2,485 research outputs found

    Magnetization dynamics in dysprosium orthoferrites via inverse Faraday effect

    Get PDF
    The ultrafast non-thermal control of magnetization has recently become feasible in canted antiferromagnets through photomagnetic instantaneous pulses [A.V. Kimel {\it et al.}, Nature {\bf 435}, 655 (2005)]. In this experiment circularly polarized femtosecond laser pulses set up a strong magnetic field along the wave vector of the radiation through the inverse Faraday effect, thereby exciting non-thermally the spin dynamics of dysprosium orthoferrites. A theoretical study is performed by using a model for orthoferrites based on a general form of free energy whose parameters are extracted from experimental measurements. The magnetization dynamics is described by solving coupled sublattice Landau-Lifshitz-Gilbert equations whose damping term is associated with the scattering rate due to magnon-magnon interaction. Due to the inverse Faraday effect and the non-thermal excitation, the effect of the laser is simulated by magnetic field Gaussian pulses with temporal width of the order of hundred femtoseconds. When the field is along the z-axis, a single resonance mode of the magnetization is excited. The amplitude of the magnetization and out-of-phase behavior of the oscillations for fields in z and -z directions are in good agreement with the cited experiment. The analysis of the effect of the temperature shows that magnon-magnon scattering mechanism affects the decay of the oscillations on the picosecond scale. Finally, when the field pulse is along the x-axis, another mode is excited, as observed in experiments. In this case the comparison between theoretical and experimental results shows some discrepancies whose origin is related to the role played by anisotropies in orthoferrites.Comment: 10 pages, 6 figure

    Concurrent TNFRSF1A R92Q and pyrin E230K mutations in a child with multiple sclerosis

    Get PDF
    We report a 16-year-old female patient with a severe course of multiple sclerosis and concomitant symptoms suggestive of a hereditary autoinflammatory disease. Genetic analyses revealed that she inherited a TNFRSF1A R92Q mutation from her mother and a pyrin E230K mutation from her father. To our knowledge, this is the first report of a patient with severe childhood multiple sclerosis and mutations in two genes which predispose to hereditary autoinflammatory disorders. We speculate that these mutations contribute to early multiple sclerosis manifestation and enhance the inflammatory damage inflicted by the autoimmune response

    Does femtosecond time-resolved second-harmonic generation probe electron temperatures at surfaces?

    Full text link
    Femtosecond pump-probe second-harmonic generation (SHG) and transient linear reflectivity measurements were carried out on polycrystalline Cu, Ag and Au in air to analyze whether the electron temperature affects Fresnel factors or nonlinear susceptibilities, or both. Sensitivity to electron temperatures was attained by using photon energies near the interband transition threshold. We find that the nonlinear susceptibility carries the electron temperature dependence in case of Ag and Au, while for Cu the dependence is in the Fresnel factors. This contrasting behavior emphasizes that SHG is not a priori sensitive to electron dynamics at surfaces or interfaces, notwithstanding its cause.Comment: 11 pages, 4 figure

    First US Performance Measurements of Next Generation 3D USCT 2.5 Transducers

    Get PDF
    The KIT’s 3D Ultrasound Computer Tomography (USCT) II system has a multistatic setup of 2041 ultrasound transducers with approx. 1.5 MHz 6dB bandwidth and 36◦ 3 dB opening angle for 2.5 MHz. To increase the region of interest for a next USCT generation, the opening angle should be increased to approx. 60◦ and the bandwidth doubled. To increase the opening angle the size of the transducer elements was decreased to approximately half the size. A circular aperture was chosen for homogenicity of the radiation pattern in 3D. The transducer design utilizes piezo-fibres by the established Fraunhofer IMT piezo-fibre composite technology. The fibres were fabricated from PZT powder using the polysulfone spinning process. 17 fibres were positioned with a mechanical mask and filled with a matrix of epoxy. From this rod piezo composite discs were sawed and polarized. Electrodes were generated by silver-filled epoxy adhesive on the top and bottom side. Materials for acoustic backing is a Tungsten-Polyurethane composite and for acoustic matching ia aluminium oxide composite material (TMM4). Ultrasound characteristics were evaluated quantitatively with a Onda HNC-400 hydrophone in a 3-axis water tank for a randomly selected sample transducer (see Fig. a.)). Characteristics evaluated were the pressure field as function over frequency and angle in the far-field (see Fig. b.)), following the use-case. For excitation a linear encoded chirp was used, for SNR improvements averaging of measurements (64 to 256 times) was conducted. The analysis compensated for the hydrophon’s frequency and angular damping characteristics. The presented results show that the desired characteristics were mostly achieved: the 6 dB bandwidth could be vastly improved by roughly 200% (see Fig. d.)). The 6 dB pressure opening angle was approx. 50◦ (see Fig. c.)), not completly fullfilling the simulated expectations, an improvement by 31% was achieved. The results are promising for the next 3D USCT III generation

    Nonequilibrium Magnetization Dynamics of Nickel

    Full text link
    Ultrafast magnetization dynamics of nickel has been studied for different degrees of electronic excitation, using pump-probe second-harmonic generation with 150 fs/800 nm laser pulses of various fluences. Information about the electronic and magnetic response to laser irradiation is obtained from sums and differences of the SHG intensity for opposite magnetization directions. The classical M(T)-curve can be reproduced for delay times larger than the electron thermalization time of about 280 fs, even when electrons and lattice have not reached thermal equilibrium. Further we show that the transient magnetization reaches its minimum approx. 50 fs before electron thermalization is completed.Comment: 8 pages, 5 figures, revte

    Review: ‘Gimme five’: future challenges in multiple sclerosis. ECTRIMS Lecture 2009

    Get PDF
    This article is based on the ECTRIMS lecture given at the 25th ECTRIMS meeting which was held in Düsseldorf, Germany, from 9 to 12 September 2009. Five challenges have been identified: (1) safeguarding the principles of medical ethics; (2) optimizing the risk/benefit ratio; (3) bridging the gap between multiple sclerosis and experimental autoimmune encephalitis; (4) promoting neuroprotection and repair; and (5) tailoring multiple sclerosis therapy to the individual patient. Each of these challenges will be discussed and placed in the context of current research into the pathogenesis and treatment of multiple sclerosis

    Constraining SUSY Dark Matter with the ATLAS Detector at the LHC

    Full text link
    In the event that R-Parity conserving supersymmetry (SUSY) is discovered at the LHC, a key issue which will need to be addressed will be the consistency of that signal with astrophysical and non-accelerator constraints on SUSY Dark Matter. This issue is studied for the SPS1a mSUGRA benchmark model by using measurements of end-points and thresholds in the invariant mass spectra of various combinations of leptons and jets in ATLAS to constrain the model parameters. These constraints are then used to assess the statistical accuracy with which quantities such as the Dark Matter relic density and direct detection cross-section can be measured. Systematic effects arising from the use of different mSUGRA RGE codes are also estimated. Results indicate that for SPS1a a statistical(systematic) precision on the relic abundance ~ 2.8% (3 %) can be obtained given 300 fb-1 of data.Comment: 11 pages, 10 encapsulated postscript figures. Minor modification to ref

    Ultrafast spin dynamics and critical behavior in half-metallic ferromagnet : Sr_2FeMoO_6

    Full text link
    Ultrafast spin dynamics in ferromagnetic half-metallic compound Sr_2FeMoO_6 is investigated by pump-probe measurements of magneto-optical Kerr effect. Half-metallic nature of this material gives rise to anomalous thermal insulation between spins and electrons, and allows us to pursue the spin dynamics from a few to several hundred picoseconds after the optical excitation. The optically detected magnetization dynamics clearly shows the crossover from microscopic photoinduced demagnetization to macroscopic critical behavior with universal power law divergence of relaxation time for wide dynamical critical region.Comment: 14 pages, 4 figures. Abstract and Figures 1 & 3 are correcte

    Effects of interactions on the relaxation processes in magnetic nanostructures

    Get PDF
    Controlling the relaxation of magnetization in magnetic nanostructures is key to optimizing magnetic storage device performance. This relaxation is governed by both intrinsic and extrinsic relaxation mechanisms and with the latter strongly dependent on the interactions between the nanostructures. In the present work we investigate laser induced magnetization dynamics in a broadband optical resonance type experiment revealing the role of interactions between nanostructures on the relaxation processes of granular magnetic structures. The results are corroborated by constructing a temperature dependent numerical micromagnetic model of magnetization dynamics based on the Landau-Lifshitz-Bloch equation. The model predicts a strong dependence of damping on the key material properties of coupled granular nanostructures in good agreement with the experimental data. We show that the intergranular, magnetostatic and exchange interactions provide a large extrinsic contribution to the damping. Finally we show that the mechanism can be attributed to an increase in spin-wave degeneracy with the ferromagnetic resonance mode as revealed by semianalytical spin-wave calculations
    • …
    corecore