44 research outputs found

    Molecular analyses reveal consistent food web structure with elevation in rainforest Drosophila – parasitoid communities

    Get PDF
    The analysis of interaction networks across spatial environmental gradients is a powerful approach to investigate the responses of communities to global change. Using a combination of DNA metabarcoding and traditional molecular methods we built bipartite Drosophila-parasitoid food webs from six Australian rainforest sites across gradients spanning 850 m in elevation and 5° Celsius in mean temperature. Our cost-effective hierarchical approach to network reconstruction separated the determination of host frequencies from the detection and quantification of interactions. The food webs comprised 5-9 host and 5-11 parasitoid species at each site, and showed a lower incidence of parasitism at high elevation. Despite considerable turnover in the relative abundance of host Drosophila species, and contrary to some previous results, we did not detect significant changes to fundamental metrics of network structure including nestedness and specialisation with elevation. Advances in community ecology depend on data from a combination of methodological approaches. It is therefore especially valuable to develop model study systems for sets of closely-interacting species that are diverse enough to be representative, yet still amenable to field and laboratory experiments

    Wolbachia and DNA barcoding insects: patterns, potential and problems

    Get PDF
    Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein – wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor – for which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region

    Detection of Mitochondrial COII DNA Sequences in Ant Guts as a Method for Assessing Termite Predation by Ants

    Get PDF
    Termites and ants contribute more to animal biomass in tropical rain forests than any other single group and perform vital ecosystem functions. Although ants prey on termites, at the community level the linkage between these groups is poorly understood. Thus, assessing the distribution and specificity of ant termitophagy is of considerable interest.We describe an approach for quantifying ant-termite food webs by sequencing termite DNA (cytochrome c oxidase subunit II, COII) from ant guts and apply this to a soil-dwelling ant community from tropical rain forest in Gabon. We extracted DNA from 215 ants from 15 species. Of these, 17.2% of individuals had termite DNA in their guts, with BLAST analysis confirming the identity of 34.1% of these termites to family level or better. Although ant species varied in detection of termite DNA, ranging from 63% (5/7; Camponotus sp. 1) to 0% (0/7; Ponera sp. 1), there was no evidence (with small sample sizes) for heterogeneity in termite consumption across ant taxa, and no evidence for species-specific ant-termite predation. In all three ant species with identifiable termite DNA in multiple individuals, multiple termite species were represented. Furthermore, the two termite species that were detected on multiple occasions in ant guts were in both cases found in multiple ant species, suggesting that anttermite food webs are not strongly compartmentalised. However, two ant species were found to consume only Anoplotermes-group termites, indicating possible predatory specialisation at a higher taxonomic level. Using a laboratory feeding test, we were able to detect termite COII sequences in ant guts up to 2 h after feeding, indicating that our method only detects recent feeding events. Our data provide tentative support for the hypothesis that unspecialised termite predation by ants is widespread and highlight the use of molecular approaches for future studies of ant-termite food webs

    The Effects of Aphid Traits on Parasitoid Host Use and Specialist Advantage

    Get PDF
    Specialization is a central concept in ecology and one of the fundamental properties of parasitoids. Highly specialized parasitoids tend to be more efficient in host-use compared to generalized parasitoids, presumably owing to the trade-off between host range and hostuse efficiency. However, it remains unknown how parasitoid host specificity and host-use depends on host traits related to susceptibility to parasitoid attack. To address this question, we used data from a 13-year survey of interactions among 142 aphid and 75 parasitoid species in nine European countries. We found that only aphid traits related to local resource characteristics seem to influence the trade-off between host-range and efficiency: more specialized parasitoids had an apparent advantage (higher abundance on shared hosts) on aphids with sparse colonies, ant-attendance and without concealment, and this was more evident when host relatedness was included in calculation of parasitoid specificity. More traits influenced average assemblage specialization, which was highest in aphids that are monophagous, monoecious, large, highly mobile (easily drop from a plant), without myrmecophily, habitat specialists, inhabit non-agricultural habitats and have sparse colonies. Differences in aphid wax production did not influence parasitoid host specificity and host-use. Our study is the first step in identifying host traits important for aphid parasitoid host specificity and host-use and improves our understanding of bottom-up effects of aphid traits on aphid-parasitoid food web structure

    Myrna on horse, Goldie

    No full text
    Description on back: Myrna on Goldie in back paddock

    DROP: molecular voucher database for identification of Drosophila parasitoids

    No full text
    Molecular identification is increasingly used to speed up biodiversity surveys and laboratory experiments. However, many groups of organisms cannot be reliably identified using standard databases such as GenBank or BOLD due to lack of sequenced voucher specimens identified by experts. Sometimes a large number of sequences are available, but with too many errors to allow identification. Here we address this problem for parasitoids of Drosophila by introducing a curated open-access molecular reference database, DROP (Drosophila parasitoids). Identifying Drosophila parasitoids is challenging and poses a major impediment to realize the full potential of this model system in studies ranging from molecular mechanisms to food webs, and in biological control of Drosophila suzukii. In DROP (http://doi.org/10.5281/zenodo.4519656), genetic data are linked to voucher specimens and, where possible, the voucher specimens are identified by taxonomists and vetted through direct comparison with primary type material. To initiate DROP, we curated 154 laboratory strains, 856 vouchers, 554 DNA sequences, 16 genomes, 14 transcriptomes, and 6 proteomes drawn from a total of 183 operational taxonomic units (OTUs): 114 described Drosophila parasitoid species and 69 provisional species. We found species richness of Drosophila parasitoids to be heavily underestimated and provide an updated taxonomic catalogue for the community. DROP offers accurate molecular identification and improves cross referencing between individual studies that we hope will catalyze research on this diverse and fascinating model system. Our effort should also serve as an example for researchers facing similar molecular identification problems in other groups of organisms

    dataset records

    No full text
    List of all 392 records in the dataset, including ones we failed to sequence

    parasitoid reference sequences

    No full text
    A selection of 329 sequences relevant to the dataset from the parasitoid reference library
    corecore