z__(8C2+ e BCy)
Gy = —(ACy + A CH,) —2 BC,

Cpy = -G + (4o BC, + A, BCy)

Gyg = -——'iC,-%Cz+()\°BC2+ A BC“I)

Gy = —5(G+ §G) +(ABG A BCY)
Gpq = —@s(g—kcd- §A(>+C.

G = — L —3(hC + A CHY)

Gy = "FRLF

Goo = -4 G & -4 (JoGrh G-
%= g |

Gy = — %(%— )\>+C

Gyy = (4Cp + A CH) + 2BC +2 £ BC,
qu = G

Gys = ;’Z—Cz

GBG = - C,

Gz = G

Gy = C—Af
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C—a3q =0
_ %2
Gy =~ rg 8Cs
G"“ = -2 % Bcz
G"'IZ. =-z —7R~ 8(‘2
an = —28C,

= -2 U
Gyy Cdo
Gys =©
Gy = ~ BC

Rp = —~/\2(CB, + % CBZ)
Rgz o] ’

R, = 24C «28 A0, ~ EB,

R3 = /\zCB, +_;: % )\1CBZ

- |
Ry= £ ),&cB,

/
R'i: R‘l—"igo

Al

Rs = €, +24, CB, +2%A2 B,

Rg = =X, -2 % A,C, + EBy

Ry = —-g. Az cs,

Rg =0

Rq = "2(52 + A, CBy + % ,)\1C37_)
Rio = —AC + L EBy

Ry = —--‘Zr\lC, -3 ER_ 2,0+ EBL‘

Re = —4A&-1€AC + 2 €8,
K, =o ) V
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Ru.' = "‘Al CB‘

Rg=o0

Re = o

Rig = — A, CB,

Rig = o

Riq = 24, G

R = A, CB,

Ry = ©

Ran = —A,C8, T
R

Rz = 4,CB,

Rpy = ©

Ras =0

Rzp = ©

Ry = —24,.€

Py
»
]
n
N
Do
N
N
R

R33 = —-Az Cs8,

So o= LG + £1,C, - EC
S =“2%)\ch2 |
S, = 2£’ad—°Az<'+ %%)+E2 + 2 A, B, +2%,\2%C?_
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S3= —A2C| ——‘i % A::.C?. + ECL‘

Sy=-4% MG

Ss= Gl £,-24,6,-2 € ),C, +EC,
Se= -4, -2 % €\ E, - 2A,B¢,
S,,: %—)\,_Cz

a

S = — %2,{,_—2%;\256_1562 AL BC,

Sp = -\, -8 C—Aa" %)\7_——-‘5E2-—)\18C,

S, = -%%{g,\z—% Cga %Az—'%Ez—%)\l(Bq +% BC,_)
Sz = —24, BG,

Siq = ’\ZCI

S = —27;_)\28(‘2

~
St = &G
51‘3 = O
S:q = 2 % /\2
Se = -4 G
52‘ = —2 Az BC‘ ,
521 = % A)_CQ_
Spn = —AG
Siy = A, BC,
st = Ai BC|
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S =2 Cdo A
See = ~% MG
S

Sso = — 5 MG
S3 =0

Sz, = —2 C—é‘?— A,
Sys =

A, C,
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APPENDIX VII

The elements of response matrix 'R' for flapping-lagging-

feathering rotor consist of four separate parts

(a) contribution from inertia and stiffness, RI
(b} contribution from gravity forces, RG
(c) contribution from aerodynamic forces, RA

(d) contribution from periodic aerodynamic forces, RV

such that
R.. = RI(i,j) + G RG(ij) + L RA(i,§) + L RV(i,3)
ij 8 8
R;, = RIO(i) + G RGO(i) + -g- RAO (i) + % RVO (i)

The various elements are given as

RI(1,1) = 1+ a;z R A Y PN, {(af;b,*) + L (@ + B ) 4 200(B5 -0 b)

+ & (:,+oc2)(a_§ +1;_.:)}

RI(L2)=o
RI(1,3) =0
RI(h4)= 8~ NL{(a.aﬁ b b,) — oc(a,b,~ ;3’09}
RI(1,5)= o0
RI(1,6)= o

RIWJ)="%{®%+A%}
RI(1,8)= o

RI(1,9)=0
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RI(Z,\) =0

RI(2,2) = @2 +(-a?)(i-§)~2F- 6 +8 -Np {5+ EG-a) (e + )
L ocz('af—b:) -»-:Tocl(a; 4 3b§) +I"_(3Q32 +b;)}

RI(2,3) = - ?_oczI)PJE C}S - N, {oca, qs}

RI(2,4)= ©

RI(2,5)= 0-2f¢ - N {2hby(rrech)]
RI (2,6) =—Z’C(§+9‘1§)“Nr{"cqza3}
Rr(2;7}= 0

RI(2,8) = ce(l-ocz)—ZE 6 - NI{’Eb,[,s(l—ocz)}

RT(2,9)= 208+ N {Loc(2a] + ) + Loe(a] ~b, )}

RI(3,1)=0
RI(3,2) = zxojpﬁ 4,3 + Nz{oc b,bs‘i

2. P 2
RI(3,3) = @2 + (1-o)(i- §) =26 @+ & — N { L0+ 6]
2 2 2
%U vc’)(aé+3vb2)~éo_cz(az”-b§>+%°%sa§+b;)+z§(a3+3b3>}

RI(3,L1) = 0

RI(3,5) = 20 (B+3 Q) + N joc b by}
RI(36)= 0-2B¢ — Ny { L a2 01+ o)

RI(3,7)=o0
RI(3,8) = — 200"~ N { g€ (aF + 381) — e (G- ) ]
RI(3,9)= ¢ (- ocz)—256’;‘—-'\/1{5(’—”2)0:03}
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rzr(q,lv) =0 - NI{<0..Q1+ bb,) + oc(asbz—azbs)}

RI(4,2) = 0

RT(4,3) =0

RI(u)= 2 +E+6~F - N[-{—‘%(l—ocz)(af-f by L (ol + b-';w_xl)}
RI(4,5) =9

RI (4,6) =0

RI (4,7) = Nr{(ala_,, + b, by) —éc(Qabl— az’—”’.)}

RI(L’IS) =0
RI(4,9)= 9

*
QT(5,I) =0

RI(5,2) = Q—2B¢ — N {3 bb (14t}
Rr(slg) = ZOC(E +09§) + NI{%K'(ZQZQ.? +‘bzb3>}
~

RI (S,L;) = 0

2 2 2, 2 2
RI(5,5)= Z+é-—oc2+Qz~§z+NI{L—;—ocz(a,2+3b, )-—L,i(sa,z+b,)—%€ (a3+3b3)
A 2, 42

RI(S,6) = —20<[Z {p - N_,{oca,a3}
RI(517) =0
RI(S,S)_—.g'(1+oc2)+2<jgac+Nz{é(i+ocz)b2'o3}

RI(S,q) = 2ec (Rm@+ BR) +N[{.£-ec(2a.az+ b,bz)}
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RI(6,1) =0

RI(6,2) = —m(éwz@ - Np{ oo (05 + 2b;b5)]

RI(6,3) = 0~2§¢_NI{%Q,Q1<I+£)}

RI(6,4)= o

RI(6,5) = 2 [F £, + Nr{ocb(bz}

RI(66) = 2+& —o" + 0= F + N {Lod (307 + b)) = £ (a7 + 35])
T (a4 b+ f (a3

RI(6,7) =0 ' |

RI(6,8) = —20c(Ru@. +BE) =~ N, {%oc (a,a2+25«bz)}

RI (6,9) = ,g(H-oc:) + 246, +NI{§(“‘ ocz) QzQB}

RI(T,1) = =Ny {¢a,+bb,}
RI(7,2) = o
RI(7,3) = o "
RI(7,4) = N, {cc(azb,-a,bz)f(azaz,+bzb3)}
RI(1,5) = 0
RI(7,6) = o
-2 2 2 7,2 2 1 /r2 2
RI(7,7)= Ry ( +Z0 )~ + ¢ +N1{5(az+bz)—5—(a,+b‘ )}
21(718) =0

' RI(7,Q)= o
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RI(8,1) =0

RI(3,2) = $(i1~oc®) - 280 +'Nz{éb:b3(°c’-'>}
RI(3,3)= —2e '+ Ny { Lo (@ - 17y see(al+ )]
Ri(s,u) = o

RI(8,5) = E(r;ocz) +2¢0 +Nr{2—’bzb3(!+ OC’)}
Rr(s,e)=—2°C('?m@c+§<f3)*"’z{_°f“'a2}
RI(8,7)=o0

R1(%,8) =R, (1 + 2 EJ;)—-Rm o ~ B (1+ ) +<22(l—ac2)~NI {q—’(l+o<1)(3a,’+ 5

+ (387 Bly(eto) - L oci(at o b1y - foc'(a -]

RI(8,9)= —2c Wo [Z Ry I

RI(9,]) = o
RI(2) = 20cg" + N {Loc (@~ b1y + foc (@t 7))

R1(9,3) = R (-’ ~286 + N { £ 0,05 (1)}

Rf(q,ll) =0

RI(9,5)= 200 (Ru@ +£p) + N, {och,b)

RI(9;6)=,§(/+ 06‘2) +206. + NI{Z;' Qzaa({-f-ocz)}

RI(9,7)=o0

RI(9:8)=2cc &y[7 R, Ly

RI(9,9) = R (1 + 26 )= Roc’=B(1+ac?) + B'(1~ o) + N {~E (14 c*)(aF+38})

2 2
+-—L“—(l—oc’)(a:-:~3bz )= 2%~ b))~ £ we¥(a? ~ bj)}
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o) = — G 7 B [ (b - + (10 )@+ hb)]

RIO(2) = O

RIO(3) =0

Rio(u) = —2¢+ Ne{ £(1- ) (@@ + Bb3) ]

RIO(s)=©

RIO(6) =0

RIO(T) = —Z @y RuGs + BR + NI{(g-gmoc’)(a,al+ b b,) +?Mcc(azb3—a3b,)}
RIO(S):O

RI0(q) =0
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Gravity terms for forced oscillations

RG(1,1) = 0
RG(1,2) = 1 BG {'bb}
RG(43) = £ -84 ¢ N[{I(,(a’+bz) + (e +362)}

RG(HY) =
Ra(4S) = 7 ¢6 + Nf{s b}

RG(1,6)

“iRe -n{taa
RG(1,7)

i
o

RG(I, %)= -4 +,{—(r9§+£z+ ¢ + Nz-,ig{za,hbf + 30 + b+ a3

RG(2,1) = N[{;:—(sa,q3+b,53)_ (b '+azb2)

RG(Z,Z) =0

Re (1) = N { £(30,85 45 - L(ab, + b))

RG(2/S) = 0

RG(2,6)=0

RG(2,7) =~I 4’2Lé2+5[’£2+é‘9c2 "‘Nr—sl"{m'l*blz*3qzl+ b +3a} + b
RG ($) =0

RG (2,9) =
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2
RG(3,1) =1-¢ et L gt +NI{£(Q,53+Q3I>,) —é(a,’+sb,2)—{g(az +3b, )}

RG (3,2) =0
RG(3,3) =0
RG (3,4) - Nz{ﬁ(a1b3+ stz>—qi(a,a1+ zb,bl)}
RG(3,5) =0
RG(3,¢) =0

RG(3,7) = Nl{q’(a:b, +a,b, + %533}

RG(3,8) =0
RG (3,Q) = 0
RG(Lf,|> = 0

Ra(42) =3¢ &

RGU,3)=~-%E¢ —N[{-Q{-a.czz}

RG("{,L() = 0

2 42 / 14_362+Q:+Ez}
RG (116) = 4~ #B-a# =M gl h :

n
o

RG (4,7)
RG(L/I%) = _é(@(_{%?.> + Nl{é—(galqz-fblbz)}

RG (1,9) = N {L(ab+ab)}
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Ro(5,1) = M f (3005 )~ (b +a:b)]
RG(S,2) = 0
RG(5,3) =0

RG(5,4) = Nr{zz—(3a,a3+b,b3)—q~’(a,b, +azbz)}
RG(s,5)=0 |
RG(5,6)=0

Rc(s5,7) = B¢ +NI{;,"(3a,a2+‘b;bz);l

- RG(s5,8) =0 | |

Re(6,1) = N { 4(auby+ash)— & (aa,+3b0)}

RG (§,2) = o

RG(6,3) = 0 -

Qa6 ) = 1= B pg e A (oh @) = (65 28 = (@3]
RG (6,5) = o

RG ((,,6):0
RG (61) = N {+(abr b,}}
RG (6;%): (o]
RG(6,9) =0
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RG(7,1') = 0

Ra(7,2) = ~L +L(B+ ¢ +67) + N {I‘-G(q.%bfht(m;ﬂi\, +{a(3a§+ﬁe_§)}
RG(7,3) =0

RG(T,)4)="°

RG(T5) =~4(6.-8¢) +Nl{9Lb,bz}

Ra(7,6) = ©

RG(‘/,'I) = 0

RG(7:8) = ~4(%-R&) + M { L hb]

RG (1,9) = o

|

RG(5,1) = -1 +4( Lg%+ &'+ &%) #N{E(3a]+E) L (3005 L (3345
RG (§,2) = ©

RG (§,3) =0 |

Ra (8,4) = N {£(3aa, +b,b2)}
RG (8,5)=0

RG(8,6) =9

RG (5,7) = N{L(zaqay+b, bs)}
RG (%,9) = © |

RG (g;q): (@]
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RG(4,1) = N {4 (q b+ b +ah)}
RG(49,2) =0

RG(9,3)=0

RG(4,4) = N {L(ab, +ab)}
RG (9,5) =0

RG (9,6) =o

RG (‘1,‘7) = Nl{z,"(albs + stl)}

RG (9,8) = o

RG (9,9)y=0°

RGO(t1) =o0

RGo(2) = o

RaO(3) =0 -
RGo(y) =0©

REO(S)=1—$(¢+& )~ N (32 +5) *%‘(3“32”’_:)}
RGO (6) = — N, {;’(azbz+ sts)}

RGO (1)

N

O
RGO(s) = ~p 8 — N {£(30,8 + b b)]

2

RGO (9) = — Ny £(a.b, - qsb)}

1
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Gravity terms for Parametric Resonance

RG(1,1) = Np{£(asb.+ ,bs) = -y~ g‘—(a:—bi)}

RG(,2) = o

RG(1,3)= 0

RG(LY) = NI{;:-(azbz-rasz + —L”—(a,az—b,bz)}
RG(1,5)="0

RG(,6)=0

RG(1,7)= N[{ql(aab‘ +a, b, +‘1353)}
RG(1;§)= 0

RG (19)=0

RG(2,1)=0

t 2, 42 2
RG(22)= ~1 +&(E+ ") +n {fat + ol

RG(23)= 7RG + N {Laas}
o

RG(,4)=

RG(25)= 58¢

RG (2/6) = L@, + NI{QLQIQ_,,}

RG (2,7) =

RG(2,8)=0 -

RG (2,9)= -4 +4 (B+ g +82) + N {F(@ +b)+{ (az+é)+2q(3a +63)}

RG(3,1) =0

RG(3)2) = L EQ + N {L 4b)
RG(3:3)-3’-%(5+¢2) CETEETY
RG(34)=0 .

z/r<9‘2)+NI{,;(Qmez + L@l e sty & (Qs+3bz)}

N

RG(B,Q): Q.
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RG{4,1) = Nz{ ;:-(Q,bs +Q3b,) + zlj(aaaz‘ ble)}
RG(4,2) =0
RG(LI,S):O

RG(4,4)= N {‘f‘;(q(bs"qs":) + g"(c"z‘;’f) + —é—(ai—b:)}

RG (4,5)=0

RG(4,6)=0

RG (4,7) = Nz{ﬁ(&«bﬁazb«)}

RG (4,8)=o0 '

RG (4,9)=0

RG(S,I)=o

RG(5,2)= £ B¢

RG(5,3)= 4 ¢@ + N{ L(aa+ hb)}
RG (5,4) = 0

k6 (5,5)= — + (B N {hal+ 5G]
RG (5,6)= —{(ﬁ—g@c) +N[{{l—q‘q3}
RG(57)=0

RG (5,8)=09

ka (5;9)=-%(0%~E43)+NI{1"-Q((12} o

RG(6,1)=0

RG (612) = L6, + N { £ (2:s + b b))}
RG(6,3)= — L B

RG (6,4)=0

RG(6,5)=—4(¢-84)+nN{L bb]

€6 (66)= 48+ &) -n {14+ 4E]
RG (6,1) =0 _

RS (6,5)= = $(@-F) + N {f bhf
Rcﬂ(e,qi).z 0
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RG (71’) = NI{T:‘(Q'bl+a2b2 + a363)}

RG(7,2)=0

RG (73)=0

RG(T:4)= N {&(ab, +azb,)7;
RG (1:5)=0 |
RG(7.6) =0

RG(7,7) = /\JI{"T(cz,b3 +asl>,)}
RG (T 8)=0

RG (7,9) =0

RG(8,1) =0

RG (8,2) =0

26(9,3)=_12_4,%(5%43%@3)+N1{ﬁ,(3a3+b7)+§—(ai+b§>+-é—(<2§+b§)}
RG (8,4)=0

RG (§,5)=0

RG (8,6) = =~ $(0-ER) + N {+ a9, }

RG (§,7)=0©

RG (%,8)=0

RG (‘hﬂ:—%(gﬁg-g@)wvl{q’a,%} ~

RG(4,1) =

RG(%Z))=" Lo (B glr @)+ N { f(aP438) + (al+ By + (3 4B )]
RG(9,3) =0

RG (G,4)=0

RG (,5)= —4 (6= Bg) + N {bbi}

RG (9,6)=0 |

RG (4,7)=0°

RG (9.:8) = —£(- &) + Nt hbl

RG(9,9)=o0
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RGO(1) =©°
RGO(2) =0
RGO(3)=29
RGO(4) = ~Np{ & (b, a:b)}
RGO(s)=0
RGO(6)=0
RGO (1) = _Nt{ﬁ(azbﬁ@bz)}
RGo (8)=0

RGO (4)=29
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Aerodynamic contribution terms

RA(1,1) = -(6 + PO f +4z‘ Qs) - NA{.;.(a,asfb,bQ fa +(aa,+ b b)F, 4%(qlbz_qlbl);:23
v (@b - Qb ) Bo v & (a3h -a,b) R, &7 @@y + bby) F, s + %' (R +b bR,
+ L (ks b ) s )

RA(I,2) = 0

RA(1,3)= 0

RA(L4) == N{ 1(2,8 +hB) 6 + (0 bk )R+ (Wb =Gb) s+ F(ab-ab)E,
2 (0h-ab) Ry + (205 + bb) R, + oc(ayb—a b)) Fo +(q,a,+ bb) FZ,S}

RA(',S):O

RA(1,6)=0

RACD= = (5 s ¢ 2 @) - {400 b + 48 -8,
(% +B) R 20k 4 B2 ) F, + w (@b~ Qsh) Ry + oe (%by~3b) g
* %C(QBbl —Cl,b3)F32 + %0 (Q3b2—a21>3 ) F:;z}

RA(US)—_—O
RA('I;Q)ZO
RA(2,1) =0
R/\(zz)--(F+z,e +¢E+O.E + PO R c,o+<,1>,,5) NA{ L(30,a5 +BbY R + L5 E

xbb3€5+#“(qza3"'3zb3)q 9(3‘22’*1;)515}
2
RA(2)3) = ec(fis + § g & firt B Ryt BRy + € has + &R )+NA{"‘QQ s+ E(4+5)E,
b (3G + ) B+ (38 + 8 )6 - £ (G )Ry - § 4%, Ry —F(4 - 3>32}
RA(2,4) =0
- !
6357 J“’C‘%bﬁm*‘u‘z qs} z .
T 2 oc
RH(Z’G) = o<(Fiy +£ fiy +&cF, qtBQRy+ B zs"‘#ﬁ 24 +G FSO)“NH{QE(Q'—EIZ)FB MR AR
2 ) 2 2
~F U, Gy - £ (304 §) Fy- &0 (a7 + B ) Ry — (30 + 1) Yo + (B8 )5, + 5 4% 6o
o
s 2
‘(6+20<‘%+€F7+‘72F§+€¢z57+éz%+‘2251+3<93F/z)—%{fb'bz"c?s‘ {337+ b Yo
~— 2,.2 2 2
F GG Y+ 2+ b )y + E @by + %) + &A@ ) + &(%- b )E,— X bk, !—;q}

RA(2,7)
RA(2,8)

i

RA(2,9) = oc(Fs +Bhet @b +& R2 +£E +i%0¢f-3,2+<fz&53+q'32@q)—/\/,q{£;-‘a.q3 By

2 2
PR 0y Ry (320 b, - b @ 85 Fr 5 0,05y~ & (36} + B Yag ]
]
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RA(3, \) =0

2A(3’2)=-K(E-’*'*q)cﬁé:*@c‘:n*ﬁq’c‘:zz*B:qu""é‘:zs"gz‘:%)—N {gzc‘ b b, F +Ci(a.2+'ol.)"—zu
v (3 43E) G, + (A 43E )6+ E(G -, - Ehbf + =@ -8,

RA(3,3) = —(R +2BFR+QF +0.F + 0GR +2£0F +E Fg)— NA{ L(2,0,+3b,b,)F +46,0,F,
+ %_m,as G+ %_2(3C(za3+ b4, - “‘(Qz +38) qs}

RA(3,4)=

RA(3,5)= - &(Fy+ £ Fig + 6 Fiq +82 By + £ Fag + ¥ Fag +&’%)—NA{9‘—(Q«’-1>*)F _%bb R
*gbby g s £ (@3t g (ahe B) g+ (@4 28)B00 §E-E )G, - g 1b By

RA(3.6)= —(RRE+ER+ 0K+ BOAK +2¢4
2
P E QG Faasfy - 9a, ]
RA(3'8)=""C(55+:3F20+¢€;+ e F22 *@d’ 3.4-5@ iy + 46 33'“1> 39)"”/\€ “b‘ 3 Fae
-~ gbb R, +90(2,Q, + 3bib ) Fy + & biby Fyp + 6B, 33+x(01+351)F3q}
RAG, M) = ~(§ + 285+ Bh+ $h +£SF + £+ €F, + 2875 - Mfd auf (el 38)F,

2
+£(Q§+3b§)€, +—5-(a32*b;)Ez—%‘(“lbﬁazb.)f-;,_%Z(a,’_bf)gé_%g(q bz £ - % ,_;q}

RU TR O

RA(41) = G, + £ 6,Gq + NA{é(azczs +b6)Gq + (0,05 + bb;)Gio+ E (46— 8zb,) Gz + (b~ A1) Gy,
t 5% (Baby - 0b)6y + L (a4 b,b3)636+Jz.x’(azq3+bzt§‘)eqq}
RA(Y4,2) = @
RA(4,3) =
RA(u,u) Nn{ (%,a3+ bb)Gq + (283 + b, b)) Gy + oc(a,bz..alb,_) Gys + & (Q:b,-Q b,) Gaq
—~
% (b~ b) Gy + 2 (005 + b b) Gy + K'(aG3 + b, bs)Gqs}
RR(Q,S): o .
RR (l‘l'é): o

2
RH(L“’,) = Gz+ EzG'O * sz" + 62'-2612 + NA{%(Q‘Qz + b‘ bz)Gq + %(le*‘ blz ) Gto "'";'(sz"'b )Gu
#3454 B )Gy # oo(ubym b Gag + oe(Taby= A3h,) Gao* F (0 -0)Gy ¢ F(036-015)G |

RH(‘I,%) = 0

RA ('-{,Q): 0
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RR(S:‘) =0 .
RA(S,2) = G +2£ Gy + RGy + 6. Gy + D6 Gg +BE Gy + NA{TIT(?’QzQs +5,5,)Gq + 3bby G

+foctbib, Gy + 4 o0y + 3b,5)Guy = £ b,b, Gys }
RA(S,3) = —o¢(Giz + PG +0.Giy + B Gz + £ Cry *‘Eszs"@chza*EG‘u)"NA{%a A, Gas
S (@14 B YGry + B (3014 ) Gog +E (3054 b) G~ E(}-H ) Gy~ % 0,2, Giag
+22(Q3 - b2)Gsy )
RA(S,4) = ©
RA (5,5)= ARGy + B G +0.Gg +BOGq + 240 Gy, + M{tbbyGq + 7 hb Gy + <*b b, Gy,
"o (cz,a3 +3b,6)Gyy — %C_ ' 3qu}

RA(5:6) = = oc(Gpy +£Grg + Q@ Cra + £P Gag + 7 Gag + 8 Gog + 02 Gy + MNa { £(a2-b ) G
+ X8 G- K Qlesz_ = (3q] *b/) g ~ f"£(<2§+b: ) C’lz?‘%’(“f*@)gso
“ % (a3 - 5}) Gy )
RA(5,7) =0
RA(5,8) = G +20,Gs+B Gy + PGy + BPGq + B Cpo + G, + 362Gy +Naf & bib,Ga + (32145 )Guo
P3G )G, + (9 B )Gy + 20 (G b +2,b,) Gy + (0 ) Gag + & (a,—b YGaq
= "biby G4z + Guyy)

RA(SA) = —00(Gis + B Qoo+ Ggy + Q. Gy tBRG3y #RG G32+ 3 G33> +NA{%a'a3C726
+4a,0,6,, - & (32,2, +bib,) Gy~ F Q03 G32 ~ $0%G Ga3}

RA(e) =0 2 1 N{xbbe
RA(GZ)—“(G:3+¢G;g+®Gm*'ﬁﬁbst*ECzq ¢ Gas + & Gze"ﬁG‘“)"' A2 172 T23

1,2
+ 00 (bl ) Gay + &2 (0] + 35 )Gys + (45 * 38 ) G+ (81 -4)G,, "—55'2%*%(“3-%)@32}
L‘
RA(63) = G +20 Gy + Q&g +0Gn + RO Gq + RBQ Gio +Na {5 (%2 +3b,b,)Gq+ 322 Gro
2 .
+ Kf’.alas 636 + %_2(3Q2Q3 + bzb_a) Gl,(q_%‘ Qza3G‘l3}

RA(6:4) =0
2 2 2
RR(GJS) = X(GIL( _"PGIS +& qu +5£G27 +32G28 +?1G2q+QGgo)+%{%(a'—b’ )623
2
- xbh zs+_bb<;2,,+3_c(a,‘+3b,‘)ezg +§(a§+1>:)62¢, + g8 (a3 +38,) 65
+ (e -b’ )63}
Rn(é,é) - 2<PGL‘ + B G, +0.Gg + 86, Gq +2<;b@ Gy, +NA{-LQQ36q +-LQ2Q3GH

2
+ gci_ 2% G3q+ %— (3a,a5 + b b3)Gy3 - & Q:a3qu}

]
)

RA (6,77)
RA (6,8) = oC(Gist BGap + P Gay +Q Gy +R Gy +BG, Gsz*ﬁé@cGBz)*N”{ EbbGé. g'(ézb3G3o

+;,S(aa;+3bb)a3,+o< b.b, esz+<;c'bG33} .
. 4
RA (6,9) = 61+20<Gs+/§<57 + GGy tBP Gg +B G+ LGy + 38 Glz-l»Ng{ 49, G, 4+ (A + 36 YGro
4;’(«,&36‘)5“4%((1;”,1)Glz-g(a.blmzs,)ey %.(a. by )G3— < (a3~ b‘)au—.“a al(qu-*Gw)}
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RA(T31)= =Go =D& (F + Gg) = F(F +Gy) = BGs~ G2) = QGg —Maf 4 (0,25 +b,b,)(F+G5)
+(0Q3 + b by )G + (A2 + b b)) (A +Ge-£)+ (@ +BY(R+6) +2(aF+b1) (63~ Go)
+1(03 4 b} Yas + & (@uby=Q3b,)Gyg + F (Qiby=03b,) Gn + ¢ (b= C bJG.g + 2% (G,b,— 035, Gig
+ % (@3b,~ Q,0,)(Fo 4 Gy ) + (@3 b~ X163) Gao * x' (@G, +bib,) Gay + a8y +b,b)Gs

4 «*(ag + by ) Gag + XX(Q5 +b; )Gy, 4 &*(Q Q5 + byby) Gy * < (4t bf)c,%}

RA(7,2) = o
RA(7/3):O
2 V4
RA(T)Y4)=~Fh ~92(5/-2&1)—<9¢ —E(R+6-E ._NA{ (4, G + bby) (Fy +Gg)+(005+b b)),
Fr(@ b (ReG-f) +%(az‘+bi>(s——:)+;'(a3+b; Fo + (010 bb,)(5 46)
v oo (@b~ b )G + F (@b~ G5h) 6y + % (@b- a,b) Ry + F (@B - Asb )R
+ g_C(Q3l>l ~Ubs) (Fro+ G*') + ¢ (2 by~ @, b5) Rt zzc‘z(alqz”%bz) Ry *‘-Dz-cz(ozas“' b,by) Fas
k3
4%‘(@*%)55}
RH(?,S) =0

RA(7,6) = o©
RA(17T) ==B Gy — ' =My { £(a% + bb)(F +Gg)4L(a,+b’)e7+L(az+b‘)Fg+(aa +hbye

+(203 +biby) Gg +c (b~ Gub ) By + L (%bi- 0b)G g+ 2 (55 0b )62 F (G5~ ¢,b,) Ez}
RA(1E) =o |
RA(79)=o0 4 .

RA(g) =0 ,
RA(2,2)=—Go—28 G ~ R F + QG —GQ(F+Gg) —238.67 —2 ¢ (R + G~L)-¢ (R + Gy)

~3f°(G3 -G )= 6l Gs ""NA{ 1 (303 + b b3)(F 4+ Gg) *'EblbsG'7+"£blbz(p34Gs—§S_1)

ST ARG ¢ (W 86 o) (3 45 )65+ hE G,

+ oc_q’(ai_b:)gq+%2(ag-+b,z)c.%+%s’(azas+bzbs)s +& (az+3b*)63g+ (a3+313)6w gcb‘bac,“}
RA(8,3) = OC(QF;S*%GB*@‘?QG:G*‘EZEG*?EQ frt BOG7 +B G‘u) —Na {"‘—z-aaQ;G/‘

- %S(a,z-rbf)GL,,* %‘-(3‘1;'*?9:)6‘-%,3‘ Qa3 Fiy ~ £ 4,23 Gy *f—(“z‘bzz) fig

2 2 .
+ %alqulg + % QZQS G'lq+f_(a3 —b3)621+ %‘ Qla3620}

RA(8,4) =0

RA (8,5)=~F — BFR —6.KE—R6 (F+Gg)—296&Fs "EY%*’GG—%) "‘345:( F,:— %—)"8‘1 fs
TEER(RAG) ~Na{{ BBy (R4 Gs) + £ bib,f + f(za +BI(R + G- &)
PREG (R -5+ f (34 B £ RR (RGN (@-H) Gy b R
v Ehb £ o +eial B )Fy— & bibyGag ™ £ob, Gss )

RA(S,6) = oc(BG+ B Fy + B by +B Gig + L8 Fg +£6.6a) — %{‘X(Q' b)Y G+ £ a, Ry

+Ea,a;f; ~5a,q, fg - ac(sa,w )Gig - £ %% g - Ex 2% Qe + TG G,

+2(2-b)E,
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RH(%','?) =0

RA,S) = ~[BG + R &+ BO(F +Gg)+ £ 6+ h +24 & K +2£6, cs} Nad & bib, (Fp+Gs)
* (3074 b )Gyt G (30746, )R + 4 b1b3 Ebb,Gs + & (bt 05 (R4 Gay)
2 2
+ %(_ (Qi_b:)pas_ —";oc b b Gis - b.bquo 4 (a.-bf)qu}

RA(e,9) = K{QG'S A AR YL (Fo +Gay) *E'@c Qz2 + B Gao+ ' RO Fiz} "N/\{ N'q(alaz'}’:é)ﬁ'l

+%C_(a,2-b,’)(;,7 + E(a-b YRy + Z (2~ bib) Gig = G (2% + bib ) (Fg +Ga)

- 2
—%alq3 G;z* %(3(1?" b(z)Gzo_ %(3Q;'\-bl)a|— %C_OZQS FZQ}

RA(R,\V)Y=0

RA()= ~x (R Ry + BGis +BP Gip + B B'Gy + ¢ R+ 0 57*P@CGW)“‘NA{555 Giye
+°C(Q,+b)G‘“+£§(a,+3b2)66+3ocbb3, +0<bb3G,.,4"<(a’ b1) R ~% bbGig

‘%b:bsGlQ*%(as B) Gz~ § bib, G-zo}

RA(9,3) =~ {Go “2BG + PR +0.G +RO(F+Gg) +2B 0 Gy +2B R (R + Gy~ %)443’(@&,)

*3E (G Go) + 'G5 ] — N { (0 388 (R4 Gg) +50,23 Gy 5% (RHGe~ )
SR+ 3N (B 4Gy) + 3 (474 b )(Gs - Go) + £ (%14 35 )Gs + Lo’ 4Gy

z 24 -6 )Ry + “(a,-u’: )G%-*"C (32,25 + b b, 3635“’-(34 + b \ng*“(suﬁb)qu
+ o
7

RA(HY) = o P
RA(4)S) = —ox(BCy PRy, + B Fe +BGrg+PQ Ry +BQ G,9>__NA{%_(Q‘z_bz)G%_%b'BZEG
- ‘bbs 7 + g‘{blbaﬁg+%(Q|+3bl36|9+%bib3':lq +%0(.b|b36‘q x bbs 21
+5(03—b’)p }
RA(‘Lé)—~{F+ BR+QF +BO(F+Gg) +296. K + (F+G6—Fo)+3¢(l-‘_ro)+@, = +BB(R+6Y)
_.NA{L' |Q3(F1+G%) +';IEQ2Q3 I~8 +—L'1-(Q|+3bf <F3+G6~§>+_H_(Q,_+b§)(l~q-— E;e)
3
* Jﬁ(q; +3B,)6+ £aa, (] *GH)“%Z(Q?-"T Yazy+ FXAQ, Fag* L «’2,Q, Ryg
+ -&x‘(a§+ b}y Fsé - Loca,0;Gsg ~ £ 4%, Gzg }
RAQ,)7) =
2
Qa(qs)__‘x{ Gis +RFs +BP (foot Ga) +B O Gz +B°Go0 +&Ry + R 63}
— M { X @a, - b)), +E(@F8) Gy + (@) g + G (% -biB) Gie
*%(Q:Q2+3b,g)(6o+G,2,)+_g£b,b3Gu+%(a,2+3512)5 %(a2+3b) +Q bzb 62}
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RA(1,9) = ~{ B + & r BR(F4Gs) +H G+ H'R + 296§ +20C G} —Ma{d il (F+Gs)

* "’T(q'2+3b’z)G7 * Itl' (a; + b))k +10,a3F +£a,a5 Gs - %(albﬁazbl}("‘-:zo*Gat)

2 2 2 2 2
"%(- (azz"bz ) F.%S“ %zala.? Gss —%C- a,az Gyo —%— (Q'z“b: )GQZ}

RAO(D) == {fos B + R + 0GB R +p0 KA &R - M{ L(aT+bDR,
L3 +b’)r + Ja-(a.az:cb.bl) F+ L (aasz+ b.bs)F,,J,Ji(olaﬁi;bs)%

+ L@ bR+ -
+ %C(qlbz‘ szt)ﬁg + %(le3—<13b.) R+ & (Ckzbl -q\b,23 Fl.% +,%‘(sz3 —C13b2)‘:|q

+ % (gby - by Y+ 5 (Agby-3bs) By + &3(, 0y +biby) Ry + % (03 +hibs) Fas
G b})gg'}

RAO(2) =0

RAO(3) =0

RAO(Y)= (o + %Gy + £, + QG5 + B Go# A G+ RQGs ) +Ma h(ae b7 ) &3 < 4a14E)G,
+ 1035+ b2 )G + L(a,ay + b, b )Gy +L(@as+b, b)) Gy + $(4 25+ 4 5,)Gg +%<(a.!;-a%b.)614
+%’(Q.63_a31>,)6,q + X (@b -, b )G5 + %(azbs- a3 b,)Gq + X (%3b-aiby) Gz
+ZE(ayb-a, b, )Gy +%2(a,qz +bb,)Gsy +g;2(;zlq3 +hbb)G3s +%"(qzz+ B ) Gasg
f-%z(a§ + b;) Gyp + %’(a,% +!>,b3)6‘,2 4-%_2(62'2 + 612)6%}

RRO (8) =0

RAO(6)=0 -

RAO(T) = ~( BG, BRh+BOG+26.H)-N, {;’%(le"‘blz)Gl +—§(a,qz+l>,bz)ﬁ'4--_%(%03415;53)511
R+ % (b~ azb,) F,'3+%(02 b -G b)) Gy + Z(azb,-aib,) Gy
R
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Periodic aerodynamic forces terms for forced os¢cillations

RV(1,1)=0 .
RV(12) = - 3 (R3+ R+ 6.Ry +B PR+ B Ry + ‘/22’215 + 8 Rz(,)— Na :;?{ (a,a,+2b,b,)R;3

3 (@74 B Y Ray + (A2 + 362 Ryg + (@1 + 362 YRyy (B Req + 26,1, Rap b, Ry £ )]
RV(4,3) = —L4(R + 28R, + PR +OR, +4QRq+2£6, Rio) =M %{(0103 +3b,b,)Rq

(20,0, 4 34,8, ]
RV(i,4) =0
RV (1,5) =% (R, +BRig+6R g+ B¢ Rz;r*észé*‘Eszé*Gf'Rzo)*NA L{~b/Ro3=2bb, Res

(@, +2 b b )Ry, + (Al + 35 YRyg + (@) + B YRyq + (a2 + 36, YRa - b,g&r'g"sz%

RV (16) =~ (2R, + £ R+ 6 Ry + £ O Ry + DR = M £ {,0;Re +(26a85+ 30 5)R, }
RV (1,7) =0 '

Rv (¢ 5): —g('?:s tBRot @Ry + 0.Rp + E(BRBI +5@cg32+¢20,—_k33)—/\",\ 'é'{_zblbs R26
- 2bzb3R3° +(Q'C'lz+ 3b,b2)R3' +~(Q,Q3 +2blb3)R3z + <Q1Q3+ 2l>2b3)g33}

Rv (1,a) ;—é (R, +268.Rs +BRy+ PRy + B¢ Rq +§2R,°+¢22R“+ 392 .Q,Z)~NA;SL{Q£Q2’?¢,
+ G Ry + a3 Ry +3(a§+b;)i€,2}

RV(2,1) = = Ny & {(a1b3+ a3b, )R, + 2(Qib, +Q3b) Re + (2@, ~ b, b)) (Raz+ 2 Ry)
+2(al- b7 YRy + (0] —b YR + (42@5~ bzbs)'?st + (qg_b;);zn}

RV (2,2) =o

RV(2,3)=o0

RV (2:4) = — N, ﬁ{(a.b;abb,)rec,+2(sz3+a3b2)re,,+(af— B ) Ryz + (2Qa—b,b,) (2R, 5+ Ryy)
PS5 ) Ryq + (8,45~ b B) Ry, + (@G - B )Rys b

RV (205):‘9

RV(z,é):: (o]

RV(2,7) = —N, ﬁ{(q,{%mzb‘),eq +20,b R+ 2 b R +6a35, R, + 2(6,G3—b b)) Ry
+2(Q8;—b, b, ) Rao + (2,23~ B b, ) Ry, + (2285~ b b,) R33}

RV(2,8)=o0 .

RV(Z,q.)‘z (o]

161l



RV(3,1) = = (Ri+ £ 0. Rq + BOR)~Ma {(alqi *3b.5)Re + 2(a@5+ 3b,by) Ry *Gab-ub)R,,
+4ab, Ry +2q,b, Req + 2 (3azb,—a,bz)fe2%4(3a3bz—azb3) Ray+2a3b, R,

RV(3,2) =0

Rv(3,3)= o

RV (3,4)= ~hQR, — M q’{(a,q3 +3b,b )Ry +2(a,a, + 3b By )Ry +2Qub, Ry #2(20,5-0:0)R,,
+(3a,b —q,bz)ﬁ27 + 44, b, Ry +(3a3b,—q,b3) Rz + 2a3b3R33}

RV(3,5) =0

RV(3,6) =0 _

RV(3,7)= < (Ry+ chk,z)~ M -qL {(Q,Qz+3b, b,) f?q + (a4 :‘31321)‘240‘.F (Q;: +3bzz)Ru
+3(a5+ 35 VR, +2(3Q,b,—a,b,) Rag + 2(3:3b, ~ b, )Ryo + (305, @bs) Ry,
+ (3a,b, — sz3)g33} '

RV(3,8)=o
Rv(3,9)=0
RV(?,I) = 0

RV(7,2) = —ﬁ-(ES:g"*E‘-ES;é+E@:S,7+‘EOCP,7)‘“ Ng é‘{(‘?ﬂz** 2b,b,) Sy + (@iGs+ 2bib) Sy,
+ (%0, *34%)@7"2[’:[’2 S(?‘bzba (Siq + R, +Sy) = 2byb; S50~ b; 522}

RU(T3) = <2 {5 4265 105,43 (53~ 2) r 289 (R~ o +56)+ € (Sy + Re)+&Ss
+ 256& S7 + %’0( ('e7+58)} - NA—% {3(61;24:/6,2')(53— §6£> +(2Q‘QZ+ 3b, b2>(Q3+Sg-.Rz_°)
+ 455, + (2445 4.35,b,)S, + (%05 +3b,by) (Ry +5) + @F(Sy +Re )]
RV(T,4) =0
RV(?, S) = —-5—(55/9 + 9?/?14, + Ezsls' *E@c Slq ““E@c R:q)“ Nﬁ —é—{—»b,zslé—b,bst "‘(“‘1*‘367)%8
+(4,a5 + 35, bs)Sq + (@205 +2b,b) R, —bb, (R +53) —b; Rzz}
RV(7,6) = —${ R+ R, + gk, +Sg -5;;,) *BR(Sy+R) +38 (R ~ Re) + 6 Rs +,§Q(R7+Sg)}
~M ¢ {alz(’\’s‘ §9 +5) + (2Q,Q,_+3b,b2)(5q+kg) + 3(Q§_+b§)(@4— _§Q) +Q§R5

-+ Q!Q3 (R—,-‘-Ss)
RV(7/7) = 0 }

2
Rv{7, %) = "'2"'{5 st + Ezszo + /?-42 (Rao +S, +82 OLSJZ‘*'(EQ )?22}— Na %{_5,5,7—131%(/?,#5‘,4)
R, 382) 5, + (4, @+ 3byby ) (Ryo + S_.“) + (283 + 2 b;b3) S22 +(Q2q3+2bzb3)’?22—b: R:‘i}_
RV(7/q) =- -:ll-{é S2 t %-,Rz.‘*‘sc@c_ss +RGRs+ 515\7 +§¢C(R7+S8)} ~ M é—{aal b b3)55
(28,25 + 3, b, )R, +07Sq + Qi (Ry + 53)}
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RU(E,1) = = M { 20b (55= 52 bash, (64 + R) + §aab,Sg +4 (@b, vab)(Rs= e 4+ 50)
+ (@by +0,0) S+ & (Q:by + @B )(Ry + Sg) + 1(2@,= b, b) (S + 2 S.g)a-(q;_\g)__z_,n
+I,"(Q;O~3 —bub3)(5,7 +2S20 1""{!\,&203"’ bzbs)(siq ¥ 52! + Rzo)}

RV (%,2) = 0
Rv(g,3)= 0 ‘
RV(8,u4)= - NA{ +a.b (R, —gg +%) +%a,bz(Rf,_§g) +Q3b, Rg + 4 (Q/by+ a,0,)(S,+ Ry

+ 75- (2, b+ Q3b)(R, + Sg) + Lf (a’- b,’) S + ql-(a,a3 fb,b_g)(Rn 4+ Ryo + SZQ
+ 4 (2,05~ b b)) Rg Py a5 -b)Raa b '
Rv(8,5) =©
Rv(g6) =0
RV(8,7) =~ NA{EzLQ'b:57 + 4(ab,+Q3b) Sg H(Qabyt B30,)Rs + £(2b, #0251 ) (R +Sg)
+ L (0, b b)Y (R +$19) *{ @B} R q @ bbs)Szz + § (4370203 ) Raa

*#(Q.z-b.z)sn}
QV(‘G—,Q) =0

RV(A1) = —{So +B7(5;— ) +AS (Ry— B +50) +ER S, + RO (Ry+55)} = Nad {3(a+36)(5- )
+2(Q/a, +3b b, )(Ry— Lo +S¢) + (@2 + 38 )(Sy + Re) + (a5 + 25} ) S+ 2003+ 2B b,)S,
+ (2, Q5 + 36,5, )(Ry + Sg) + (326~ Quby )5+ (3b5 @3b)S;q + 2(30:b,-%by) Sig
+(3 azba—assbz)s,q +2(3Gzb, —a|b3>§20+ (3Q3b2—621}>3)(‘220 +53))+2a3b; Szz}
Rv(9,2) =0 -
RV(4,3) =0 2 o S rn A R + 202,84 26,5 YA
RV(9,4) = —-{Ro“' é’q?(s‘!*'&)*‘ff(&‘é—q)} ~—My {(Ql +357)(Rs Y +$6> 2(@,Q,+ 306505
+3(Q 35 )Ry~ Ba) +(a3 + 357 )Rs +(Q, 03+ 3biby ) (R +Sg) + 24 by Sig + 3(aby-a3b) R,
+ (380:b,~ 83b,)Riq + (33b ~Ubs)(Rao + Szy) + 2%sby Rzz_lf
RV(9,5) =0 |
RV (9:6) =0

RV(A\T)= — (86, Ss +¢4, Rs)— Nn.%{z(a,% +3b,b,)S, +2 (%8s +3b,b;)Rg +(af+3b,’)s7
4 (0,05 + 3bb,)(Ry + S5) +2a b, Sy + (3,6, Q,b)R,y +(322b Qb)) Siq+3%b,Ra
+(3Qzh — a;b3)Syy + (3a3h, - 25b,) Rzz}

RV(9,8) =0

Rv (‘?,‘I): 0
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RVO(1) =0

/
RVO(2) = = Ny q{za,b, R3 +2Q,b, R+ 2a,b3 Rs + (@ b, + 2,b)R, & (a,by + asb,) Ry
+ (Raby + Q3by) Ry + (2@, —bb)(Rig + Rig) + (4 Qs=5i b3) (R4 + Rap) +(a3~ b5 )Ry
+(0,8,- b, b)Y (Raq + Ry} |

RVO(3) = —(Rot B'Ry+ %Ry + 0 Rs ¥ BL R, + B4R, +hORg) — Nu L { (a1 4361 IR,
+ (a3 +3b:)Rq +(a; + 35; YRs +(Q.Cl2+3b,b,_)(2é + (a3 + 3b.b3)R7 +(30b,-a,b)R,
+ <3Q1b3“‘asbc)R|7 “(3 azbl"a{bz‘)R;g + (3azb3 ~Q3bz>f2‘q +(3a3b|”a\b3)R20+2Q3§R2z

*+ (3a3b,-&,b; )Ry, + (2,4
RVO() =0 22 > 3 ) Rat (( s+3bbIRg ]

RVO(S)= Ny Lfza.b S5 + 28,5, Sy + 2a5b,S¢ + (@b, + a2b) S, +(Aibs + 3 b)) Sq
- (azbz + a3ba) Sg + (@,a,~ b bz) (Sip+ Sig) + (a,@5 b 53)(5,7 + Szo)
+ (Q;"b;>322 + (QIQS"bzbzv(Sl‘? 4‘52‘)}

RVO(6)= So+ B Sy + ¢ Sy + O S, +B R S + BOS,+ RSy + NAJL;{(Q,Z+36,2>SS +(@3+35')Sy
+(@3 4355 )56 + (2,9, + 3bib,)S, 4 (@, Q5 + 3b,by) S 400,43 b)Sg+ak,-05)s, +(30, b-a,5)S,,
(30,0~ b, ) S + (3Q2by,— A5h,)Siq + (383 B-a,b,) S 04 (3 a3b2—azb3)sq,+2a3b3szz}

RvO(7)= 0

RvO(s) = — N, —L"- {20,5, S + (b, + a3h)S, +(@aby +a3b)R, & (@-b7)S;3 + (q,qz-b\bz)sm
+(q,a, —b,ha)S,s + (Q;-[):)QW}

RVO ()= ~(E'S +BE&S, + éa;ez)~ Nyt {(ahsbf)s, + (@,ay + 3b,b,)S, + (2,23+35,b)R;
+2a,5S, +(3a.b —a,b))s,, + (3056,— by )S,c £32 b, f?,q}

Note:

RV(i,j) for i and j varying from 4 to 6 can be obtained from
RV (i-3, j-3) by replacing R with -Si in the expressions
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Periodic aerodynamic forces terms for Parametric Resonance

RV(1,1) =~ NA{- ‘;(alas—bzbs)kq - t{a,a;-b,b)R, + —é(a, !?2+a2b,);213 +Lab Ry +4a,b, Ryn
L0k, +a3b)Reg + $(0aby+3b) Ry + & 2shy Rﬂ}

RV (1,2)=

rYV(1,3) =0 o

Rv (1) = —M{*;’(ths'bvb_ﬂ’?q - (43— b b)Ry + L @b Rz + & (@b 4+ 4 b )Rz
£ L(Qb,+ azbYReg + L0k Ry + 4 (b, +03b )Ry, + 403 Ryz )

o

RV (I,S) =0

Rrv (1,6)=20

R’V(’l7)= "/\,/q{" Z,"(alaz'-b,bz)ﬂ,———qi(&,z— b,z)epo“'é'(ai_ b:)'?u_%(Q;—'b;)Rlz-#'—',“(a'é‘a?'b')st
+ 4 (Ahy + Q3b, YRy, + (b + Qb )Ry, + §(2: b5 + asba)@s}

RV(“%): o
RV(I,Q):: o
RV(2,|) =0

RV (2,2)= ZR +BRy+R R +56. R +5 QR +EG R *NA{’%QZ%RQ}

RV (23) = ~ (R +§ Ry + O Ry +B  Raz +B7Royy+ E Ras +0:Roy )~ Nyt { 202 Ra
+02 Reyy + Q3 Res +03 st} ‘

RV(z,4) = o

RV(2,5)= QR +LBR +L0Rg +LBORy +POR, —

RV (2,6) = = L(Ry +B Rig + 8 Rig+ BB Rey + B Rag + F Rag+ &7 R3o) ~ Nah {212, Rey
+ 07 Ryg + 0} Raq + 45 Ryo }

RV(2,’I)= )

RV (218)= £(R+ 20 Rs+ LRy + LR, + B P Re +B R+ R, 43687 R,2)+NA-‘2—{Q,1R(°
+ 03 Ry + % R }

RV(29) = "2';("3'5 + B R+ P Ry O Ryy + B Ry + RO R3y + 26 R33)_N"{?{a'azg3l

+ Ga; Ry, + Q; Q4 Rsq
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RV(3,1)=0 '
Rv(3,2) = "',.';(Rlz + PRy + @<R17+E<ER23 +§_2R2,_’-t—qu7_5+®z Rz(,) —NA'}(‘{babsz&

+ b} Ry + b Ryg + by Ry}
RV(3,2) =~ 4(Ri+ 2885 + ¢ R.+ 0R; + 40 Rq + 88 Rio) —Na § &b, b, Ral

RV(3, l‘I):: (o]
RV (3,5)= —ﬁ(%ﬁ%g\w@c?m"‘fﬂ% R'ﬂ +B:R:zg *‘b‘: Raq+ ®2 R303"NA{T{b'bzR2’1

+ b Rag + b: Ryq + b; Rgo}
RV (3,6) = ~ 4 (2 Ry+ B R, + 6 Rg + RO Ry + 20 Ry + 3L R) ~Nad L B &,

RV (3,7) =0 .
RV(3, 3) = "Z',’( RS +ER_2°+ ‘E Rll + @< R12+E<EQ3‘+%®CR31+¢(@C Q33) “"NA'q{b‘sz.a(

+ byby &3, + byb, Ry,
RV(3)9) = - 'zL(Rz"z@cRS +BRq +4Z_Rs + ECP‘Rq *EthO"'quu)-NA{%(bfel”*big“)}

RV(7,1) = M, Z",‘{3(Q:2—baz)(53-5—6°—) +2(%0y-b,b)(Rs - %9 +Sé) + (a;-b; Y(Sy + Re)
+ (@l B2)S, + 2(,85~ b b,)Sq + (005 = by by )(Ry +55) = (04 b,#8b })(5,#25,5)

2
=3 (Qby + 3 5)(S,;+2536)-1(2by+ A3 b, )(Siq + Reg +52¢) - Q3b3522}

’ -~

RV(L 3) =0
RV (T)4) = Na +{(@~b])(Ry=Be +-5, ) + 2(a, G~ b, b,)(Sy+Re) +3(a-E)(Ry~ &)

+ (G -b) R + (4 Q3= b,b) (R, + Sg) ~ &b, Sy — 5 (ibz +A3b)(Ri7+Ra0 +Sa1)

-%(azby+ Q3 b, )Riq ~ A3 by ren}

RV(7,5) =0
Rv(1,6)=o0
RV(T7)= Ny L {z(q‘a3_b, by} Sg + 2(@2 8y~ b,b,) R + (a7 bf)s,,-:— (@2 —b,b)(Ry*Sg)

_a‘b, 5‘7 - '_-L{(al bz“‘ qlbl)(e,—] + S,q» _QZbR qu had 1i<q(b3"'q3bl)822

"_E'z{“zbs* 23b,) Rzz}
QV(7IS) =0
RV(7,9)=o0
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RVO(1) = Ny L{(a™- B )Ry +(a]'~ b )R, +(F~ 62 )Rs + (@122~ B B )R, + (2,25 bi b)) Ry
*(@;Q3 - b, b)) R — L(a b, + b )R~ 4(aby + Qb)) Ry ~ L(aib, +a;b)Rig
—£(@ab; + A3b, ) Riq — L (Qrby+ a3 ) Ry, ~ 4 (A2bs +a3b,)R,, —Q3b; R“}

RvO(2)=o

Rvo(3)=o

RVO(4) = — M zl,‘ {(Q,z—- be)ss + (2 b2)S, + (@5~ b2 )Ss + (@ -b b, ) Ss + (@@ —bb,)S7
t (4~ b, by)Sg — (@b, + A3b)) S, - £ (aiby+ Qab)) S T (@b +2:5)S g
= k(b + A58, S1q — L (aib, +83b)) Spo - L(@b; +25b, s, —A3b, S, , }

RVO(5)=0

Rvo(6)=o0

RVO(7) = ML {(a2-67)S + (& Q3-b b} S, + (285 ~ b, )R, ~L(a:b+ & by) Sy

~ &b, 53~ £(a,by+ 435,)5,5 - qzbz Ry } _

RvO(§) =o
Rvo(9)=o0
Note:

e

RV(i,j) for i and j varying from 4 to 6 can be obtained from

RV (i~3, j-3) by replacing R, with -5, in the expressiohs
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APPENDIX VITI

The elements of matrix AA for flapping-lagging-feathering
rotor consist of two separate parts

(a) contribution from inertia and stiffness, AI

(b) contribution from aerodynamic forces, AA
Thus

AI(i,3) + § AA(L,3)

_ . Y .
Aio = AIO(i) + B AAO (1)

The various elements are given below:

AI(11) =1+ &— &= 2B~ ¢ —n {(al+b])+ £a3 +E(1+ o) (@i + B+ 20c(@sh - 53)}
AI(L,2) = o

AI(,3)="0°

AT(h4)= 0. — N, {a.az—ocaig}

AI(1,5)= &)‘;(g—g)

AT(LE)= N {ab}

Ar(L,7)= N {aay +bb;]

RI(ng)= © '

A1 (1,2)= o0

AT(y1) = 2¢a,

AL(2)= (1o o™ Y1~ ) - 282 @2+ @M {107+ ) + L(a-o )2l a3+ 383)
*q(3a54 53y}

()= 2By e,

AI(:(IL();—O ,
QI(2|5): (sza‘

Hl(zléjz (o]

AI(2(7): a,_

AT(E)= d(i-ac) - 2p &= Ned £hby(1— )]
AT(2,9)= 2w’ 4 Ny { fac(3a%+ b7 ) + foa}l
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QI(3)i) = 20€ Qg

RI(B,?.):: 25\’..5-.)‘3\]"2 z'? +N‘{_0Cb‘b3}

2 2 = —‘—zb’;'\"Ll—ZoczO.z—k
R e G DR N ] L (@) ¥ (-3 %

+ (a3 + 38}
AI (3,‘-{)::0
—2
AI(3,6) = 2a, L6,
AT(3.7) =9 2
A1(38)=—2xp'~ N {-;-::C(Q,z+3b,z)-é-ocaz}

RAT(3,9) = (1-o")=2F8Q - N £(1-0) a,a5}

ar(u) = 0.~ g { 2,Q, — < azb3}

AI(y,2) =20

AL(4,3)=2 o
ary = & + e g $ (=@ ) = 2 o )(@h + )]
ﬁf("hs)= 42—-%

AT(4T) = Ny 205 + X 22 b}

RI(LHS) =0

RI(H;Q):'-O ~
pI(S,1) =©

AI(s,2)= 6-2R% + NI{—L';Q.QZ(ocz—S)}
AL (5:3)= 20c(B+0R) + N {25+ azb (3o~}
RI (SIL’)='- °

HI(S,']):.:O

2
pz(s8)= B (1+o") + 286~ {-,;-azas(m_gy}

2
ALY = 20c (QRm +ER) +Me{r @ @b, (3000}
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pr(eN)=o

p1(62)= -2 (R+ & R) ~n {fwcqy 0,

AI(6,3) = 8-28¢ —n {10, ((+¢x2)_ xazbg}
AI(§,4)=0

Ar(e,5)=0

AI(6,6)= Zazﬁf‘*’

AI(¢,1)=0

ﬁI(é,S):—2oc(RM&c+§<{‘>)~N[{3’oca‘az%

RL(6,4)= (1+x?)B +206 +NI{5'(,+x2)aza3JJixazbl}

AL(1 1) = ~Nef@as+ 45,
AI(7,2)= ¢

Ar(1,3)=o0

AL(T,4) = Nr{cxazb +40,)
AL(T,5) = &y (- 65)Rm
AT(1,6) = N{azb, R}

2 , 2
HI(7,§)=O
HI(7,Q)=O

AL(,1) = (1+ )4,

AT(8) )= (I~0c™Yp - 28 *Nr{fb.bs("cz")}
AI(8)3)= —20c8% 4 Ne{focal - Loo(al+ bf)}

Anf(gp"i): 0

—2
RI(8,5)= Wy Rm@s
AI(2,6)=0

A1 (3,7)= 2¢a,

AT (§:8)= R (1-0c) "(’+°Cz)/§z+(I-oc’)<gz—N[{;’(I+oc’)(3a,’+/>f)+q’(“lz--?) a;
- _chi(alz__ b:z )}
. RI(%,9)=~ 20 BT Ry 59
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AI(9,1) =0

A1(a,2) = 20 B4 N { hoo (@4 B7) + Lecal ]
RI(43) = (- ) —2BG + N, { & (c-c’_u)a,az}
AT (q,u)=0 ’

AT (3, 5) = @y Rm by

AL(9,6)= 28 Q,

AL (47)= 20¢c Ry Q,

AL (%)= 2% WglE Ry Lg

AL(U9) = Ru(i- o)y = F(14 0c®) + E(1=e )+ 1 {= (@ #3614 ) + G (-3 05
~ Lad(ai- 1)}

AT0(1) = Nef(i+ £)2a,)
AIO(2) = o
AIO(3) = ©

AIO(4) = NI{—;(l—oc’)(CL,Qs-*b.b_;)}
ATO(s) = (&-o?-g% q1)a,

AIO(6) =0 ~
A10(7) = B + N { (4~ Rmac®),a,}
AIO(8) =0

_A10(@)=o0
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Acrodynamic contribution terms

AA(l.‘)Z“(‘7+<ﬁ2@<%+<2’,@;)—-’\&\{ Q2,05 o+ (@85 +bb) 6 - € a,b, By +xa,b Be-XabFy

2 2 2
+ 50 (@ay + biby) g+ 4?05 Ry + 44 Rig

AA(1,2)= o
ARA(1,3) =0
HH(':‘*)Z_NA{Q/'(QI%'”’:}’_;) +Q,Q; K, ~ocazb, zs+ o Qy by Ry +%x(a3b'—a‘b3)p3

2
* 510,05 By -, b g 4 a0, R

AA(,s)= o0
AR(L6)= ~ Naf{-Lab F,

-—J-sz3 E?l}

L(ab-a, b)) 7+“Q2b Fie ’!'azb_a, F,q+—'3(a3b,..a.b3) P20

l6 2

2

. 2 —
AR = - (5 + R 6 + € F) ~ Mflaa kv L@l b)) Fo v £07 F 5 2af+ bR,
w oo (@b~ b )hy +ocarh, B+ & (ash - ab) R, - X ab, i:33}

nR(I,S) = 0
AR(1,9) =0 .

2
AA(3) = wc(Fy R g0, Fy < B By + £,
RO ¥ fod s +F(SE)
- 2 2
;(03-—63)62}

AA(2,4) =-2q, (k +84.F,)

AA (2,6) =0
RA(2,7)= 4, K
{ + 2
AR(2,8)=—(KE+28. K +8F +¢h +BPE +B cz +¢ZF,+3£9:F,' Y- Na 7{(3‘712“" Voo
+3a; £, +3(a3 +b_:)ﬁz+oc’(a, b YR, +ec?ai f, A2 5, 31}
AR (29) = (s 4 BE 4@ 46, Ry + 8L+ BQ iyt 28 F3+ Bh,)— MIF LR+ E08 6,
*%xa‘QZF “F %36, -2 0,2 3 237 az 9}
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PAGIY = —x @y Fig

2
AA(3,2) = —oc (Fy + B R+ O Fp t Bp R + £ fy + R + 60 Fg) ~ M. {2 (alb] ) By + S0 E,

a0 242 —
2 Raq T(q3 b)Y Fay + TaQ, ks +%Q«Q2F:IS}

AR(33) =~ (R42BR+ PR +O.F + $6 &G 4286 Fo + P rys)—Na{ £ @8 g + L G0 F,
—~ 2 2
- Kb Ry 2 aab Ry +xaa, fyy 2ata,ah, +%; E.S]j
AR(3,4) =0
Rﬁ(315):0

= " 2 2
M(36) = ~ay+ 8 iy + g + &g + € ) ~Ma{ % ]

AR(3,8)= —oc(Fg+ B Ry ¢ B G+ 0. Fy + B £y +BG Fyp + & Faz + 7 Frq )~ Nal-Ebib,R
2
05 Ry + % Q5 Rl
RA(39)= —(R+28F+P K+ B

+-L!‘—(Q,z+31>,2)l-;'° +"’70226l +

+
far 3% a0 K, —xab,

2 .
& (@’-b{)Fq

= +
)

2
—%(—a(azgfq" %azbl 61—1'{‘x f’-z@q}

PA(4)1) = G, + PG, Gg +Na{ £ 083G + (@ Q3 +biby) Gio— L azby Gz + XAy by Gag— = 8,5, Gy,
7 05+ by by ) Gy + 3 " 4,05 G"‘i}

AA(4,2)= o0 ~

AA(4,3)=o0 , .

AA (4,4) = NA{' L(a.a;+bb,)Gq + 423G —oC A b, Gy + @y b, Gy + -%‘(agb,—alb;) G3

2 2
+E a6y +E (qu3+brb3)G'-13}

AA(Y4,S)=o
AAR(H6) = NA {—3’.(22!)‘ Gy 4—:‘1-(&(53—(136,)@;‘7 + -!2‘02 bl Gig +3}:Q2 ba Giq + ‘:L’<Q3bl‘a‘b3)e'i°
- "‘?‘QZBSGQ;}

AA(4T)= Gy + B G + ‘EzGu + QG + NA{-%(QIQQG’Q + "i(‘“z*bzi YGio +’§Q§G‘H
+ %(a; + b;)G:z +0oc(Qrb,- a3 b))G,, +o£ @, by Gy + % (a3b~aib)G,,~ & 22 53G33}
AA(4y,8)=o
AA(4,9)=o
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AA(s)) = @ (Ge+ 6.Gq)

AA(5,2) = G +2BGy +P G + 0. Gy +RQGq+ 2 0.Gio + NA{%QZ%G"* *”‘5 AN o bibs Gz

+ J,_-‘ a0 Gy + {; oczd.za.sGLB}

—o(Gyz + RGi + GG ¥ Bd Gas + é'}qu s Gas + O Gag+ BCw) - NA{ % a,a,Gz3
-5 ab, Gq + %(afw-b,’)qu + 30 aj Gas * %(3563“” b)) Gae — % Q; Gt q% (A, Gzg

AA(SU) = 28,(Gy+ Oc Gn)

AR(S,S)=©°

it

AR(5:3)

AA (s,6)=0o
A (5,1)= a,Gq

R (5,8) = Gyt 30, Gg+B Gy + G +ELGq e PGyt b G+ 38 G wrp 4308+ b)) Gio
2
$2alG +2(%« )Gt Db Ga tai- bY)Gag* & (& )67}
1
AR (5,4)= —x(Gis + B G+ BGu * RG22t BE Ga +B6G5,+B0.Cas) # N { e Wy Gae

-3 -
+doc Gy Gy~ §X A%, Gy~ 5 Q03 Gz~ 9{‘&1Q3G33}

RA(G;') = O(QIG,Q

;}g(g,g): “(613 + cEGlé + (DCGW +E<fg G,z 4_§_2qu+ QZGZS +@:‘qu+ﬁ56q1)+ NA{%— Q;OZGRS

2 2 2_ 2

RR(6,3)= Gt+2263+¢cG6 +6’ch*42@ch *-JEQQ}G;O*'NA{ —:‘-QIQSGQ+'£Q:Q3 G,o—%ﬂzblcvz?»
+ %“sz' ng 4"{-“26[‘0-3 GSG *%—xzala?)qu— %‘zala3Gq3%
AACGL ) =0

AHR(G)S)'-:O
AA(6,6) = a2 (G +E B Gar +EZG19*422G29* 0 G30) + M {4 03}6‘7
RA(6:7)= xQ; Gig .
AA(6)8)= x(G‘s+&GZ°‘+ bGy + 0 Gaa + R G * EO. G+ R0 6333+NA{“§ biby Gag

+ %C.(Gb«ung,)azaa) + X 0,9, Gz *% b'b3G32}
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