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ABSTRACT. In this tochnical noto wo consider tho influence of a lransverso magnetic
field on the formation of a shocks wave in an oleptrically conducting field. We conclude
that the presonco of a tiransverse magnotic fiold is conducive to the growth of compression
waves and tho docay of the expansion waves.

It is well known that the ordinary hydrodynamic compression shock wave
involves an increase in entropy and that the rarefaction shock wave decays
immediately into a continuous expansion wave. This is so heeause in a compres-
fion wave, the waves nearcer tho source tend to overtake those further from it with
the result that the wave profile becomes more and more steep until the pressure
gradients hecome infinite. In this way a compression shock is formed which
grows in strength as the process continues. In a rarefaction shock, on the other
hand, the waves nearer the shock lag more and more behind those in front of it,
the wave profile flattens till the pressure gradients vanish and ultimately no dis
continuity effects are observed. In fact if a rarefaction shock is established, even
momentarily, it would decay immediately into a continuons expansion wave.
We will consider, in this note, the influence of a transverse magnetic field on the
formation of a shock wave in an electrically conducting fluid. Tt will be seen that
the presence of a transverse magnetic field is conducive to the formation of a
shock wave.

For the sake of simplicity we will consider a plane one-dimensional shock
wave propagating in a fluid of infinite electrical conductivity and specific volume 7
with an external magnetic field H oriented in a direction normal to the direction
in which the shock propagates. We define the quantities 9™ and ¢ according to
Hoffmann et al., 1950.

& and ¢ = (2o )}

. . .
7 = pt H (1’)"
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These quantities take account of the contributions of the hydromagnetic interac-
tion to the pressure p and the velocity of sound ¢ through the magnetic pressure
(H?/87) and the Alfven speed v zp = H(t/4m)}. We will call p* and ¢ the total
pressure and the modified velocity of sound respectively.

Let us now suppose that the propertics of the fluid at two adjacent points
differ in magnitude by dr, dH, dv, dp* and d¢* where v denotes the gas speed.
We also assume that the respective parts of the wave passing through these points
differ in speed of propagation by dv,. For the sake of simplicity, let us further
assume that the gradients of temperature and velocity are small so that the dis-
sipative effects of viscosity and heat conduction are negligible. Therefore each
elementary part of the wave travels with the local speed of sound with respect to
the fluid. The velocity of propagation v, of this part of the wave with reference
to a fixed coordinate system is

Vw = v'+—c‘ “ee (2)

and the velocity of propagation of an adjacent part of the wave is

v, +dv, = vi-dvi-c' de* e (3)
8o that
av, __ dv dc”
= a T @)

.
Let us assume that the entire fluid was initally at rest with uniform pressure and
temperature, and that each particle of the fluid undergoes isentropic changes.
Therefore, the increments in pressure and density between adjacent particles
obey the relation :

2 g2 P
€2 = —7 ar e (B)

which yields on differentiation

«det _ dr d ([, dp
2¢ o " @ dr (r i ) . (6)

Again it can be shown from the equations of constant mass flux and constant
momentum flux that

& 1 - (D



~ Growth of Hydromagnetic Shock Waves 201

On carrying out the substitutions from (6) and (7) in (4) we finally obtain

Ve _ 7 (@p[r) 8)
dp” 2¢*  (dp*/dr)

Now if (dV,, [dp") is positive, the high pressure parts of the wave overtake the
low pressure parts and a wave of compression steepens as it progresses.  Similarly
a wave of rarefaction becomes less steep.  On the other hand if (dV,, [dp”) is
negative, a wave of compression becomes Jess steep and a wave of rarefaction
steepens into a compression shock.

A fluid is said to be thermodynamically gtable if it does not collapse or expand
catastrophically. For a fluid to be thermodynamically stable, dV,, /dp" must be
positive. It follows from (8) that the sign of dV, [dp* depends on the sign of

&épt  dPp BYIE

dr? dr? 472

"

From the considerations outlined above, we immediately arrive at. the following
conclusions :

(i) Compression waves steepen and rarefaction waves flatten when

. d%p 312
T2 g

g T e (10)
This happens when
either () d*pld7? is positive
or b) d*p/dr?  is nocgative, and
d*p| _ 3
dr® 4mr?

Therefore, a flattening wave of compression will begin to stecpen as soon as a
magnetic field of suitable strength is switched on.

(i) Compression waves flatten and rarefaction waves steepen when

d? 3H?
® gt am <O (n
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This happens when (d%p/dr?) is essentially netgative and

dip  SH* . (12)

dr? 41

Hence it may be concluded that the magnetic fiold enhances the steepening
of & compression wave and flattening of a rarefaction wave. Hence the presence
of a transverse magnetic ficld is conducive to the growth of compression waves
and the decay of the expansion waves.
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