6,933 research outputs found

    B764: Nitrogen Transformation and Movement in a Marine Sediment Soil Following Treatment with Varying Rates of Poultry Manure

    Get PDF
    Nitrate in water can be hazardous to human health and also cause excess algal growth. Recent research has revealed agriculture to be a potential contributor to these problems. Nitrate (N03-) present in the soil, in amounts in excess of plant needs,may be leached through the soil profile to the groundwater and eventually to lakes and streams. This investigation was undertaken under laboratory conditions to determine the transformation and movement of nitrogen through a poorly drained marine sediment soil following application of varying rates of poultry manure.https://digitalcommons.library.umaine.edu/aes_bulletin/1103/thumbnail.jp

    The enviornmental assessment of a contemporary coal mining system

    Get PDF
    A contemporary underground coal mine in eastern Kentucky was assessed in order to determine potential off-site and on-site environmental impacts associated with the mining system in the given environmental setting. A 4 section, continuous room and pillor mine plan was developed for an appropriate site in eastern Kentucky. Potential environmental impacts were identified, and mitigation costs determined. The major potential environmental impacts were determined to be: acid water drainage from the mine and refuse site, uneven subsidence of the surface as a result of mining activity, and alteration of ground water aquifers in the subsidence zone. In the specific case examined, the costs of environmental impact mitigation to levels prescribed by regulations would not exceed $1/ton of coal mined, and post mining land values would not be affected

    TB91: The Effect of Acidity, Organic Matter, and Sesquioxide Polymers on the Permanet Charge and pH-Dependent Cation Exchange Capacity of the Caribou Loam Soil.

    Get PDF
    In this study the components of cation exchange capacity (CEC) were measured in an acid spodosol to determine (1) the increase in KC1-CEC in the whole soil when limed, (2) the contribution of the organic fraction to CEC, and (3) the magnitude of CEC reduction by Al and Fe polymers.https://digitalcommons.library.umaine.edu/aes_techbulletin/1098/thumbnail.jp

    Annexin I and dexamethasone effects on phospholipase and cyclooxygenase activity in human synoviocytes.

    Get PDF
    Annexin I is a glucocorticoid-induced mediator with anti-inflammatory activity in animal models of arthritis. We studied the effects of a bioactive annexin I peptide, ac 2-26, dexamethasone (DEX), and interleukin-1beta (IL-1beta) on phospholipase A2 (PLA2) and cyclooxygenase (COX) activities and prostaglandin E2 (PGE2) release in cultured human fibroblast-like synoviocytes (FLS). Annexin I binding sites on human osteoarthritic (OA) FLS were detected by ligand binding flow cytometry. PLA2 activity was measured using 3H-arachidonic acid release, PGE2 release and COX activity by ELISA, and COX2 content by flow cytometry. Annexin I binding sites were present on human OA FLS. Annexin I peptide ac 2-26 exerted a significant concentration-dependent inhibition of FLS constitutive PLA2 activity, which was reversed by IL-1beta. In contrast, DEX inhibited IL-1beta-induced PLA2 activity but not constitutive activity. DEX but not annexin I peptide inhibited IL-1beta-induced PGE2 release. COX activity and COX2 expression were significantly increased by IL-1beta. Annexin I peptide demonstrated no inhibition of constitutive or IL-1beta-induced COX activity. DEX exerted a concentration-dependent inhibition of IL-1beta-induced but not constitutive COX activity. Uncoupling of inhibition of PLA2 and COX by annexin I and DEX support the hypothesis that COX is rate-limiting for PGE2 synthesis in FLS. The effect of annexin I but not DEX on constitutive PLA2 activity suggests a glucocorticoid-independent role for annexin I in autoregulation of arachidonic acid production. The lack of effect of annexin I on cytokine-induced PGE2 production suggests PGE2-independent mechanisms for the anti-inflammatory effects of annexin I in vivo

    Non-equilibrium dynamics: Studies of reflection of Bose-Einstein condensates

    Full text link
    The study of the non-equilibrium dynamics in Bose-Einstein condensed gases has been dominated by the zero-temperature, mean field Gross-Pitaevskii formalism. Motivated by recent experiments on the reflection of condensates from silicon surfaces, we revisit the so-called {\em classical field} description of condensate dynamics, which incorporates the effects of quantum noise and can also be generalized to include thermal effects. The noise is included in a stochastic manner through the initial conditions. We show that the inclusion of such noise is important in the quantitative description of the recent reflection experiments

    Finite-temperature simulations of the scissors mode in Bose-Einstein condensed gases

    Full text link
    The dynamics of a trapped Bose-condensed gas at finite temperatures is described by a generalized Gross-Pitaevskii equation for the condensate order parameter and a semi-classical kinetic equation for the thermal cloud, solved using NN-body simulations. The two components are coupled by mean fields as well as collisional processes that transfer atoms between the two. We use this scheme to investigate scissors modes in anisotropic traps as a function of temperature. Frequency shifts and damping rates of the condensate mode are extracted, and are found to be in good agreement with recent experiments.Comment: 4 pages, 3 figure

    Damped Bogoliubov excitations of a condensate interacting with a static thermal cloud

    Full text link
    We calculate the damping of condensate collective excitations at finite temperatures arising from the lack of equilibrium between the condensate and thermal atoms. We neglect the non-condensate dynamics by fixing the thermal cloud in static equilibrium. We derive a set of generalized Bogoliubov equations for finite temperatures that contain an explicit damping term due to collisional exchange of atoms between the two components. We have numerically solved these Bogoliubov equations to obtain the temperature dependence of the damping of the condensate modes in a harmonic trap. We compare these results with our recent work based on the Thomas-Fermi approximation.Comment: 9 pages, 3 figures included. Submitted to PR

    Using step width to compare locomotor biomechanics between extinct, non-avian theropod dinosaurs and modern obligate bipeds

    Get PDF
    How extinct, non-avian theropod dinosaurs locomoted is a subject of considerable interest, as is the manner in which it evolved on the line leading to birds. Fossil footprints provide the most direct evidence for answering these questions. In this study, step width—the mediolateral (transverse) distance between successive footfalls—was investigated with respect to speed (stride length) in non-avian theropod trackways of Late Triassic age. Comparable kinematic data were also collected for humans and 11 species of ground-dwelling birds. Permutation tests of the slope on a plot of step width against stride length showed that step width decreased continuously with increasing speed in the extinct theropods (p < 0.001), as well as the five tallest bird species studied (p < 0.01). Humans, by contrast, showed an abrupt decrease in step width at the walk–run transition. In the modern bipeds, these patterns reflect the use of either a discontinuous locomotor repertoire, characterized by distinct gaits (humans), or a continuous locomotor repertoire, where walking smoothly transitions into running (birds). The non-avian theropods are consequently inferred to have had a continuous locomotor repertoire, possibly including grounded running. Thus, features that characterize avian terrestrial locomotion had begun to evolve early in theropod history

    Collective and single particle excitations of a trapped Bose gas

    Get PDF
    The density of states of a Bose-condensed gas confined in a harmonic trap is investigated. The predictions of Bogoliubov theory are compared with the ones of Hartree-Fock theory and of the hydrodynamic model. We show that the Hartree-Fock scheme provides an excellent description of the excitation spectrum in a wide range of energy, revealing a major role played by single-particle excitations in these confined systems. The crossover from the hydrodynamic regime, holding at low energies, to the independent particle regime is explicitly explored by studying the frequency of the surface mode as a function of their angular momentum. The applicability of the semiclassical approximation for the excited states is also discussed. We show that the semiclassical approach provides simple and accurate formulae for the density of states and the quantum depletion of the condensate.Comment: 16 pages, REVTeX, 6 figures; misprints corrected; some clarifying remarks include

    Orthogonal localized wave functions of an electron in a magnetic field

    Full text link
    We prove the existence of a set of two-scale magnetic Wannier orbitals w_{m,n}(r) on the infinite plane. The quantum numbers of these states are the positions {m,n} of their centers which form a von Neumann lattice. Function w_{00}localized at the origin has a nearly Gaussian shape of exp(-r^2/4l^2)/sqrt(2Pi) for r < sqrt(2Pi)l,where l is the magnetic length. This region makes a dominating contribution to the normalization integral. Outside this region function, w_{00}(r) is small, oscillates, and falls off with the Thouless critical exponent for magnetic orbitals, r^(-2). These functions form a convenient basis for many electron problems.Comment: RevTex, 18 pages, 5 ps fi
    • …
    corecore