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Competing Jahn-Teller distortions combined with geometrical frustration give rise to a 

rich phase diagram as a function of x(Cu) and temperature in the spinel system 

Ni1xCuxCr2O4. The Jahn-Teller distortion of the end members acts in opposite ways with an 

elongation of the NiO4 tetrahedra resulting in a structural transition at TS1 = 317 K in 

NiCr2O4, but a flattening in the CuO4 tetrahedra at TS1 = 846 K in CuCr2O4, in both cases the 

symmetry is lowered from cubic ( mFd3 ) to tetragonal (I41/amd) on cooling. In order to 

follow the influence of Jahn-Teller active Ni2+ and Cu2+ ions on the structural and magnetic 

properties of chromium spinels we have investigated a series of samples of Ni1xCuxCr2O4 by 

x-ray and neutron powder diffraction. In the critical range 0.10 < x(Cu) < 0.20 strong 

orthorhombic distortions were observed, where competing Jahn-Teller activities between the 

Cu2+ and Ni2+ ions result in distortions along both the a and c axes. For Ni0.85Cu0.15Cr2O4 the 

orthorhombic structure (Fddd) is stabilized up to TS2 = 368(2) K close to the first structural 

phase transition at TS1 = 374(2) K. A ferrimagnetic spin alignment of the Ni/Cu and 

chromium atoms sets in at much lower temperature TC = 95 K in this compound. The end 

members NiCr2O4 and CuCr2O4 undergo this ferrimagnetic transition at TC = 74 and 135 K, 

respectively. These transitions are accompanied by the structural change to the orthorhombic 

symmetry which relieves the frustration. NiCr2O4 and Ni0.85Cu0.15Cr2O4 undergo a second 

magnetic transition at TM2 = 24 and 67 K due to a superimposed antiferromagnetic ordering of 

the Cr moments resulting in a non-collinear magnetic structure. In the system Ni1xCuxCr2O4 

the magnetic transitions TC and TM2 merge with increasing copper content up to x(Cu) ~ 0.5. 

For the Ni rich chromites geometrical frustration causes a strong reduction of the chromium 

moments, where magnetic long-range order coexists with a disordered spin-liquid-like or a 

reentrant-spin-glass-like state. This investigation provides insight into the interplay between 

the Jahn-Teller effect, geometrical frustration and long-range magnetic order in these 

complex systems.   

PACS number(s): 61.05.fm, 61.66.Fn, 71.70.Ej, 75.50.Gg  
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I. INTRODUCTION 

 

       Investigations of magnetostructural coupling in geometrically frustrated magnets have 

invoked a broad interest, especially where structural distortions lift the large ground state 

degeneracy allowing long-range magnetic order. In normal spinels with the general formula 

AB2O4 the A2+ cation occupies the tetrahedral site (A site), while the B3+ cation occupies the 

octahedral site (B site). The B3+ cations form a corner-sharing tetrahedral network (pyrochlore 

lattice), where the spins are often governed by strong geometrical frustration. Already in the 

1950s theoretical concepts of long-range ordering were proposed in pyrochlore lattices.1,2 

Transition-metal spinels, where A is diamagnetic (A = Mg2+, Zn2+, Cd2+, and Hg2+) are ideal 

models to study the interactions between spin, lattice, and orbital degrees of freedom affected 

by geometrical frustration.3 In the system AV2O4, where the V3+-ions have an orbital degree 

of freedom with 3d2 configuration, the tetragonal compression causes the t2g levels to split 

into a lower dxy level and a twofold degenerate dyz/dxz level. Electronic energy can thus be 

gained by cooperative distortion of the VO6 octahedra through the Jahn-Teller effect. For 

MgV2O4 and ZnV2O4 this transition sets in at TS = 65 and 51 K, respectively.4,5 Long-range 

antiferromagnetic ordering occurs at lower temperature at TN = 42 K (MgV2O4) and TN = 40 

K (ZnV2O4).
4,5 In chromium spinels the Cr3+ ions have 3d3 configuration, where the t2g levels 

are half filled. In this configuration cooperative distortions of the CrO6 octahedra through the 

Jahn-Teller effect should be absent. However, in the highly frustrated chromites MgCr2O4, 

ZnCr2O4, CdCr2O4, and HgCr2O4 antiferromagnetic ordering sets in at the Néel temperatures 

TN = 12.9, 12.5, 7.8, and 5.8 K, respectively.6-9 Due to the presence of magnetoelastic effects 

a change to a lower crystal structure symmetry was found at these temperatures which relieve 

the frustration and enabling the magnetic order.7,8 For HgCr2O4 almost degenerated spin-

excitation modes were discovered by powder inelastic neutron scattering indicating the 

coexistence of a quantum spin liquid with magnetic long-range order as ground states well 

below TN.10  

In spinels, where A2+ is a magnetic ion, the A2+-O-Cr3+-interaction is usually collectively 

stronger than the frustrated interactions between the Cr3+-ions. In the multiferroic spinel 

CoCr2O4, where neither Co2+ nor Cr3+ are Jahn-Teller active, the magnetic ordering consists 

of a ferrimagnetic component and a spiral component below TC = 93 K.11 The ferrimagnetic 

component exhibits long-range order, while the spiral component exhibits short-range order, 

which transforms to long-range order at TM2 = 31 K.12 Upon this transition Yamasaki et al. 

(Ref. 13) have demonstrated the presence of ferroelectricity based on the conical spin 
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modulation. In NiCr2O4 and CuCr2O4 strong Jahn-Teller activities were found on the A sites 

resulting in an elongation of the NiO4 tetrahedra and a flattening of the CuO4 tetrahedra along 

the tetragonal c axis (Fig. 1), where the cubic spinel structure ( mFd3 ) changes to the next-

lower symmetric tetragonal structure with the space group I41/amd.14-22 For NiCr2O4 this 

transition was observed at 310 and 320 K, while for CuCr2O4 it was observed at much higher 

temperature at 853 and 865 K.20,21,23,24 Susceptibility measurements of NiCr2O4 showed that a 

ferrimagnetic transition occurs at TC = 74 K followed by a second magnetic transition at TM2 

= 31 K.25 Similar temperatures (TC = 75 K, TM2 = 29 K) were found by means of specific-heat 

measurements.23 For CuCr2O4 a very similar ferrimagnetic transition could be found in the 

range between 122 and 157 K.18,21,22,24 Nevertheless, susceptibility measurements of CuCr2O4 

did not reveal any second magnetic transition.21,26,27 Suchomel et al. (Ref. 22) finally showed 

by high-resolution x-ray synchrotron powder diffraction that the change from the tetragonal to 

an orthorhombic structure (space group Fddd) occurs concurrently with the onset of 

ferrimagnetic order.  

The magnetic structures of NiCr2O4 and CuCr2O4 were investigated earlier by neutron 

powder diffraction.18,25,28 The magnetic moments of NiCr2O4 are composed of a ferrimagnetic 

(longitudinal) and antiferromagnetic (transverse component, where the magnetic structures 

were described by the propagation vectors k1 = 0 and k2 = (0,0,1), respectively. However two 

different types of spin structures presented in Refs. 25 and 28 gave rise to controversial 

discussions. In contrast to the nickel chromite both the ferrimagnetic and antiferromagnetic 

ordering of CuCr2O4 are describable with the same propagation vector k = 0.18 However, it 

was not possible to distinguish between two different models of triangular spin 

arrangements.18 All these inconsistencies led us to reinvestigate the magnetic structures of 

NiCr2O4 and CuCr2O4, since knowledge of their magnetic structures is essential for an 

understanding of the interplay between Jahn-Teller distortions and magnetic forces in the 

solid solution series Ni1xCuxCr2O4.  

The main purpose of this paper is to provide a more complete basis for a theoretical 

description of the rather complex magnetic states in chromium spinels. Of particular interest 

is to investigate the interplay between coexisting ferri- and antiferromagnetic spin structures 

and disordered spin states, as well as the influence on the magnetic Cr3+ ions forming a more 

or less distorted pyrochlore lattice. Therefore neutron and x-ray powder diffraction was used 

to carry out a comprehensive investigation of the crystal and magnetic structures of a series of 

samples in the system Ni1xCuxCr2O4.  
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II. EXPERIMENTAL DETAILS 

 

Powder samples of Ni1xCuxCr2O4 were prepared by the precursor method using Cu(II)-

hydroxide carbonate (Merck), Ni(II)-hydroxide carbonate (Merck) and Cr(III) nitrate (Alfa 

Aesar) as starting materials. We prepared several samples in the system Ni1xCuxCr2O4 in 

steps of x(Cu) = 0.10; in the critical range 0.10 ≤ x(Cu) ≤ 0.20 samples in steps of x(Cu) = 

0.02, as well as two more samples with x(Cu) = 0.25 and 0.05. Mixed powders of the starting 

materials were reacted in a corundum crucible at temperatures up to 600 K. The resulting 

products were pulverized again and sintered at 1200 K for 24 h. In order to improve the 

homogeneity of the samples they were annealed for another 5 days at 1200 K. The sample 

quality was checked by x-ray powder diffractometer (Bruker D8 advance) using Cu-Kα 

radiation. The x-ray powder patterns of the different samples occasionally showed minor 

amounts of Cr2O3 (< 5.1 %) and NiO (< 0.6 %). For further investigations of the crystal 

structure between 10 and 350 K we used a Guinier diffractometer Huber 645 (Cu-Ka1,  = 

1.54051 Å). On both diffractometers x-ray powder data were collected in the 2-range 

between 15 and 100°. In order to find a conclusive answer about the crystal structure 

symmetry of Ni0.85Cu0.15Cr2O4, we have performed a synchrotron powder diffraction study at 

the European Synchrotron Radiation Facility (ESRF) in Grenoble using the wavelength  = 

0.6888 Å. A complete high-resolution powder pattern of Ni0.85Cu0.15Cr2O4 was collected with 

the PILATUS at the Swiss-Norwegian beam line with a 2 range between 1 and 46°. This 

instrument uses a pixel area detector with flexible goniometry. 

The influence of copper substitution in the system Ni1xCuxCr2O4 on the phase transition 

temperatures was investigated using differential scanning calorimetry (DSC, PerkinElmer 

Pyris 1) in the temperature range between 323 and 873 K with heating and cooling rate of 20 

°C min1. Further investigations of structural and magnetic phase transitions were carried out 

by neutron powder diffraction down to 2 K. This technique also allowed us to determine in 

detail the crystal and magnetic structures in the system Ni1xCuxCr2O4. Neutron powder 

diffraction experiments were carried out on the instruments E6 and E9 (Ref. 29) at the BER II 

reactor of the Helmholtz-Zentrum Berlin (HZB), using pyrolytic graphite and Ge 

monochromators selecting the neutron wavelengths  = 2.442 Å and  = 1.7982 Å, 

respectively. At room temperature complete powder patterns (8° ≤ 2 ≤ 150°) were collected 

on E9 in the full range 0 ≤ x(Cu) ≤ 1 in steps of x = 0.10 and at 2 K powder patterns of 

samples with x(Cu) = 0, 0.40, 0.60, 0.80, 1. A detailed study of the crystal and magnetic 
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structure was carried out for end member NiCr2O4 and the mixed chromite Ni0.85Cu0.15Cr2O4. 

A large number of powder patterns was collected on E6 (8° ≤ 2 ≤ 137°) and E9 (8° ≤ 2 ≤ 

150°) in the temperature range between 2 K and 475 K. Rietveld refinements of the powder 

diffraction data were carried out with the program FullProf.30 For the x-ray data we used the 

atomic scattering factors provided by the program; for the neutron data we used the nuclear 

scattering lengths b(O) = 5.805 fm, b(Cr) = 3.635 fm, b(Ni) = 10.3 fm, and b(Cu) = 7.818 fm, 

respectively.31 The magnetic form factors of the Cr3+, Ni2+ and Cu2+ ions were taken from 

Ref. 32. 

 

 

III. RESULTS AND DISCUSSION 

 

A. Structural properties of Ni1xCuxCr2O4 at room temperature 

 

We have started our study by investigating the variation of lattice parameters of several 

samples of the system Ni1xCuxCr2O4 by x-ray powder diffraction. In order to get comparable 

lattice parameters for the cubic (space group mFd3 ), tetragonal (I41/amd), and orthorhombic 

(Fddd) phases we generally used in the present work the setting of the pseudocubic F-

centered unit cell (labeled as a, b, and c). In this regard it has to be noted that the dimensions 

of the tetragonal cell are at × bt × ct = a/2  b/2  c. Fig. 2 shows that a strong structural 

change occurs in the critical range 0.10 ≤ x(Cu) ≤ 0.20. This is in excellent agreement with 

the result of an earlier x-ray diffraction study.16 Outside this critical range one finds a strong 

stabilization of the Jahn-Teller effect on the A-site, where the different electronic 

configurations of the Ni2+ and Cu2+ ions lead to the ratios c/a > 1, and c’/a’ < 1, respectively. 

It is obvious from Fig. 2 that a change from the state a = b < c (Ni-rich) to the state a < b = c 

(Cu-rich) occurs by a continuous increase of b with increasing Cu content. A consistent 

description of the whole system requires that the c and c’ axes of the two tetragonal end 

members lie in different directions. Thus we used for the copper-rich compounds the 

tetragonal setting a < b = c, instead of the standard setting c’ < b’ = a’ (with b = b’), where a 

is now the tetragonal axis. An orthorhombic splitting (a < b < c) could be observed in the 

range 0.10 ≤ x(Cu) ≤ 0.30, where the strongest orthorhombic distortion was found for the 

chromite Ni0.85Cu0.15Cr2O4.  

Closer inspection of the powder patterns of all investigated chromites showed that only 

for Ni0.85Cu0.15Cr2O4 several Bragg reflections are considerably broadened. The strongest 
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broadening was found for the reflection series h00, 0k0, and 00ℓ. In order to exclude the 

presence of a further symmetry reduction into a monoclinic or triclinic structure we collected 

a high-resolution synchrotron powder pattern of this chromite. The data analysis showed no 

additional peak splitting, but the peak broadening of particular Bragg reflections could be 

confirmed. In Fig. 3 we present the result of a simulation using the refined profile-function 

parameters obtained for the standard LaB6. It can be seen that the reflection 222 essentially 

shows the same resolution as that of LaB6, representing the instrumental resolution, whereas 

the h00, 0k0, and 00ℓ show an especially strong peak broadening. This behavior is probably 

correlated with the strong peak splitting of the cubic reflection h00 into the orthorhombic 

reflections h00, 0k0, and 00ℓ. On the other hand reflections of the type hhh do not show any 

peak splitting in the orthorhombic symmetry, and consequently their peak shapes remain 

unchanged. Such peak broadening only could be observed in Ni0.85Cu0.15Cr2O4, while for the 

end member CuCr2O4 no peak broadening of the series h00, 0k0, and 00ℓ was found despite 

the fact that the tetragonal axis is strongly reduced of about 10 %. This led us to the 

conclusion that a strongly anisotropic strain broadening in Ni0.85Cu0.15Cr2O4 is based on 

competing Jahn-Teller effects acting along particular directions along the a and c axes 

(elongated NiO4 and flattened CuO4 tetrahedra). The crystal structure of Ni0.85Cu0.15Cr2O4 

was successfully refined by the use of additional strain parameters provided by the FullProf 

program.30 This resulted in an improvement of the quality of the difference pattern (Iobs  Ical) 

as well as in a reduction of the standard deviations of the lattice and atomic parameters. 

However no significant changes of these parameters were found in comparison with the 

standard refinements. In an earlier work a theory of the cooperative Jahn-Teller effect was 

developed for the purpose of discussing the spontaneous crystal distortions in mixed 

chromites.33 This theory explains successfully various features of the phase diagrams of 

mixed chromites such as the concentration dependences of transition temperatures and the 

magnitude of the distortions, as well as the appearance of an orthorhombic phase. 

 

 

B. Low-temperature crystal structure of Ni1xCuxCr2O4 

  

The crystal structure of the end members NiCr2O4 and CuCr2O4 was investigated earlier 

by synchrotron powder diffraction.22 At low temperature (10 K) both compounds showed an 

orthorhombic splitting, where the splitting of CuCr2O4 (c/a = 1.00087) was found to be less 

pronounced than that of NiCr2O4 (c/a = 1.00176).22 In the present work we have investigated 
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the crystal structure of several chromites of the system Ni1xCuxCr2O4 at 2 K by neutron 

powder diffraction. In agreement with Ref. 22 the low-temperature crystal structure could be 

successfully refined in the orthorhombic space group Fddd (No. 70) for samples with a 

copper content up to x(Cu) = 0.40. Using origin choice 2 of Fddd (given in Ref. 34) the atoms 

are located at the following Wyckoff positions: Ni/Cu at 8a(⅛,⅛,⅛), Cr at 16d(½,½,½), and 

32h(x,y,z). For the copper-rich chromites with x(Cu) > 0.40 eventual orthorhombic splitting 

was below the instrumental resolution of E9. Therefore for these samples the lattice 

parameters b and c as well as the positional parameters y(O) and z(O) were constrained to be 

equal during the refinements. This assumption is not unjustified, as from synchrotron powder 

data of Suchomel et al. (Ref. 22) these positional parameters of the oxygen atoms were indeed 

found to be equal [y(O) = z(O) = 0.2675(2)]. For all samples the Rietveld refinements resulted 

in very satisfactory residuals RF  0.023 (defined as RF = ∑||Fobs|  |Fcalc||/∑|Fobs|). The results 

of the refinements are summarized in Table I. Further the neutron powder patterns of 

NiCr2O4, Ni0.85Cu0.15Cr2O4, and CuCr2O4 collected at 2 K are shown in Fig. 4. 

In this section we want to point out some systematic structural changes in the system 

Ni1xCuxCr2O4 at 2 K. Despite the fact that the end members NiCr2O4, and CuCr2O4 show an 

elongation (along c) and a flattening (along a) of the NiO4 and CuO4 tetrahedra, respectively, 

the crystal structures of both can be described in the orthorhombic space group Fddd.22 Over 

the whole composition range of the system Ni1xCuxCr2O4 a continuous description is 

possible, where the a parameter is always the shortest one, and the c parameter always the 

largest (Table I). In accordance with the room temperature data (Fig. 2), also at 2 K it is the b 

parameter that undergoes the strongest change. Here the b parameter almost reaches the 

values of a and c in the Ni-rich and Cu-rich chromites, respectively. As expected we observed 

the strongest structural changes on the A-sites due to competing Jahn-Teller activities of the 

Ni2+ and Cu2+ cations. In the orthorhombic structure one finds three different tetrahedron 

angles, where the bisectors of a(O-A-O), b(O-A-O), and c(O-A-O) correspond to the a , b, 

and c axes, respectively. In the ideal tetragonal structure of the end members NiCr2O4 and 

CuCr2O4 one finds the conditions a(O-A-O) = b(O-A-O) > c(O-A-O),  and a(O-A-O) > 

b(O-A-O) = c(O-A-O), respectively. In Table I it can be seen that the strongest changes 

were found for the angles a(O-A-O), and b(O-A-O), where a(O-A-O) increases, and 

b(O-A-O) decreases by about 10 degrees with increasing copper content. On the other hand 

the angle c only varies moderately in the range between 102.74 and 105.03°. Here it is 

important to note that the tetrahedral angle a(O-A-O) is always the largest in the system 
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Ni1xCuxCr2O4. Interestingly the bond lengths in the AO4 tetrahedra are rather stable: d(A-O) 

only varies in the limited range between 1.961 and 1.969 Å, and the same tendency was found 

for the bond lengths d(Cr-O) in the CrO6 octahedra, where all the three different bond lengths 

da(Cr-O), db(Cr-O), and dc(Cr-O) are in the range 1.977 to 1.992 Å. At this point we can 

conclude that no significant Jahn-Teller distortion could be found in the CrO6 octahedra 

down to very low temperature. It has to be mentioned that the bond lengths da(Cr-O), db(Cr-

O), and dc(Cr-O) are almost parallel to the a, b, and c axes. In the CrO6 units the change of 

the three different octahedral angles 1(O-Cr-O), 2(O-Cr-O), and 3(O-Cr-O) are much less 

pronounced. Here one only finds the tendency that 1 decreases (2 increases) of about 2-3 

degrees with increasing copper content, whereas for 3 the changes are less than 0.7°.  

 

 

C. Structural and magnetic phase transitions of Ni1xCuxCr2O4 

 

We now discuss the sequence of structural and magnetic phase transitions in the solid 

solution series Ni1xCuxCr2O4. Here we focus on the structural and magnetic phase transitions 

of NiCr2O4, and the mixed chromites Ni0.85Cu0.15Cr2O4, and Ni0.80Cu0.20Cr2O4 lying in the 

critical range 0.10 ≤ x(Cu) ≤ 0.30. Due to the fact that both the tetragonal and orthorhombic 

distortions are strongly pronounced in the two mixed chromites their individual lattice 

parameters could determined with good accuracy. From the temperature dependence of the 

lattice parameters the structural phase transition temperatures TS1 (cubic to tetragonal) and TS2 

(tetragonal to orthorhombic) were determined. In Fig. 5 it can be seen that the orthorhombic 

structure of Ni0.85Cu0.15Cr2O4 is well stabilized up to a relatively high temperature that is very 

close to the first structural phase transition at TS1 = 374(2) K. Closer inspection shows that the 

lattice parameters a and b already become indistinguishable at TS2 = 368(2) K, indicating the 

presence of the tetragonal phase, which is stable in a narrow temperature range of only 6 

degrees (a = b < c). As it can be seen from Fig. 5, a slight increase of the copper level from 

x(Cu) = 0.15 to 0.20 results in a strong expansion of the tetragonal phase range from 231(2) to 

403(2) K. It is interesting to see that the lattice parameters b and c of Ni0.80Cu0.20Cr2O4 

become identical in the tetragonal phase, where one finds a < b = c. For the end member 

NiCr2O4 it was found that a transition from the cubic to the tetragonal structure sets in at TS1 = 

317(2) K followed by a structural change into the orthorhombic structure at TS2 = 74(2) K. 

For this compound the tetragonal distortion is much stronger pronounced than the 
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orthorhombic distortion. The transition temperatures observed in this work are in good 

agreement with those given earlier.20,22,23,25  

In order to investigate in detail the magnetic phase transitions of NiCr2O4, 

Ni0.85Cu0.15Cr2O4, and Ni0.80Cu0.20Cr2O4 we have followed the temperature dependence of 

particular magnetic reflections (Fig. 6). NiCr2O4 shows a spontaneous increase of magnetic 

intensity at the position of the reflection 111 indicating the onset of ferrimagnetic ordering of 

the nickel and chromium. This magnetic transition sets in practically at the same temperature 

TS2 = 74(2) K, where the transition from the tetragonal into the orthorhombic structure was 

found. This is in agreement with the result of Suchomel et al., where it was claimed that the 

second structural transition is accompanied by the onset of ferrimagnetic ordering (TS2 = 

TC).22 The ferrimagnetic transitions of Ni0.85Cu0.15Cr2O4 and Ni0.80Cu0.20Cr2O4 were found to 

be at higher temperature at TC = 85(3) K and TC = 95(3) K, respectively. In contrast to 

NiCr2O4 these transitions were found to be well below the second structural phase transitions 

at TS1 = 374(2) and 403(2) K, respectively. Upon further cooling a second magnetic transition 

was found for the chromites NiCr2O4 [TM2 = 24(1) K], Ni0.85Cu0.15Cr2O4 [TM2 = 48(2) K], and 

(Ni0.80Cu0.20Cr2O4) [TM2 = 67(3) K]. Interestingly for Ni0.85Cu0.15Cr2O4 and Ni0.80Cu0.20Cr2O4 

a relatively strong magnetoelastic effect could be found for the lattice parameters a and b 

below TM2, whereas such anomaly was not observed for the parameters c (Fig. 5). Here the 

decrease and increase of a and b lead to an even stronger separation of these parameters. For 

the end member NiCr2O4 magnetic intensity was found at the position of reflection 201, 

whereas for the chromites Ni0.85Cu0.15Cr2O4 and Ni0.80Cu0.20Cr2O4 it was found at the position 

of 200, which are all forbidden in Fddd. However, in both cases these types of magnetic 

reflections can be ascribed to the onset of an additional antiferromagnetic ordering (see 

section D). 

For NiCr2O4 the temperature dependence of the magnetic intensities of the reflections 110 

and 201/021 is shown in Fig. 7. It can be seen that the magnetic intensity of 201/021 

disappears at 24(1) K indicating the onset of long-range antiferromagnetic ordering. 

Interestingly the magnetic intensity of the 110 disappears at slightly higher temperature at 

27(1) K, that is closer to the values TM2 = 29 K and TM2 = 31 K obtained earlier from 

susceptibility and specific-heat measurements.23,25 However, at 25.5 K we found for the 

reflection 110 a broadening and a slight displacement from the expected 2 position (Fig. 7). 

It is likely that the reflection 110 contains stronger proportions of diffuse scattering, which 

has to be taken into account for the determination of the transition temperature TM2. In fact an 

appreciable part of diffuse scattering was found earlier for NiCr2O4 at lower 2 values in the 
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magnetically ordered state giving an uneven background below 2 = 45° (Fig. 7).35 Further it 

is important to note that no diffuse scattering was found for CuCr2O4.
35 

In order to generate a detailed structural and magnetic phase diagram we used the Curie 

temperatures of Ni1xCuxCr2O4 with x(Cu) = 0.40, 0.60, 0.80, 1.00 determined earlier from 

SQUID measurements.21 For some chromites Ni1xCuxCr2O4 with x(Cu)  0.30 the transition 

temperatures TS1 (from cubic to tetragonal) have been obtained from our DSC measurements. 

In Fig. 8 it can be seen that TS1 almost shows a linear increase with increasing copper level 

reaching finally the value 846(5) K for CuCr2O4. This is in good agreement with the results of 

Kino and Miyahara.17 The strong increase of TS1 correlates with the degree of tetragonal 

distortions, which is much stronger in CuCr2O4 than in NiCr2O4. Further in Fig. 8 it can be 

seen that the Curie temperatures TC of the system Ni1xCuxCr2O4 also show an almost linear 

increase but much less pronounced than that of TS1. This behavior seems to be independent of 

the strong stabilization of the orthorhombic distortions in the critical range 0.10 ≤ x(Cu) ≤ 

0.30. 

 

 

D. Magnetic ordering in the system Ni1xCuxCr2O4 

 

We now discuss the change of magnetic structures in the system Ni1xCuxCr2O4. The 

magnetic structures of the end members NiCr2O4 and CuCr2O4 were investigated earlier by 

neutron diffraction.18,25,28 However, in these studies it was not possible to give a detailed 

description of the magnetic structures. Therefore, in this section we will discuss the magnetic 

properties of NiCr2O4 and CuCr2O4 separately. 

 

1. Magnetic structure of NiCr2O4 

 

The magnetic structure of NiCr2O4 was investigated earlier by neutron diffraction from a 

data set collected at 4.2 K.28 In agreement with our work magnetic reflections were found to 

decompose into two sets, where the individual ferri- and antiferromagnetic structures were 

described with the propagation vectors k1 = 0 and k2 = (001), respectively. Below the 

magnetic phase transition temperature of 74(2) K magnetic intensities were only found at the 

position of allowed nuclear Bragg reflections, indicating the presence of a ferrimagnetic spin 

alignment. For NiCr2O4 the strongest magnetic intensity was found at the position of the 

reflection 111 (Figs. 4 and 6). Thus the magnetic structure can be described with the 
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propagation vector k1 = 0. Below the second magnetic phase transition temperature TM2 = 

24(2) K a spontaneous increase of magnetic intensities were found for the reflections (110)M 

and (201)M/(021)M, which are forbidden in the space group Fddd. The temperature 

dependence of the magnetic intensity of the reflection pair (201)M/(021)M is presented in Fig. 

6. The reflection (110)M and (201)M/(021)M can be generated by the rule (hkℓ)M = (hkℓ)N ± k2, 

where the propagation vector is k2 = (001). The loss of the F-centering gives a magnetic 

structure, wherein the moments of the atoms connected via the translation t1 = (±½,±½,0) are 

coupled ferromagnetically, while those connected via t2 = (0,±½,±½) and t3 = (±½,0,±½) are 

coupled antiferromagnetically. On the other hand magnetic intensity can only be generated on 

the reflections (201)M and (021)M if additionally the d-glide plane symmetry is lost. 

Therefore, the moments of the chromium atoms connected with t4 = (±¼,±¼,0) are coupled 

antiparallel. Concerning the magnetic order of the Cr-atoms in 16d [(1) ½,½,½; (2) ¼,¼,½; 

(3) ¼,½,¼ (4) ½,¼,¼] of Fddd it cannot be distinguished between the spin sequences  

and , where one finds antiferromagnetic chains of Cr-atoms along the directions [110] 

and [110]. In agreement with the result of Bertaut and Dulac (Ref. 28) we found the 

chromium moments to be aligned parallel to the c axis. Although, contrary to Ref. 28 our 

Rietveld refinements showed that the nickel moments located at 8a [(1) ⅛,⅛,⅛; (2) ⅜,⅜,⅞] 

do not contribute to the antferromagnetic order. This result is compatible with the theory of 

Yafet and Kittel suggesting relatively weak antiferromagnetic couplings on the tetrahedral 

sites.1 From the Rietveld refinements of the E6 and E9 data we obtained the moment values 

z(Cr) = 1.15(2) B and z(Cr) = 1.20(2) B, respectively. For the magnetic structure with k1 

= 0 the best fit was obtained, where the nickel and chromium moments are aligned 

ferrimagnetically within the ab-plane. The refined magnetic moments are xy(Ni) = 1.83(9) B 

and xy(Cr) = 0.89(7) B (E6) and xy(Ni) = 1.83(9) B and xy(Cr) = 0.89(7) B (E9); the 

total moments of the chromium atoms are tot(Cr) = 1.48(8) B (E6) and tot(Cr) = 1.49(9) B 

(E9). At 36 K well above the second transition TM2 = 25(2) K the moments in the ab-plane 

were found to be xy(Ni) = 1.69(10) B and xy(Cr) = 0.84(8) B (E6). It is interesting to see 

that the xy(Ni)/xy(Cr) ratio seems to be stable over a wide temperature range. 

    

2. Magnetic structure of CuCr2O4 

     

In contrast to NiCr2O4 both the ferrimagnetic and the antiferromagnetic structure of 

CuCr2O4 could be described with the vector k = 0.18 However a detailed description of the 

magnetic structure could not be given in Ref. 18. Therefore we have reinvestigated the 
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magnetic structure of CuCr2O4 from neutron powder data collected at 2 K. In order to 

compare the magnetic properties of NiCr2O4 and CuCr2O4 the a axis of the copper chromite 

was set to be the pseudo-tetragonal axis. In the powder pattern (Fig. 4) it can be seen that the 

strongest magnetic intensity was found at the position of the allowed reflection 111. Here it 

has to be mentioned that the nuclear contribution of the intensity of 111 is negligibly small. 

This strong intensity of the 111 again suggests the presence of ferrimagnetic ordering of the 

copper and chromium moments. Magnetic intensity could also be observed at the position of 

200, whereas no magnetic intensity could be observed for the reflections 020 and 002. For 

CuCr2O4 one only finds a loss of the d-glide plane symmetry. Magnetic intensity could be 

generated on the positions of 200 and 111, if the magnetic moments are aligned 

antiferromagnetically within the bc-plane. The best fit was obtained for an antiferromagnetic 

ordering of the Cr-atoms in 16d [(1) ½,½,½; (2) ¼,¼,½; (3) ¼,½,¼ (4) ½,¼,¼] with the spin 

sequence . Rietveld refinements showed that the copper moments located at 8a [(1) 

⅛,⅛,⅛; (2) ⅜,⅜,⅞] do not contribute to the antferromagnetic order. Due to the weak 

orthorhombic splitting in the bc plane it was not possible to find the orientation of the Cr-

moments within the pseudotetragonal bc-plane (a’b’-plane in the standard setting). A 

satisfactory Rietveld refinement we finally obtained from a model, where the Cu- and Cr-

moments are ferrimagnetically aligned parallel to the tetragonal a axis (c’ axis in the standard 

setting). The refined ferrimagnetically coupled moments are x(Cu) = 0.85(9) B and x(Cr) = 

1.60(7) B. The magnetic moment value of the antiferromagnetic component was found to 

be yz(Cr) = 2.07(3) B resulting finally in a total moment tot(Cr) = 2.61(4) B.  

 

 

3. Magnetic structure of Ni0.85Cu0.15Cr2O4 

 

The magnetic structure of Ni0.85Cu0.15Cr2O4 has been determined from a data set collected 

at 2 K. Fig. 4 shows that the observed magnetic powder pattern of Ni0.85Cu0.15Cr2O4 is similar 

to that one of the end member CuCr2O4, where the strongest magnetic intensities were found 

at the positions of the reflections 200 and 111. This already indicates the similarity of the 

magnetic structures of both chromites. In the present case it was possible to determine the 

magnetic structure of Ni0.85Cu0.15Cr2O4 more precisely than the structures of the end members 

NiCr2O4 and CuCr2O4, since the orthorhombic splitting is strongly pronounced. We were able 

to find systematic distributions of magnetic intensities on particular sets of reflections. This 

finally allowed us to determine the magnetic components of the ferri- and antiferromagnetic 
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parts. The ferrimagnetic spin alignment gives magnetic contribution on nuclear Bragg 

reflections which are allowed in Fddd. The strongest magnetic intensity was found again for 

the reflection 111. In order to find the moment directions we focussed on the set of reflections 

400, 040, and 004. Due to the similarity of the magnetic structures of Ni0.85Cu0.15Cr2O4 and 

CuCr2O4 we assumed a ferrimagnetic ordering within the ab plane. Fig. 9 presents in detail 

the results of the Rietveld refinements of the neutron diffraction data of Ni0.85Cu0.15Cr2O4 

collected at 2 K. Here it can be seen that only the reflections 040 and 004 contain magnetic 

intensity. The absence of magnetic intensity on the 400 already indicates that the moments are 

aligned parallel to the a axis. Finally, a satisfactory fit was obtained for the model, where the 

moments are aligned parallel to the a axis. In a similar way we were able to determine the 

moment direction of the antiferromagnetically coupled chromium atoms from the reflections 

024, 204, 042, 240, 402, and 420 (listed with increasing 2). But first we already can exclude 

a spin alignment along the a axis, since the strongest magnetic intensity of this set was found 

on the 200. For the other six reflections listed above magnetic intensity could only be 

generated on the reflections 204 and 024 assuming an antiferromagnetic ordering along the b 

and c axes. However in Fig. 9 it can be seen that the better fit was obtained, when the Cr 

moments are aligned parallel to the c axis. Therefore it can be concluded that a noncollinear 

ordering in Ni0.85Cu0.15Cr2O4 is found to be in the ac plane.   

 

 

IV. CONCLUSIONS 

 

Fig. 8(a) summarizes the structural and magnetic phase diagram of the system 

Ni1xCuxCr2O4 showing the evolution of the structural and magnetic phase transition 

temperatures. A change from cubic to tetragonal symmetry occurs in the range 317 K  TS1  

846 K due to the onset of Jahn-Teller activities and gives rise to orbital ordering. The crystal 

structure of the end members NiCr2O4 and CuCr2O4 changes to a lower orthorhombic 

structure with the space group Fddd at the Curie temperatures TC = 74 K and TC = 135 K, 

respectively, due to magnetoelastic effects. In the case of CuCr2O4 the orthorhombic splitting 

was found to be less pronounced possibly due to the dominating tetragonal distortion. Figs. 2 

and 8(c) show the variation of the lattice parameters in the solid solution series Ni1xCuxCr2O4 

at 2 K and at room temperature, where one finds a strong orthorhombic splitting in the range 

0.10 < x(Cu) < 0.30. In this work it could be shown that the presence of strong orthorhombic 

distortions can be ascribed to the fact that an elongation of the NiO4 tetrahedra occurs along 
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the c axis (a = b < c), whereas a flattening of the CuO4 tetrahedra occurs along a (a < b = c). 

Therefore a transition into the other tetragonal state requires the presence of an intermediate 

orthorhombic phase. Fig. 8(a) shows that the orthorhombic structure of Ni0.85Cu0.15Cr2O4 is 

optimally stabilized almost up to the transition temperature TS1. If the Jahn-Teller activities 

on the A site were along the same crystallographic direction for A = Ni and Cu then electronic 

compensation would be expected at this doping, resulting in a transition back to the high-

symmetric cubic phase. 

In section C we gave a detailed description of the magnetic structures of the end members 

NiCr2O4 and CuCr2O4. From our Rietveld refinements it was not possible to determine the 

direction of the magnetic component in the pseudo-tetragonal basis plane. The ferrimagnetic 

mode of NiCr2O4 has a component in the ab plane [xy(Ni) = xy(Cr)], while the 

antiferromagnetic mode of CuCr2O4 has a component in the bc plane [yz(Cr)]. Conversely 

we were able to determine precisely the magnetic structure of Ni0.85Cu0.15Cr2O4 due to the 

presence of strong orthorhombic distortions resulting in proper peak splitting. We clearly 

found that the ferrimagnetically coupled moments of the Ni/Cu and Cr atoms are aligned 

parallel to the a axis, while the antiferromagnetically coupled Cr moments are aligned parallel 

to the c axis. The same type of magnetic ordering was found for the chromite 

Ni0.80Cu0.20Cr2O4 containing a slightly higher Cu content. Further in Fig. 10 it can be seen that 

the magnetic structures of both chromites Ni0.85Cu0.15Cr2O4 and CuCr2O4 look quite the same 

assuming a magnetic ordering in the ac plane. This lead us to the adoption of these 

conclusions in giving a general model of magnetic ordering in the system Ni1xCuxCr2O4, and 

where the ferrimagnetically coupled moments of the Ni/Cu and Cr atoms are aligned parallel 

to the a axis, while the antiferromagnetically coupled Cr moments are aligned parallel to the c 

axis. Further structural considerations support this statement. Concerning the lattice 

parameters of the system Ni1xCuxCr2O4 the condition a < b < c could be maintained 

continuously throughout the whole composition range. Table I shows that the change of the 

bond lengths d(A-O) and d(Cr-O) in this system is negligible. On the other hand the strongest 

changes were found for the bond angles (O-A-O) of the AO4 tetrahedra due to the strong 

change of the Jahn-Teller activities, but interestingly one also finds a general trend a(O-A-

O) > b(O-A-O) > c(O-A-O). As already mentioned in section B the bisectors of a(O-A-

O), b(O-A-O), and c(O-A-O) correspond to the a, b, and c axes, respectively. For 

Ni0.85Cu0.15Cr2O4 we clearly found that the magnetic moments of the A atoms (Ni and Cu) are 

aligned parallel to the a axis, or parallel to the bisector of that bond angle, whichever is the 

largest. Due to the fact that this trend is found in the whole system Ni1xCuxCr2O4 it can be 
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assumed that the ferrimagnetically coupled A and Cr moments are always aligned parallel to 

a. Concerning the data analysis of CuCr2O4 given above it was not possible to determine the 

orientation of the antiferromagnetically coupled Cr moments in the bc plane. Here again 

structural considerations can give a clearer statement. In NiCr2O4, Ni0.85Cu0.15Cr2O4 and 

Ni0.80Cu0.20Cr2O4 the Cr moments of the antiferromagnetic mode were found to be aligned 

parallel to the c axis, which is always the largest of the three axes in the system 

Ni1xCuxCr2O4. Therefore it likely that the antiferromagnetic component of CuCr2O4 is also 

aligned parallel to c.     

For the Ni-rich chromites NiCr2O4, Ni0.85Cu0.15Cr2O4, Ni0.80Cu0.20Cr2O4 a second 

magnetic transition was found at TM2, where one finds the onset of antiferromagnetic ordering 

of the chromium atoms. In Fig. 8(a) it can be seen that TM2 strongly increases with increasing 

Cu content. Up to a level x(Cu) ~ 0.4 the ferri- and antiferromagnetic transitions (at TC and 

TM2) are found to be merged into one other. This shows that frustration effects are more and 

more reduced with increasing Cu content, leading to a better stabilization of the 

antiferromagnetic ordering of the chromium atoms. A division into two sets of spin structures 

was suggested by Yafet and Kittel already in the 1950s.1 In agreement with the results of 

Bertaut and Dulac (Ref. 28) we found the antiferromagnetically coupled Cr moments to be 

aligned parallel to the c axis in NiCr2O4. This has been also observed for Ni0.85Cu0.15Cr2O4, 

despite the fact that the propagation vector k2 = (001) of the antiferromagnetic mode of 

NiCr2O4 is different from k = 0 found for chromites with x(Cu)  0.15. In Fig. 10 it can be 

seen that Ni0.85Cu0.15Cr2O4 and CuCr2O4 show a ferromagnetic coupling ) along the c 

direction, while in NiCr2O4 it is antiferromagnetic with the sequence . Possibly an 

elongation of c and a contraction of b cause in NiCr2O4 a change of exchange interactions.  

In this paragraph we discuss the evolution of the total magnetic moments tot of the metal 

atoms and their components x and z, which is shown in Fig. 8(b). First we focus on the 

magnetic moments of the A atoms (Ni and Cu) with a moment direction parallel to the a axis. 

For the end members NiCr2O4 and CuCr2O4 the moments reach the values x(Ni) = 1.83(7) 

B and x(Cu) = 0.85(9) B, respectively. Here the Ni moments (Ni2+, 3d8) reach about 92 % 

of the theoretical value S(Ni2+) = 2 · S B = 2 B; the Cu moments about 85 % of the value 

S(Cu2+) = 2 · S B = 1 B. Our refinements could not evidence any significant 

antiferromagnetic component of Ni/Cu along the c axis, which is in contrast to the results 

given in Ref. 28. Fig. 8(b) shows that the moment on the A site is slightly stabilized with 

increasing Cu content up to x(Cu) ~ 0.20 caused by a reduction of frustration in the strongly 
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distorted orthorhombic structure. The ordering of the Cr moments is of particular interest 

because of their location on a pyrochlore lattice which is one of the most geometrically 

frustrated lattices. Long-range antiferromagnetic order is highly suppressed on an ideal 

pyrochlore lattice, however distortions from ideal pyrochlore symmetry would be expected to 

partially or completely lift the frustration. The structural refinements reveal significant 

distortion from ideal pyrochlore symmetry in Ni1xCuxCr2O4 which is greater in CuCr2O4 than 

NiCr2O4. In the ferrimagnetic structure the Cr moments x(Cr) = 0.89(7) B and x(Cr) = 

1.60(7) B of the end members NiCr2O4 and CuCr2O4 were found to be very different. The 

same tendency was found for the antiferromagnetically coupled z components z(Cr) = 

1.20(2) B to z(Cr) = 2.07(7) B. The total moment value tot(Cr) = 2.61(4) B of CuCr2O4 

reaches about 87 % of the theoretical value S(Cr2+) = 2 · S B = 3 B. Due to stronger 

frustration effects caused by smaller distortions in NiCr2O4 the Cr moments only reach a 

moment value of tot(Cr) = 1.49(4) B. This value is even smaller than the chromium 

moments in ACr2O4 (A = Mg, Zn, Hg) which vary between 1.7 and 2.0 B.10 Further it can be 

seen in Fig. 8(b) that x(Cr) shows a strong increase from x(Cu) = 0.80 to 1.00.  It is also 

likely that the antiferromagnetic x-component is preferably reduced by local strain effects 

based on competing Jahn-Teller effects. Due to the spin reduction the chromium moments 

were found to be partially in a disordered state, which coexists with magnetic long-range 

order below TN. Recently the disordered state was described as a new class of a spin-liquid-

like state caused by geometrical frustration.10 The presence of diffuse scattering in the low-

temperature neutron powder patterns of NiCr2O4 also indicates short-range order of the 

chromium moments. A similar behavior was found for MnCr2O4 and CoCr2O4, where only 

the spiral component exhibits short-range order and local instabilities, which can be described 

as a reentrant-spin-glass-like behavior.12 In the system Ni1xCuxCr2O4 especially the 

antiferromagnetically coupled chromium moments show a spontaneous increase in the range 

0.10 < x(Cu) < 0.20 (Fig. 8), where strong orthorhombic distortions cause a considerable 

reduction of frustration resulting possibly in an enhancement of the long-range order. Further 

studies will be necessary to give a more detailed description of these rather complex magnetic 

states. 

Ni1xCuxCr2O4 can be compared to the related compounds AB2O4 where the A-site ions are 

non-magnetic and the pyrochlore lattice is formed of B = Cr3+, V3+. In the case of V3+, orbital 

degrees of freedom within the B sublattice drive a Jahn-Teller distortion of the VO6 octahedra 

which also partially lifts the magnetic frustration; long-range magnetic order then occurs at a 
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lower temperature. In contrast for B = Cr3+ and A non-magnetic, there are no orbital degrees 

of freedom and the structural transition which coincides with the transition to long-range 

magnetic order is driven by the need to reduce the frustration via magneto-elastic coupling. In 

Ni1xCuxCr2O4 where both the A-site and B-site ions are magnetic and furthermore the A site 

(rather than the B site) is Jahn-Teller active the transitions are much more complex as shown 

in this paper. The first structural transition is driven by the Jahn-Teller effect on the A site but 

does not relieve the magnetic frustration sufficiently to allow the long-range magnetic order 

at low temperatures except for 0.10 < x < 0.20 where competing Jahn-Teller distortions 

produce additional symmetry lowering. Elsewhere the transition to long-range magnetic order 

is accompanied by a second structural phase transition which as for the ACr2O4 (with A non-

magnetic) is driven by magneto-elastic coupling.   
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TABLE I. Results of the structure refinements of several samples of the system 

Ni1xCuxCr2O4. For the data collected at 2 K their crystal structures were refined in the 

orthorhombic space group Fddd. Additionally, the parameters are also listed for the samples 

with x(Cu) = 0.15 and 0.20 obtained from data sets collected at 50 and 80 K, respectively. 

The interatomic distances (in Å), and the bond angles (in deg) in the AO4-tetrahedron (A = Ni, 

Cu) and the CrO6-octahedron are also given. For samples with x(Cu) > 0.40 no orthorhombic 

splitting could be observed in our neutron powder diffraction study. Therefore, the lattice 

parameters b and c, as well as the positional parameters y(O) and z(O) were constrained to be 

equal during the refinements. In the lower part of the Table the magnetic moments of the A (A 

= Ni, Cu) and Cr atoms are given.  

x(Cu) 0.00 0.15 0.15 0.20 0.20 0.30 0.40 0.60 0.80 1.00 

T [K] 2 2 50 2 80 2 2 2 2 2 

a [Å] 8.1661(2) 8.0565(3) 8.0886(3) 8.0127(2) 8.0557(2) 7.9664(2) 7.9248(2) 7.8495(2) 7.7738(3) 7.7136(2)a 

b [Å] 8.1794(2) 8.3129(3) 8.2900(3) 8.3640(2) 8.3339(2) 8.4491(2) 8.4740(3) 8.5050(2) 8.5241(2) 8.5368(2)a 

c [Å] 8.5623(2) 8.5384(3) 8.5312(4) 8.5187(2) 8.5116(2) 8.4810(2) 8.4836(3) 8.5050 8.5241 8.5368 a 

V [Å3] 571.91(2) 571.91(2) 571.91(2) 570.91(2) 571.43(2) 570.84(2) 569.72(3) 567.79(3) 564.85(3) 562.14(3) 

x(O) 0.2572(3) 0.2557(2) 0.2560(2) 0.2536(1) 0.2549(1) 0.2520(1) 0.2514(1) 0.2486(1) 0.2463(2) 0.2453(2) 

y(O) 0.2580(3) 0.2615(2) 0.2609(2) 0.2629(1) 0.2621(1) 0.2654(1) 0.2659(1) 0.2671(1) 0.2676(1) 0.2680(1) 

z(O) 0.2681(1) 0.2676(2) 0.2673(2) 0.2665(1) 0.2666(1) 0.2660(2) 0.2659 0.2671 0.2676 0.2680 

RN(F) 0.016 0.018 0.023 0.017 0.014 0.014 0.014 0.019 0.017 0.023 

d(A-O) 1.9619(20) 1.9693(15) 1.9663(17) 1.9610(9) 1.9625(9) 1.9646(13) 1.9643(8) 1.9652(9) 1.9608(13) 1.9605(9) 

a(O-A-O) 113.26(10) 115.34(6) 114.77(7) 116.60(4) 115.57(4) 118.03(5) 118.67(4) 120.82(5) 122.54(7) 123.50(5) 

b(O-A-O) 112.63(10) 109.64(6) 110.08(6) 107.94(4) 108.79(4) 105.74(6) 105.13(3) 104.11(3) 103.36(5) 102.95(4) 

c(O-A-O) 102.74(7) 103.64(6) 103.75(7) 104.14(4) 104.26(4) 105.00(6) 105.03(3) 104.11(3) 103.36(5) 102.95(4) 

da(Cr-O)b 1.9902(25) 1.9760(15) 1.9810(15) 1.9822(10) 1.9823(10) 1.9849(10) 1.9792(10) 1.9839(12) 1.9840(17) 1.9766(12) 

db(Cr-O)b 1.9860(25) 1.9890(15) 1.9881(17) 1.9882(9) 1.9880(9) 1.9872(14) 1.9883(8) 1.9863(8) 1.9866(12) 1.9865(8) 

dc(Cr-O)b 1.9880(10) 1.9875(15) 1.9878(18) 1.9922(9) 1.9900(9) 1.9887(14) 1.9905(8) 1.9863(8) 1.9866(12) 1.9865(8) 

1(O-Cr-O) 83.59(8) 82.89(6) 83.10(7) 82.83(4) 83.01(4) 82.33(6) 82.22(3) 81.61(3) 81.31(5) 81.09(3) 

2(O-Cr-O) 83.80(8) 84.19(6) 84.21(7) 84.94(4) 84.65(4) 85.39(5) 85.51(4) 85.82(4) 86.18(6) 86.24(4) 

3(O-Cr-O) 86.08(10) 85.58(6) 85.67(7) 85.76(4) 85.67(4) 85.54(5) 85.52(4) 85.82(4) 86.18(6) 86.24(4) 

a(A-O-Cr)c 118.77(10) 117.25(7) 117.69(9) 116.60(5) 117.24(5) 115.55(7) 115.13(4) 113.64(4) 112.58(6) 111.93(4) 

b(A-O-Cr)c 119.21(10) 121.02(8) 120.81(9) 122.38(5) 121.78(5) 123.82(7) 124.22(4) 124.82(5) 125.34(7) 125.54(5) 

c(A-O-Cr)c 126.10(12) 125.25(8) 125.26(9) 125.04(5) 124.96(5) 124.33(7) 124.27(4) 124.82(5) 125.34(7) 125.54(5) 

x(A) [B] 1.83(9) 1.88(15) 1.35(21) 1.94(7) 1.28(9)d 1.82(12) 1.58(14) 1.23(18) 0.90(20) 0.85(9) 

x(Cr) [B] 0.89(7) 1.23(10) 1.11(15) 1.10(5) 0.92(7)d 0.99(9) 1.00(10) 1.13(13) 0.99(14) 1.60(7) 

z(Cr) [B] 1.20(2) 1.83(4) - 2.12(2) - 2.09(3) 2.13(3) 2.04(3) 2.15(3) 2.07(3) 

tot(Cr) [B] 1.49(4) 2.20(7) 1.11(15) 2.39(3) 0.92(7)d  2.31(5) 2.35(5) 2.33(7) 2.36(6) 2.61(4) 

RM(Int.) 0.049/0.150 0.080 0.042 0.028 0.102 0.071 0.058 0.058 0.030 0.041 

a compared to a = 7.71271(2) Å, b = 8.53611(2) Å, c = 8.54357(2) Å of Ref. 22. 
b
 compared to a(O-A-O) = 123.62(4)°, b(O-A-O) = 102.93(7)°, c(O-A-O) = 102.86(7)° calculated from the data of Ref. 22.   

c for da and a(A-O-Cr) (db and b, dc  and c) Cr-O bond is almost parallel to the orthorhombic a (b, c) axis. 
d magnetic moments obtained at 70 K. 
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Fig. 1. (Color online) Tetragonal crystal structure of NiCr2O4 and CuCr2O4 (in I41/amd) A 

strong Jahn-Teller activity results in an elongation of the NiO4-tetraedra and a flattening of 

the CuO4-tetraedra along the tetragonal c-axis.  

 

 

 

Fig. 2. (Color online) Variation of the lattice parameters in the system Ni1xCuxCr2O4 with 

increasing copper level as obtained at room temperature from x-ray powder diffraction data. 

A spontaneous change of the lattice parameter b has been observed in the critical range 0.10 < 

x(Cu) < 0.20. 
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Fig. 3. (Color online) Peak widths of particular reflection series of Ni0.85Cu0.15Cr2O4 as 

obtained by synchrotron powder diffraction using the wavelength  = 0.6888 Å. In order to 

show the anisotropic broadening of these reflections we used the profile-function parameters 

obtained from the standard LaB6. The reflection series hhh practically shows the peak shape 

obtained for LaB6, whereas a strongest peak broadening was observed for the reflections h00, 

0k0 and 00ℓ, respectively.  
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Fig. 4. (Color online) Results of the Rietveld refinements of the neutron diffraction data of 

NiCr2O4, Ni0.85Cu0.15Cr2O4 and CuCr2O4 collected at 2 K. The crystal structure was refined in 

the orthorhombic space group Fddd. The calculated patterns (red) are compared with the 

observed ones (black circles). The difference patterns (blue) as well as the peak positions 

(black bars) of the nuclear (N) and magnetic reflections (M) as well as the difference pattern 

(blue) are shown. For both Ni0.85Cu0.15Cr2O4 and CuCr2O4 the ferri- (M1) and 

antiferromagnetic (M2) structure can be described with the propagation vector k = 0. In 

contrast, the antiferromagnetic (M2) structure of NiCr2O4 has the vector k = (0,0,1). The hkℓ 

values of the strongest magnetic reflections are given. 
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Fig. 5. (Color online) Temperature dependences of the lattice parameters of NiCr2O4 (green), 

Ni0.85Cu0.15Cr2O4 (red), and Ni0.80Cu0.20Cr2O4 (blue). The lattice parameters were obtained 

from x-ray (triangles) and neutron powder (circles) diffraction data. With decreasing 

temperature one finds at TS1 a structural change from the cubic to the tetragonal spinel-type 

structure followed by a change into the orthorhombic structure at TS2. For the end member 

NiCr2O4 the second transition sets in concomitantly with the onset of ferrimagnetic ordering 

(TC = TS2). At lower temperature a second magnetic transition was observed at TM2, where 

one finds for the a and b parameters of Ni0.85Cu0.15Cr2O4, and Ni0.80Cu0.20Cr2O4 strong 

anomalies due to magnetostriction effects.     

 

 



 25 

 

 

Fig. 6. (Color online) Temperature dependence of magnetic intensity Bragg reflections of 

NiCr2O4, Ni0.85Cu0.15Cr2O4, and Ni0.80Cu0.20Cr2O4. The strongest magnetic phase intensity 

was found at the position of the reflection 111 indicating a ferrimagnetic spin alignment of 

the Ni/Cu and the Cr atoms below the Curie temperature TC. Well below TC the chromium 

moments show an additional antiferromagnetic ordering at TM2 = 24(1) K (NiCr2O4), TM2 = 

48(2) K (Ni0.85Cu0.15Cr2O4) and TM2 = 67(4) K (Ni0.80Cu0.20Cr2O4), respectively. The magnetic 

structure of NiCr2O4 can be described with the propagation vector k = (0,0,1); those of 

chromites with a copper level x(Cu)  0.15 with the vector k = 0. Due to the 

antiferromagnetic ordering of the chromium moments in the copper containing chromites a 

spontaneous increase of the magnetic intensity could be observed for the 111 reflection at 

TM2. The red dashed line represents the ferrimagnetic contribution of the 111 reflection. 
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Fig. 7. (Color online) Temperature dependence of magnetic intensity Bragg reflections 110 

and 201/021 of NiCr2O4. Well below TC the chromium moments show an additional 

antiferromagnetic ordering at TM2 = 24(1) K. Interestingly the magnetic intensity of the 

reflection 110 disappears at slightly higher temperature at 27(1) K, possibly due to the 

presence of diffuse scattering. In agreement with the result of Ref. 35 we also found a very 

broad magnetic diffuse scattering that gives an uneven background below 2 = 45°.  
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Fig. 8. (Color online) Structural and magnetic phase diagram of the system Ni1xCuxCr2O4. (a) 

A change from cubic to tetragonal symmetry occurs in the range 317 K  TS1  846 K (DSC-

measurements: black circles; Neutron diffraction: blue circles). The orthorhombic structure of 

Ni0.85Cu0.15Cr2O4 is strongly stabilized almost up to TS1. The transition temperatures TS2, TC, 

and TM2 have been obtained from our neutron diffraction experiments. The TC’s of samples 

with x(Cu) = 0.40, 0.60, 0.80, 1.00 were determined from earlier magnetization 

measurements.21 The evolution of TS2 (green bold line) in the range 0.10  x(Cu)  0.30 was 

investigated in detail by Kino and Miyahara.17 For the end members NiCr2O4 and CuCr2O4 

the crystal structure changes to a lower orthorhombic structure at the Curie temperature TC = 

74 K and TC = 135 K, respectively. For the Ni-rich chromites a splitting into two magnetic 

transitions (TC and TM2) was found. (b) Evolution of the magnetic moments of the Ni/Cu and 

the Cr atoms in the system Ni1xCuxCr2O4. (c) Evolution of the lattice parameters in the 

system Ni1xCuxCr2O4. The bold solid lines in all diagrams are guides for the eye.   
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Fig. 9. (Color online) Rietveld refinements of the neutron diffraction data of Ni0.85Cu0.15Cr2O4 

collected at 2 K. The calculated patterns (red/blue/green lines) are compared with the 

observed ones (black circles, black lines). In the lower part of the plot only the contribution of 

the nuclear intensity (green) is shown. The red lines in the upper two diagrams additionally 

include the calculated magnetic intensities of the two models, where ferri- and 

antiferromagnetic ordering occur in the xy and yz planes, respectively. Finally the best fit was 

obtained for the model, where ferri- and antiferromagnetic ordering occurs along the x and z 

directions (blue line). 
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Fig. 10. (Color online) Magnetic structures of NiCr2O4, Ni0.85Cu0.15Cr2O4, and CuCr2O4 at 2 

K. The chromium atoms form chains along the [110] and [110] directions (black arrows) at y 

= 0, ¼, ½, and ¾, respectively. Ferrimagnetic ordering of the Ni/Cu and Cr atoms sets in 

below TC, where the moments are aligned parallel to the a axis. An additional 

antiferromagnetic component was found to be parallel to the c direction resulting in 

noncollinear frustrated magnetic structures, where the Cr atoms in the antiferromagnetic state 

[(Cr1) ½,½,½; (Cr2) ¼,¼,½; (Cr3) ¼,½,¼ (Cr4) ½,¼,¼] show the spin sequence . On 

the bottom right the network of CrO6, CuO4 and Cr4 polyhedra in CuCr2O4 is shown.  


