578 research outputs found

    Salmonella typhimurium's transthyretin-like protein is a host-specific factor important in fecal survival in chickens.

    Get PDF
    The transthyretin-like protein (TLP) from Salmonella enterica subspecies I is a periplasmic protein with high level structural similarity to a protein found in mammals and fish. In humans, the protein homologue, transthyretin, binds and carries retinol and thyroxine, and a series of other, unrelated aromatic compounds. Here we show that the amino acid sequence of the TLP from different species, subspecies and serovars of the Salmonella genus is highly conserved and demonstrate that the TLP gene is constitutively expressed in S. Typhimurium and that copper and other divalent metal ions severely inhibit enzyme activity of the TLP, a cyclic amidohydrolase that hydrolyses 5-hydroxyisourate (5-HIU). In order to determine the in vivo role of the S. Typhimurium TLP, we constructed a strain of mouse-virulent S. Typhimurium SL1344 bearing a mutation in the TLP gene (SL1344 ΔyedX). We assessed the virulence of this strain via oral inoculation of mice and chickens. Whilst SL1344 ΔyedX induced a systemic infection in both organisms, the bacterial load detected in the faeces of infected chickens was significantly reduced when compared to the load of S. Typhimurium SL1344. These data demonstrate that the TLP gene is required for survival of S. Typhimurium in a high uric acid environment such as chicken faeces, and that metabolic traits of Salmonellae in natural and contrived hosts may be fundamentally different. Our data also highlight the importance of using appropriate animal models for the study of bacterial pathogenesis especially where host-specific virulence factors or traits are the subject of the study

    Economic crisis and the construction of a neo-liberal regulatory regime in Korea

    Get PDF
    A consistent theme of the literature on the ontology of the 1997 South Korean crisis is the key role played by regulatory failures and the growing weakness of the state. This paper seeks to briefly highlight both the insights and the limitations of this approach to understanding the crisis. Having done so, we shall set out the argument that the crisis created an opportunity for reformist Korean élites to advance their longstanding, but previously frustrated, project to create a comprehensive unambiguously neo-liberal regulatory regime. This paper will also seek to highlight the implications of our reading of the development of the Korean political economy for broader debates on economic liberalisation, crisis and the future of the developmental state

    Caffeine for reducing bird damage to newly seeded rice

    Get PDF
    The economic impact of blackbirds can be severe to rice producers in the United States. One approach to managing this damage is the application of bird-deterrent chemical to the crop. Previous pilot trials suggested that caffeine offered potential as a safe, economical bird repellent. In this study, cage feeding trials with female red-winged blackbirds and male brown-headed cowbirds confirmed that a treatment rate of 2500 ppm caffeine on rice seed reduced consumption as much as 76%. Trials with mixed species blackbird flocks in a 0.2-ha flight pen resulted in just 4% loss of caffeine-treated rice compared to 43% loss of untreated rice. Field trials of a 10,000 ppm caffeine treatment in Louisiana revealed 490% of caffeine-treated rice seed remained unconsumed on days 2 and 3 of the study whereas blackbirds consumed 480% of the untreated seed. As a rice seed treatment to deter blackbirds, caffeine appears to be effective, economical and environmentally safe, although additional aquatic toxicity testing is desirable. Improvements in formulation will be needed to make the compound practical for general agricultural spray applications and to extend the adherence of caffeine to rice seeds in field conditions

    Phage inducible islands in the gram-positive cocci

    Get PDF
    The SaPIs are a cohesive subfamily of extremely common phage-inducible chromosomal islands (PICIs) that reside quiescently at specific att sites in the staphylococcal chromosome and are induced by helper phages to excise and replicate. They are usually packaged in small capsids composed of phage virion proteins, giving rise to very high transfer frequencies, which they enhance by interfering with helper phage reproduction. As the SaPIs represent a highly successful biological strategy, with many natural Staphylococcus aureus strains containing two or more, we assumed that similar elements would be widespread in the Gram-positive cocci. On the basis of resemblance to the paradigmatic SaPI genome, we have readily identified large cohesive families of similar elements in the lactococci and pneumococci/streptococci plus a few such elements in Enterococcus faecalis. Based on extensive ortholog analyses, we found that the PICI elements in the four different genera all represent distinct but parallel lineages, suggesting that they represent convergent evolution towards a highly successful lifestyle. We have characterized in depth the enterococcal element, EfCIV583, and have shown that it very closely resembles the SaPIs in functionality as well as in genome organization, setting the stage for expansion of the study of elements of this type. In summary, our findings greatly broaden the PICI family to include elements from at least three genera of cocci

    How not to attack intelligent design creationism: philosophical misconceptions about methodological naturalism

    Get PDF
    In recent controversies about Intelligent Design Creationism (IDC), the principle of methodological naturalism (MN) has played an important role. In this paper, an often neglected distinction is made between two different conceptions of MN, each with its respective rationale and with a different view on the proper role of MN in science. According to one popular conception, MN is a self-imposed or intrinsic limitation of science, which means that science is simply not equipped to deal with claims of the supernatural (Intrinsic MN or IMN). Alternatively, we will defend MN as a provisory and empirically grounded attitude of scientists, which is justified in virtue of the consistent success of naturalistic explanations and the lack of success of supernatural explanations in the history of science (Provisory MN or PMN). Science does have a bearing on supernatural hypotheses, and its verdict is uniformly negative. We will discuss five arguments that have been proposed in support of IMN: the argument from the definition of science, the argument from lawful regularity, the science stopper argument, the argument from procedural necessity, and the testability argument. We conclude that IMN, because of its philosophical flaws, proves to be an ill-advised strategy to counter the claims of IDC. Evolutionary scientists are on firmer ground if they discard supernatural explanations on purely evidential grounds, instead of ruling them out by philosophical fiat

    A two-domain elevator mechanism for sodium/proton antiport

    Get PDF
    Sodium/proton (Na+/H+) antiporters, located at the plasma membrane in every cell, are vital for cell homeostasis1. In humans, their dysfunction has been linked to diseases, such as hypertension, heart failure and epilepsy, and they are well-established drug targets2. The best understood model system for Na+/H+ antiport is NhaA from Escherichia coli1, 3, for which both electron microscopy and crystal structures are available4, 5, 6. NhaA is made up of two distinct domains: a core domain and a dimerization domain. In the NhaA crystal structure a cavity is located between the two domains, providing access to the ion-binding site from the inward-facing surface of the protein1, 4. Like many Na+/H+ antiporters, the activity of NhaA is regulated by pH, only becoming active above pH 6.5, at which point a conformational change is thought to occur7. The only reported NhaA crystal structure so far is of the low pH inactivated form4. Here we describe the active-state structure of a Na+/H+ antiporter, NapA from Thermus thermophilus, at 3 Å resolution, solved from crystals grown at pH 7.8. In the NapA structure, the core and dimerization domains are in different positions to those seen in NhaA, and a negatively charged cavity has now opened to the outside. The extracellular cavity allows access to a strictly conserved aspartate residue thought to coordinate ion binding1, 8, 9 directly, a role supported here by molecular dynamics simulations. To alternate access to this ion-binding site, however, requires a surprisingly large rotation of the core domain, some 20° against the dimerization interface. We conclude that despite their fast transport rates of up to 1,500 ions per second3, Na+/H+ antiporters operate by a two-domain rocking bundle model, revealing themes relevant to secondary-active transporters in general

    Nerve Growth Factor mRNA Expression in the Regenerating Antler Tip of Red Deer (Cervus elaphus)

    Get PDF
    Deer antlers are the only mammalian organs that can fully regenerate each year. During their growth phase, antlers of red deer extend at a rate of approximately 10 mm/day, a growth rate matched by the antler nerves. It was demonstrated in a previous study that extracts from deer velvet antler can promote neurite outgrowth from neural explants, suggesting a possible role for Nerve Growth Factor (NGF) in antler innervation. Here we showed using the techniques of Northern blot analysis, denervation, immunohistochemistry and in situ hybridization that NGF mRNA was expressed in the regenerating antler, principally in the smooth muscle of the arteries and arterioles of the growing antler tip. Regenerating axons followed the route of the major blood vessels, located at the interface between the dermis and the reserve mesenchyme of the antler. Denervation experiments suggested a causal relationship exists between NGF mRNA expression in arterial smooth muscle and sensory axons in the antler tip. We hypothesize that NGF expressed in the smooth muscle of the arteries and arterioles promotes and maintains antler angiogenesis and this role positions NGF ahead of axons during antler growth. As a result, NGF can serve a second role, attracting sensory axons into the antler, and thus it can provide a guidance cue to define the nerve track. This would explain the phenomenon whereby re-innervation of the regenerating antler follows vascular ingrowth. The annual growth of deer antler presents a unique opportunity to better understand the factors involved in rapid nerve regeneration

    The effect of the timing of exposure to Campylobacter jejuni on the gut microbiome and inflammatory responses of broiler chickens

    Get PDF
    Background Campylobacters are an unwelcome member of the poultry gut microbiota in terms of food safety. The objective of this study was to compare the microbiota, inflammatory responses, and zootechnical parameters of broiler chickens not exposed to Campylobacter jejuni with those exposed either early at 6 days old or at the age commercial broiler chicken flocks are frequently observed to become colonized at 20 days old. Results Birds infected with Campylobacter at 20 days became cecal colonized within 2 days of exposure, whereas birds infected at 6 days of age did not show complete colonization of the sample cohort until 9 days post-infection. All birds sampled thereafter were colonized until the end of the study at 35 days (mean 6.1 log10 CFU per g of cecal contents). The cecal microbiota of birds infected with Campylobacter were significantly different to age-matched non-infected controls at 2 days post-infection but generally the composition of the cecal microbiota were more affected by bird age as the time post infection increased. The effects of Campylobacter colonization on the cecal microbiota were associated with reductions in the relative abundance of OTUs within the taxonomic family Lactobacillaceae and the Clostridium cluster XIVa. Specific members of the Lachnospiraceae and Ruminococcaceae families exhibit transient shifts in microbial community populations dependent upon the age at which the birds become colonized by C. jejuni. Analysis of ileal and cecal chemokine/cytokine gene expression revealed increases in IL-6, IL-17A and Il-17F consistent with a Th17 response but the persistence of the response was dependent on the stage/time of C. jejuni colonization that coincide with significant reductions in the abundance of Clostridium cluster XIVa. Conclusions This study combines microbiome data, cytokine/chemokine gene expression with intestinal villus and crypt measurements to compare chickens colonized early or late in the rearing cycle to provide insights into the process and outcomes of Campylobacter colonization. Early colonization results in a transient growth rate reduction and pro-inflammatory response but persistent modification of the cecal microbiota. Late colonization produces pro-inflammatory responses with changes in the cecal microbiota that will endure in market ready chickens
    corecore