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Abstract d pitch link location from torque
tube center, m
The aeroelastic stabflity of flap
. bending, lead-lag bending and torsion of a D blade section drag force, N .
. bearingless circulation control rotor blade in
¢ hover is fnvestigated using a finite element 4 aerodynamic center offset from .
" formulation basec¢ on Hamilton's pr’nciple., The elastic axis, nositive aft, m :
L flexbeam, the torque tube and the outboard .
- blade are discretized into beam elements, e center of mass offset from elastic .
: each with fifteen nodal degrees of freedom. 9 axis, positive forward, m .
L Quasisteady strip theory 1s used to evaluate .
) the aerodynamic forces and the airfoil Ib blade mass moment gf fnertia about .
VLl characteristics are represented etther in the flap axis, N-m-sec . {
K form cf simple analytical expressions or in '
2= the form of data tables. The unsteady aero- L blade section lift force, N N
o dynamic effects are introduced approximately :
=z tarough dynamic wake induced inflow modeling. :
kS The nonlinear equations of motion are solved Lu'Lv'L aerodynamic force per unit length -
L for steady blade deflections using an itera- Y in u,v,w, directions, N/m .
o] tive procedure. The flutter soluti.~ is :
w calculated assuming blade motion to be a m mass ger unit lenyth of blade, {
= small perturbation about the steady solution, N-sec /m2 '
=1 and the normal mode equations are used to
o reduce the number of equations. A correlation m refersncs mass per unit length, *
f}i study of analytical results with the experi- N-sec/m
r { mental data is attempted for selected
=i bearingless blade configurations with conven- M 5 blade section aerodynamic moment
* tional airfoil characteristics. Then stability * about midchord, N-m
o results are obtained for circulation control
< bearingless configurations consisting of a M aerodynamic moment per unit length
- single flexbeam with a wrap-around type ¢ about elastic axis, N i
: toraque tube and the pitch links located at ;
both the leading edge and the trailing edge n number of elements i
of the torque tube, The stability is exa- N
mined at various thrust tevels and collective 5 constant defining blowiny distri- !
. pitch settings. bution )
: NOMENCLATURE R rotor radius, m o |
Wt
a, reference 1ift curve slope t time, sec -
. {5.7/rad) i
' U,V,W, elastic displacements in the x,y,z z
! c blade chord, m directions respectively, m
-{ ¢4 blade section drag coefficient up b}ade section normal velocity, !
. n/sec '
<y blade section 1ift coefficient :
Uy blade section inplane velocity,
] n blade section moment coefficient m/sec
: 5 about midchord
: v blade section resultant air
R T velocity, m/sec
o f n
: CT rotor thrust coefficient ;TEET7;57
] vy induced inflow, m/sec
Cu blowing momentum coefficient _ﬂ!l_
2oV V‘j jet velocity (blowing), m/sec
Presented at the Second Decennfal Specialists' w pitch link displacement, m »
Meeting on $otorcra{t Dynamics at Ames Research P
Center, Moffett Field, EA. November 7-9, 1984, Xe¥Y2, undeformed blade coordinates, m
\
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. blade section angle of attack, rad
ap blade precone angle, rad
]
\ Lock number garcR /lb
o air density, N-seczlm“
8T, 8V variation of kinetic and strain

energies respectively

5W virtual work done due to aerodyna-
mic loads

5} blade pretwist, rad

A rocor induced inflow ratio, vi/nR

EyNsL deformed blade coordinates non-

dimensionalized wrt R

g solidity ratio, blade area/disk
area

¢ elastic twist about elastic axis,
rad

3 geometric apparent twist about

deflected elastic axis, due to
coordinate transformations, rad

¥ dimensionless time, Ot

fundamental coupled rotating lead-
lag, flap and torsion natural
frequencies respectively

mv,mw,l.oQ

Q rotor blade angular speed, rad/sec

4 ratio of modal damping to critical
damping

n, torque tube center offset from

elastic axis, positive forward, m

ng flexbeam center offset from
elastic axis, positive forvard, m

Introductian

A circulation control rotcr (CCR) utilizes
circulation control (CC) aerodynamics for meia
rotor blade wesign, A CC airfoil is typically
of quasi-elliptic profile with ~ounded trailing
edge, and a rhir jet of air is “lown from a
spanwise slot (Fig. 1). The air jet remains
attached over the curved profile because of
Coanda effect ‘-alance of centrifugal force
and suction pressuce), In a CCR, the thrust
vector can be controlled by modulation of
blowing as wril as geome.ric pisch, With a
CCR, a high tniust is possible at reduced tip
speeds and also the hub design can be
simplified because of elimination of cyclic
pitch. The application of CC technology is
currently being evaluated in the design deve-
lopment of a full-scale rotor. One concern is
tte influence of blowing on the dynamics of
the rotor blade.

With the availability of improved
materials, recent rotor design trends are
leaning towards hingeless blade con~
figurations. A bearingless rotor is one such
example where flap and lag hinges as well as
pitch bearing are eliminated, and these are
replaced by a root flexure consisting of
flexbeam{s) and a torque tube {Fig. 2). The
torsionally soft flexbeam(s) extends from the
hub to about 15-40% of blade radius where it
is connected to the main blade. The pitch
control to the blade is applied through the
torsionally stiff torque tube by rotating it
with the pitch link which elastically twists
the flexbeam(s). This results in a multiple-
toad-path structure decause of the redundancy
of 1 ad paths at the flexure. This causes
however a more involved dynamic analysis.

The objective of the present paper is to
examine aeroelastic stability of flap bending,
lead-1ag bending and torsion of a circulation
control bearingless blade in hover.

A general review on aeroelastic stability
of a rotating blade with conventional aerody-
namics is given in References 1-2. Chopra and
Johnson™ formulatea and analyzed the flap-lag-
torsion aeroelastic stability of a CCR blade
in hovering flight., Tnree degrees of motion
were considered: rigid flap, lag and feather
rotations about hinges at the blade root. The
CC airfoil characteristics were represented in
the form of simple analytical expressions. It
was shown that the trailing edge blowing can
have a major influence on blade aeroelastic
stability. Recently Chopra” analyzed the
aeroelastic stability of flap bending, lead-lag
bending, and torsion of a CCR blade in hover
using a finite element formulation. The CC
airfoil characteristics in the form of data
tables were used. Results were presented for
several hingeless blade configurations. Again,
it was shown that the blowing has an important
influence on blade dynamics which must be con-
sidered in rotor design.

Sivaneri and ChopraS applied a finite ele-
ment formulation to analyze the dynamics of a
bearingless rotor blade in hover with coanven-
tional aerodynamic characteristics. Each of
the flexbeams and the torque tube were modelled
as individual elastic beams. The displacement
compatibility conditions at the clevis, between
the inboard flexure beams and the outboard
blade, were satisfied, Results were also calcu-
lated using a simple equivalent-team modelling
wherein a bearingless blade is represented as a
single beam with equivalent aroperties.
Comparison of the two sets of results showed that
the equivalent-beam modelling can be quite
erroneous for some cases,

In the present paper, the above finite
element formulation is modified to study the
aeroelastic stability of a bearingless CCR
blade in hover. The multibeams of the flexure,
and the outboard blade idealized as an elastic
beam, are all discretized into beam elements,
2ach element with fifteen nodal degrees of
freedom, There is a continuity of axial
displacement u, flap bending w and w', lead-lag
bending v and v' and geometric twist § between
elements, Quasisteady strip theory is used to
evaluate aerodynamic forces. The airfoil
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characteristics are represented in the form of
data tables. The influence of unsteady aero-
dynamics is introduced by using dynamic inflow
modelling. The formulation is made quite
general for nonuniform blades keeping in view
the application to different types of
bearingless configurations. First, a correla-
tion study of analytical results with the
experimental data is attempted for selected
bearingless corfigurations with conventional
airfoil characteristics. Then, stability
resulty are obtained for circulation control
bearingless configurations.

Formulation

The formulation details can be seen in
References 4-5. The blade is treated as an
elastic beam and undergoes axial displacement
u, lead-lag bending displacement v, flap
bending displacement w ard elastic twist ¢
about a deformed elastic axis. Fig. 3 shows
the deformed as well as undeformed blade posi-
tions. The rectangular coordinate system
x,y,Z is attached to the undeformed blade,
wherein the x-axis coincides with the elastic
axis., A point P on the undeformed elastic
axis undergoes displacements u, v, w in the
x,¥,Z directions respectively and occupies the
position P' on the deformed elastic axis,

Then the blade section containing point P'
undergoes a rotation e1 about deformed
elastic axis,

fp=08+4 (12)

and

X
§=¢ - [ v'wdx (1b)
0

wher2 0 is pretwist, § is the geometric twist
with respect to the undeformed axis
(compatible with u,v,w) and ¢ is the elastic
twist about the deformed elastic axis £. The
formulation is based on Hamilton's principle

t

fe(6u - 6T - 6W) dt =0 (2)

Y
where 8U, 6T and &W are respectively the
variation of strain energy, the variation
of kinetic energy and the virtual work done.
These energy expressions are made independent
of the time derivatives of virtual displace-
ments, Su, Sv, éw and &% and hence Eq. (2) can
be written as

U -68T-¢6W=0 (3)

The aerodynamic forces are obtained using
quasisteady strip-theory approximation,
Forces of non-circulatory origin are also
included. The section lift, drag and moment
about the mid-chord (per unit span) are

)
L= 3ot Cylay € )

. L oy2
D =2 eV7e C4lay C ) (4)

Mg = % pV2c2Cm.5(a. c,)

The_aerodynamic coefficients Cy, Cq and

Cn*S are taken from data tables, and the
numerical values for these coefficients are
given at small steps: aa of 1%° and aAC, of
1/200. The C_ is blowing momentum coefFicient
defined as

av.,
Cu = —I/E{._vzc (5)

where ﬁvj is the jet momentum, l2o¥2 is the
dynamic pressure, and c is the blade chord.

The wake induced inflow is assumed uniform
along the length of the blade and the steady
component is calculated from the momentum
theory

Y = KylC/2) ¥ (6)

where Kp is an empirical factor and is assumed
to be 1.15 and .1 is the steady thrust coef-
ficient, With b{ade vibratory motion,
unsteady flow environmeats are created and
which will naturally result in dynamic induced
inflow condition. For hover, a simple dynamic
inflow mode! is used

2

*

™A+ A= En— (7
4x0

where t is the time lag in arc radi2n and can
be approximately taken as .B5/1g. The 1 is a
time induced inflow component, a perturbation
about the steady component rg. The ACy is the
pertu.rbation thrust component caused by blade
motions., The blowing momentum coefficient

C, is not uniform along the length of the
ofade. and a general distribution is used for
the formulation

= )
Gy =0 re (8)

where s is a constant, £ = r/R and Cu is blowing
coefficient at blade tip. For simp]:zity of ana-
lysis, it is assumed that the blowing coefficient
is constant within each element {based on mid-
point of element).

Finite Element Discretization

The finite element formulation is based on
energy principles (Hamilton). The flexbeam(s),
the torque tube and the main outboaru blade zre
all discretized into a number of beam elements.
Each element (Fig. 4) consists of fifteen degrees
of freedom. There is a continuity of u, v, v',
w, w' and § between elements, and there are three
internal nodes, two for u and one for §. The
distribution for deflections over an element are
represented in terms of elemcnt degrees of freedom
and shape functions; a second order polynomial for
$ and cubic polynomials for u, v and w.

Hamilton's principle in discretized form for
n elements is expressed as

n
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where Uy, 8Ty and &W; are virtual energy

contributions from ith element. During the
assembly of element matrices, one has to use
the displacement compatibility conditions at
interelement boundaries to form global matri-
ces. A simple analytical model of bearingless
blade is shown in Fig. 5. The displacement
compatability at the clevis is

Yp = Ug = Uy
Vet TV T Y
vI - vl - vl
tTVF T Y (10)
Wp T Ngdy T WE - TiRe T W,

=4

where subscripts t, f and b respectively
represent torque tube, flexbeam and b'ade.

Fig. 6 shows the root end of the torque
tube with the control actuator located at the
leading edge. The blade pitch is changed
through the up and down movement of pitch
link. The torque tube typically is very stiff
torsionally as compared to the flexbeam,
Therefore any vertical movement oF the pitch
link results in ncarly rigid body pitch for
the torque tube and an elastic twist distribu-
tion for the flexbeam, To obtain different
blade pitch angles, one has to adjust the ver-
tical position of pitch link, Wo. The pitch
link flexibility is represented by spring
stiffness K,. Because of the pitch link
flexibility, there will be an extra strain
energy contribution for the last element of
the torque tube, say Vp.

=1 2
vp =3 Ko [wy + ¢ (d+n) - wp] (1)

This will modify the element stiffness matrix
and the load vector. The relationship between
blade pitch and pitch link displacement vp is
calculated iteratively.

The assembly of n eiements yields the
equation of motion in terms of nodal displace-
ments {q} as

[M(q)al* [C(q)1{q} + ik(q)){q} = {a} (12)

These are nonlinear equations in q. The next
step is to aiply geometric boundary conditions,
For the torque tube end, the axial and lead-lag
displacements are freely permitted and the pitch
1ink joint is pin-ended. Therefore, there is
no geometric constraints for the torque tube,

On the other hand, the fiexbeam is cantilevered
at the hub and therefore the displacements u,

v, v', w, w', and ¢ are all zero at the root

of the flexbeam, The boundary conditions are
applied to the global equations (12) by canceling
out .he rows and columns corresponding to these
constraint displacements,

Solution Procedure

The first step is to determine blade steady
equilibrium position. For a known thrust level,
the collective pitch is calculated. For this
collective pitch, an approcimate value of pitch
link position w, is determined. Now with a “fiown
W, as a boundary condition, the blade steady
dgflected position is calculated from the nonlinear
equations (12), after dropping time dependent
terms.

The second step it to obtain the coupled
natural vibration (rotating) characteristics of the
blade about its steady equilibrium position. Then,
the flytter solution is obtained by assuming vibra-
tory motion to be small perturbation about
equilibrium position. For this, the normal mode
equations are obtaired and an eigen analysis is
made. The nature of the complex eigenvalues
explains whether blade is stable or not.

Results and Discussion

Numerical results are calculated for
bearingless blade configurations, consisting of
single flexbeam with wrap-around type torque tube
(as shown in Fig. 2). For calculations, the blade
is discretized into seven elements; three elements
for main blade, two elements for flexbeam and two
elements for torque tube, The normal mode stability
solution is calculated using six coupled rotating
modes. For analysis, the flexbeam and the torque
tube are modelled as individual beams. At the root
end, the flexbeam is rigidly fixed, whereas for the
torque ti'he there are no constraints on displacements
except for a spring restraint in the pitch link
direction. A limiting case of rigid pitch link will
result in complete displacement constraint at the
pitch link location,

First, a correlation study of analytical
results with the experimental data is attempted for
selected bearingless blade configurations with con-
ventional airfoil characteristics. The experimental
stability data for a model rotor is taken from Ref.
6. The model rotor characteristics are Lock number
y = 5.9, solidity ratio ¢ = 0.03, three-bladed, and
zero precone, The airfoil characteristics used are:

C, = 0.15 + 5.73a
Cq = 0.0079 + 1.7942
¢, = -0.012

The idealized nondimensional structural properties
used for elements are given in Table 1. Three differ-
ent bearingless rotor configurations are considered
depending on the pitch link location, The pitch links
are located at a distance of 0.085R in the radial
direction from the rotation axis. Fig. 7 presents

the lag mode stability results for case I, where the
pitch link is located at the leading edge of the
torque tube. This positioning of pitch link will
cause a positive pitch-flap coupling (flap up

causing nose down pitch). In the figure, the

damping of the fundamental lag mode in the form of
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real part of the eigenvalue is plotted for dif-
ferent collective pitch angles. For this lag
mode, a structural damping 1dealized by an
equivalent viscous damping ratio of 1% is used.
Based on the experience of stability correla-
tions of other authors, it appears taat the
present analytical results are in good
agreement with the experimental results, Fig.
8 shows the lag mode stability results for case
11, where the pitch link is located at the
trailing edge of the torque tube. This will
ceuse a negative pitch-flap coupling. In Fig.
9, the results are presented for case !II,
where one pitch link is located at the leading
edge and the other at the trailing edge of the
torque tube., This will not cause any pitch-
flap coupling, but it will raise the torsional
frequency of the blade. Again, the agreement
of analytical results with the experimental
data appears quite satisfactory. It is also
noted here that the inctusion of dynamic inflow
has only a slight influence on lag mode
stability.

The subsequent results are obtaired for
pearingless CCR blade configurations. These
results are calculated for a CCR blade with
Lock number y = 7.2, solidity ratio o = 0.13,
four bladed, and zero precone. For simple
airfoil characteristics, the fcllowing analy-
tical expressions are used:

C, = 0.3+ 6.7a +16.1C -67
B

67
Cq = 0.026 - 0‘3Cu

.67
Gy = 0.06 + 1.38a - 0.644C

and these are gross representations of the data
in Ref. 7. For table aerodynamics, the air-
foil characteristics of a typical CC airfoil
with single trailing edge slot are used. The
slut height to chord ratio is taken as 0.002
and the airfoil thickness to chord ratio is
taken as 0.15. The chordwise offsets of the
center of mass, the aerodynamic center, and
the tension center from the elastic axis are
considered to be zero, and the elastic axis is
assumed to be at mid-chord position. The non-
dimensional structural blade properties for
different elements are given in Table 2, For
stability results, the inherent structural
damping is assumed to be zero for all modes.
Results are calculated for the CCR bearingless
configurations, case 111 only, for which the
pitch links are located at the leading edge
and the trailing edge of the torque tube.

Fig. 10 shows for trim solutions in hover,
the blowing momentum coefficient at the blade
tip plotted as a function of rotor thrust for
several collective pitch angles. It is
assumed that the blowing coefficient varies
inverse to the square of the radial position
(Cy = CUTIE’). Results are calculated using
simple expressions as well as airfoil tables.
With airfoil tables, an iterative procedure
based on Newton-Raphson method is used to
calculate the trim solution, There is a con-
siderable disparity between the two results.
Tnis is understandable since simple
expressions are only gross representatiun of

the airfoil characteristics below stall,
whereas the table data covers the complete
range of angle of attack and blowing coef-
fictent.

Fig. 11 shows the damping ratio ¢ for
three modes with less damping as a function of
thrust level for a case with zero collective
pitch (85 = 0). These less damped modes hap-
pen to be fundamental lead-lag, fundamental
torsion and second lead-lay modes. The other
modes are more damped for this as well as for
subsequent cases and hence are not plotted,
These results are calculated using the airfoil
tables. The negative value of damping repre-
sents the instability condition of a mode.
The lag mode is stable at Jow thrust levels
and becomes unstable at high thrust levels,
The torsion mode and the second lag mode are
moderately unstable. All three modes can be
easily stabilized with the inclusion of small
amount of structural damping in these modes.
Most rotor designs inherently have enough
structural damping to stabilize these levels
of instability. A similar type of stability
characteristics were observed in Ref. 4 for
hingeless CCR blades with zero collective
pitch. In Fig, 12, the stability results are
shown for the same blade configurations using
the simple analytical expressions presented
previously for the airfoil characteristics.
Though this approximation is quite yross as seen
in the trim solution (Fig. 8), the stability
results are quite reasonably predicted, The
inclusion of dynamic inflow has a slight
influence on lag mode stability, in fact, a
destabilizing effect at high thrust levels.

Fig. 13 shows the stability results for a
negative collective pitch of -10° using the
table aerodynamics. For this pitch setting,
one needs a larger amount of blowiny to acheive
certain thrust level, The fundamental lag mode
becomes unstable at low thrust levels, and
becomes quite stable at high thrust levels. In
fact, at low thrust levels one needs a laryger
amount of damping to stabilize this mode. The
effect of negative pitch on torsion and second
lag mode is comparatively less, it stabilizes
the torsion mode somewhat. The effect of posi-
tive collective setting on blade stability is
shown in Fig. 14. For this pitch, one needs a
small amount of blowing to achieve certain
thrust level, Here, the fundamental lag mode
gets very stabilized. The influence on the
other two modes is again small.

Conclusions

The aeroelastic s.ability of a bearingless
circulation control rotor blade in hover is
examined using a finite element formulation,
Airfoil characteristics are represented in the

form of simple expressions as well as in the form

of data tables, The flexbeam, the torque tube
and the main blade are modeled individually as
elastic beams, Numerical results are calculated
for a circulation control bearingless rotor
configuration consisting of a single flexbeam
with a wrap-acound type torque tube and the
pitch links located at both the leading edge

and the trailing edge of the torque tube,
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Based on this effert the following conclu-
sions can be drawn:

(1) A reasonable correlation of analytical
results with the experimental data
for selected bearingless configurations
with ccaventional airfoils has introduced
confidence to the methodology and the
algorithms.

(2) For flutter solution, one needs to include
at least four modes; these are fundamental
flap, lag, and torsion modes and the
second lag mode,

(3) Stability results have shown that the
trailing edge blowing plays an important
role in the determination of the aero-
elastic stability of a rotor blade,

(4) The inclusion of dynamic inflow has a
slight influence on lag mode stability.

(5) Tne regative pitch setting destabilizes lag
mode, in particular, at low thrust levels,

(6) The positive pitch setting stabilizes lag
mode.

(7) For a fixed thrust level, it appears that
going to higher blowing is more destabilizing.

(8) The fundamental torsion and the second lag
modes are weakly unstable for some thrust
levels. The expected levels of internal
structural damping appear adequate to
stabilize these modes.
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’ Table 1, Structural properties of elements for rotation speed of 1100 RPM.
; Element | Length | Flapwise Chordwise Torsion Mass Torsion inertia
2,4 2.4 2,4 2,2
t/R EIy/mou R Elz/mon R Gd/mon R m/m0 Km/R
‘ 1 0.367 0.0055 0.1501 0.0029 1.0 0.07991 Blade
]
) 2 0.367 0.0055 0.1501 0.0029 1.0 0.00091 Blade
X 3 0.069 0.1216 0.1216 0.2433 39,6 0.0105 Blade
' 4 0.113 0.00158 0.0052 0.00021 0.299 0.000029 Flex beam
5 0.085 2.099 2.059 9.150 72.6 0.0346 Flex bear
6 0.0564 | 4,257 4.257 1.815 7.63 0.0020 Torque tube
7 0.0564 | 4,257 4,257 1.81% 7.63 0.0020 Torque tube
Chord/radius = ,0465
K
Pitch link spring —&— = 171.06
m_a’R
(V]
Pitch link offset from torque tube center~g = 0409
"t = nf =0
Table 2. Structural properties of elements for the circulation control bearingless blade,
Element | Length | Flapwise Chordwise Torsion Mass Torsion inertia
24 204 204 2,p2.
/R EIy/mou R El,/m "R GJ/m "R m/m, Km/R
1 0.2 0.0186 0.2303 0.0297 0.7067 0.000739 Blade
2 0.2 0.0372 0.3938 0.0557 1.0 0.000832 Blade
3 0.2 0.0929 0.7133 0.0929 1.624 0.001068 Blade
¢ 0.2 0.1858 0,2303 0.00297 1.383 0.000099 Flexbeam
5 0.2 0.5573 0.6687 0.00297 1.556 0.000279 Flexbeam
6 0.13 0.0817 0.5201 0.1560 1.398 0.001397 Toraue¢ tube
7 £,13 0.1486 0.3901 0.2823 1.549 0.001366 Torque tube
Chord/radius = ,1034
K
Pitch link spring ——%- = 10000
m,a‘R
Pitch link offset from torque tube center % = ,033
ne *=ng =0
265
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Fig. 1 Circulation control airfoil.
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Fig. 3 B.ade coordinate systems and
detiections.

Fig. 4 A finite element showing nodal
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DISCUSSION
Paper No. 17

DYNAMIC STABILITY OF A BEARINGLESS CIRCULATION CONTROL ROTOR BLADE IN HOVER
Inderjit Chopra

Jack Nielsen, NASA Ames Research Center: I have a serious question with regard to the funda-
mental aerodynamics of the problem. You have assumed vou can calculate the flutter using steady
aerodynamic results. Now we have a boundary layer on the Coanda plate and it isn't clear at all
that at the frequencies of flutter that the boundary layer isn't soing to have very important
unsteady effects; we really don't know. But I don't think we can a.sume the quasisteady assump-
tion offhand. Letting the amplitudes get small doesn't get around this problem if the unsteady
effects are coupled into the flutter. So I would be interested to know sincé we don't have any
data how you can be sure that you have really solved the real flutter problem for the €C air-
foil.

Chopra: Are you posing the question [to me]? I do recognize that the unsteady aerodynamics for
CCR is very important and it's not there. This is something that has to be looked at in the
future. I am very much interested [and would)] like to work on that proolem if you give us the
money.

Bill Warmbrodt, NASA Ames Research Center: The results that you showed for the circulation
controlled airfoil showed damping ratios that were an order of magnitude lower than the hinge-
less configuration that you first showed the results for. You made mention that structural
damping, had it been included, would have stabilized some of those mod.s. I think everybody in
the audience here has a pretty good feel for what the influence of structural damping is for a
ningeless rotor configuration. Would you say that you saw that same 1egree of sensitivity for
the bearingless configurations that you analyzed?

Chopra: I think your first question is . . . let's look at it this way. You get lower damping
here than you see in the hingeless [rotor]. I think that [you) have to go back and look first
at the perturbation aerodynamics. Keep in mind that you are keeping your elastic axis at the
half chord. Your perturbation aerodynamics has two components--[one] due to blowing, [one] due
to conventional. The conventional part of the aerodynamics stiil has the quarter chord as the
aerodynamic center and that will be destabilizing particularly for the torsion mode. So you
expect co see lower damping. [This] means the people who have to design the X-Wing/CCR Rotor,
they do need to--what should I say--add more structural damping or some sort of damping to
stabilize these modes. [ hope you may be agreeable to tnis point.

Jing Yen, Bell Helicopter: I understand that you used the normal modes approach to solve the
problem. Would you like to tell us where and how you obtained the normal modes for the redun-
dant or multiple load path hub? Also how much confidence [do] you have in [the modes]?

Chopra: The confidence is 100%. This is something [that is] a routine classroom problem.

What ‘e do is we look at first to the steady deflected shape and at that stage we solve the
global equations. Solving the global [algebraic, eigenvalue] equation is very routine these
days. It doesn't take any extra time. But when you are trying to solve the complex eigenvalue
problem it is no good to use, say, a 100 by 100 equation, but it s good to use a 6 by 6
equation. There are two reasons for that--one is the computer and the second is the physical.
You don't want to look at a hundred eigenvalues, you want to look at Jjust five or six and see
what is happening to {the major] mode shapes. Reducing to normal modes is the same [as] if you
had got the mode shapes using the Myklestad method and reduce them to normal modes. I don't see
any difference from the . . ., if you were to [mndel] a beam [using], say, the Mykleatad approach
and 20 elements, you may be using only four or five modes. So the procedure is just the same.
Did I satisfy?

Yen: This was a finite element model?

Chopra: It's a :'inite element model, yes. To start with it's a finite element model. We¢ get
the natural mode shape of [the blade] using finite elements. Redundancy doesn't come int. the
picture anywhere. This i{s only the way you are arranging the equations,

Peretz Friedmann: I think [ misunderstood his questicn because I had the same concern about
the redundancy. [ think that when you have a redundant structure which is what [Jing] Yen
alludec to you don'lL know exactly what the boundary conditions are and you might get incorrect
mode shapes if ycu are not careful about the boundary conditions. I am not sure what those
boundary conditions are because you have the cuff and you have the redundant load path and you
really don’'t know what exactly the boundary condition is at the root. I think that's what he
meant.

Chopra: I think that [is true with] any problem. If we don't know the boundary conditions wa

can make an error in any analysis. Some of the configurations ['ve seen, the pitcn links seem
to be . . . you can easily [get) the moment there and the only really important displacement is
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the vertical displacement. Bu* e did make a parametric study where we tried to constrain the .
piteh link., We tried to put various tvpes of consiraints on the pitch link, It is not very
sensitive on utability.

Wayne Johnson: Aren't your normal modes, though, calculated after you find the deflected solu-
tion using th: ful! finite element. ) -

Chopra: That's right,

Johnson: So the normal modes are found after you have identified the boundary conditions. '

Chopra: That's right, aft tdentifying the boundary conditions, that's right.

-, Johnson: I think mrdes in this case is simply a way to reduce the dimension of the state veec-
s tor. I don't think it really duces anything more than that.
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