499 research outputs found
Proximity effect of vanadium on spin-density-wave magnetism in Cr films
The spin-density wave (SDW) state in thin chromium films is well known to be
strongly affected by proximity effects from neighboring layers. To date the
main attention has been given to effects arising from exchange interactions at
interfaces. In the present work we report on combined neutron and synchrotron
scattering studies of proximity effects in Cr/V films where the boundary
condition is due to the hybridization of Cr with paramagnetic V at the
interface. We find that the V/Cr interface has a strong and long-range effect
on the polarization, period, and the N\'{e}el temperature of the SDW in rather
thick Cr films. This unusually strong effect is unexpected and not predicted by
theory.Comment: 7 figure
Size effects in antiferromagnetic NiO nanoparticles
X-ray and neutron diffraction as well as magnetometric methods were used in order to investigate crystal and magnetic structure together with magnetic properties of nickel oxide NiO obtained from thermal decomposition of Ni(OH). It has been found that crystal unit cell volume and crystal unit cell deformation parameter decrease with increasing decomposition temperature while grain size increases. The results of magnetization, magnetic susceptibility and neutron diffraction measurements reveal a formation of antiferromagnetic order with uncompensated magnetic moment below the Néel temperature. Magnetization together with coercive field decreases with increasing . The neutron diffractogram of sample obtained at 240°C indicates broadening of both the peaks of nuclear and magnetic origin. The magnetic ordering may be described by a propagation vector
Macroscopic and microscopic study of a CePdIn compound
The magnetization and electrical resistivity measurements on a CePdIn single crystal as well as its preparation and structural characterization are presented. The negative paramagnetic Curie temperatures indicate antiferromagnetic ground state, the anisotropy of the paramagnetic Curie temperature amounts 22.7 K. No ferromagnetic correlations were indicated. Powder neutron diffraction experiment performed at temperatures down to 0.4 K did not lead to observation of any magnetic peak in diffraction patterns. We estimate the magnetic moment on Ce atoms to be significantly lower than 0.5-B. The temperature development of lattice parameters documents the standard thermal expansion of the unit cell; no signs of structural phase transition were observed
Neutron Scattering Measurements in RbMnF\u3csub\u3e3\u3c/sub\u3e: A Test of Spin-Wave-Region Theories at Low Temperatures and Critical Behavior Near T\u3csub\u3eN\u3c/sub\u3e
With the discovery of magnetic ordering in RbMnF3, this unique antiferromagnetic system was recognized as a prime case for a test of conventional spin-wave theory (CSWT) because of its negligibly small anisotropy and its simple, cubic structure. CSWT predicts a simple T2 power-law fall-off of the sublattice magnetization. Yet to this day, no stringent tests have been made of this prediction. Seiden [(Phys. Lett. 28 A, 239 (1968)] deduced a T3 low-temperature behavior on the basis of antiferromagnetic resonance measurements, concluding that CSWT was not supported. We have recently carried out neutron scattering measurements of both single-crystal and powdered samples of RbMnF3 in order to test for CSWT, Seiden’s result, and two other more recent semiempirical spin-wave schemes, and we present an analysis of the results. Measurements in the critical regime gave values of the critical exponent β and of TN that are in agreement with previous measurements
Neutron Diffraction Studies of PrNi5Sn
Powder neutron diffraction measurements of PrNi_{5}Sn performed in the temperature range 1.5-76 K indicate that the compound crystallizes in a hexagonal CeNi_{5}Sn-type crystal structure (space group P6_{3}/mmc). The a lattice parameter and the unit cell volume V increase while the c lattice parameter does not change with increasing temperature. No long range magnetic ordering was detected down to 1.5 K, in contradiction to bulk magnetometric results
Antiferromagnetic structure and electronic properties of BaCr2As2 and BaCrFeAs2
The chromium arsenides BaCr2As2 and BaCrFeAs2 with ThCr2Si2 type structure
(space group I4/mmm; also adopted by '122' iron arsenide superconductors) have
been suggested as mother compounds for possible new superconductors. DFT-based
calculations of the electronic structure evidence metallic antiferromagnetic
ground states for both compounds. By powder neutron diffraction we confirm for
BaCr2As2 a robust ordering in the antiferromagnetic G-type structure at T_N =
580 K with mu_Cr = 1.9 mu_B at T = 2K. Anomalies in the lattice parameters
point to magneto-structural coupling effects. In BaCrFeAs2 the Cr and Fe atoms
randomly occupy the transition-metal site and G-type order is found below 265 K
with mu_Cr/Fe = 1.1 mu_B. 57Fe Moessbauer spectroscopy demonstrates that only a
small ordered moment is associated with the Fe atoms, in agreement with
electronic structure calculations with mu_Fe ~ 0. The temperature dependence of
the hyperfine field does not follow that of the total moments. Both compounds
are metallic but show large enhancements of the linear specific heat
coefficient gamma with respect to the band structure values. The metallic state
and the electrical transport in BaCrFeAs2 is dominated by the atomic disorder
of Cr and Fe and partial magnetic disorder of Fe. Our results indicate that
Neel-type order is unfavorable for the Fe moments and thus it is destabilized
with increasing iron content.Comment: 14 pages, 14 figures, submitted to Physical Review
Competing Jahn Teller distortions and ferrimagnetic ordering in the geometrically frustrated system Ni1 xCuxCr2O4
Competing Jahn Teller distortions combined with geometrical frustration give rise to a rich phase diagram as a function of x Cu and temperature in the spinel system Ni1 xCuxCr2O4. The Jahn Teller distortion of the end members acts in opposite ways, with an elongation of the NiO4 tetrahedra resulting in a structural transition at TS1 317K in NiCr2O4, but a flattening in the CuO4 tetrahedra at TS1 846K in CuCr2O4. In both cases the symmetry is lowered from cubic Fd 3m to tetragonal I41 amd on cooling. In order to follow the influence of Jahn Teller active Ni2 and Cu2 ions on the structural and magnetic properties of chromium spinels, we have investigated a series of samples of Ni1 xCuxCr2O4 by x ray and neutron powder diffraction. In the critical range 0.10 lt; x Cu lt; 0.20, strong orthorhombic distortions were observed, where competing Jahn Teller activities between the Cu2 and Ni2 ions result in distortions along both the a and c axes. For Ni0.85Cu0.15Cr2O4, the orthorhombic structure Fddd is stabilized up to TS2 368 2 K, close to the first structural phase transition at TS1 374 2 K. A ferrimagnetic spin alignment of the Ni Cu and chromium atoms sets in at much lower temperature TC 95K in this compound. The end members NiCr2O4 and CuCr2O4 undergo this ferrimagnetic transition at TC 74 and 135 K, respectively. These transitions are accompanied by the structural change to the orthorhombic symmetry which relieves the frustration. NiCr2O4 and Ni0.85Cu0.15Cr2O4 undergo a second magnetic transition at TM2 24 and 67K due to a superimposed antiferromagnetic ordering of the Cr moments resulting in a noncollinear magnetic structure. In the system Ni1 xCuxCr2O4, the magnetic transitions TC and TM2 merge with increasing copper content up to x Cu similar to 0.5. For the Ni rich chromites, geometrical frustration causes a strong reduction of the chromium moments, where magnetic long range order coexists with a disordered spin liquid like or a reentrant spin glass like state. This paper provides insight into the interplay between the Jahn Teller effect, geometrical frustration, and long range magnetic order in these complex system
From heavy fermion and spin-glass behavior to magnetic order in CeT 4M compounds
We report on the transitions between the ferromagnetic order, spin-glass behavior, heavy fermion and
uctuating valence state in a series of isostructural compounds CeT4M (T = Ni, Cu; M = Al, Ga, Mn). The
dilution of Ce or the T and M elements allowed us to follow the physical properties evolution employing the
measurements of the heat capacity, dc magnetic susceptibility, frequency dependent ac magnetic susceptibility,
magnetization relaxation, inelastic neutron scattering and also the X-ray photoemission spectroscopy. It is shown
that the Mn rich compounds lean towards the spin glass behavior. For the compounds governed by the close to
localization Ce 4f states the e ect of the crystal electric eld has been studied. It has been shown that the spin
glass-like behavior can signi cantly in uence the physics of the CeT4M compounds
- …