26 research outputs found

    The fate of ethane in Titan's hydrocarbon lakes and seas

    Full text link
    Ethane is expected to be the dominant photochemical product on Titan's surface and, in the absence of a process that sequesters it from exposed surface reservoirs, a major constituent of its lakes and seas. Absorption of Cassini's 2.2 cm radar by Ligeia Mare however suggests that this north polar sea is dominated by methane. In order to explain this apparent ethane deficiency, we explore the possibility that Ligeia Mare is the visible part of an alkanofer that interacted with an underlying clathrate layer and investigate the influence of this interaction on an assumed initial ethane-methane mixture in the liquid phase. We find that progressive liquid entrapment in clathrate allows the surface liquid reservoir to become methane-dominated for any initial ethane mole fraction below 0.75. If interactions between alkanofers and clathrates are common on Titan, this should lead to the emergence of many methane-dominated seas or lakes.Comment: Accepted for publication in Icaru

    Photometry of Kuiper belt object (486958) Arrokoth from New Horizons LORRI

    Get PDF
    On January 1st 2019, the New Horizons spacecraft flew by the classical Kuiper belt object (486958) Arrokoth (provisionally designated 2014 MU69), possibly the most primitive object ever explored by a spacecraft. The I/F of Arrokoth is analyzed and fit with a photometric function that is a linear combination of the Lommel-Seeliger (lunar) and Lambert photometric functions. Arrokoth has a geometric albedo of p_v = 0.21_(−0.04)^(+0.05) at a wavelength of 550 nm and ≈0.24 at 610 nm. Arrokoth's geometric albedo is greater than the median but consistent with a distribution of cold classical Kuiper belt objects whose geometric albedos were determined by fitting a thermal model to radiometric observations. Thus, Arrokoth's geometric albedo adds to the orbital and spectral evidence that it is a cold classical Kuiper belt object. Maps of the normal reflectance and hemispherical albedo of Arrokoth are presented. The normal reflectance of Arrokoth's surface varies with location, ranging from ≈0.10–0.40 at 610 nm with an approximately Gaussian distribution. Both Arrokoth's extrema dark and extrema bright surfaces are correlated to topographic depressions. Arrokoth has a bilobate shape and the two lobes have similar normal reflectance distributions: both are approximately Gaussian, peak at ≈0.25 at 610 nm, and range from ≈0.10–0.40, which is consistent with co-formation and co-evolution of the two lobes. The hemispherical albedo of Arrokoth varies substantially with both incidence angle and location, the average hemispherical albedo at 610 nm is 0.063 ± 0.015. The Bond albedo of Arrokoth at 610 nm is 0.062 ± 0.015

    Photometry of Kuiper belt object (486958) Arrokoth from New Horizons LORRI

    Get PDF
    On January 1st 2019, the New Horizons spacecraft flew by the classical Kuiper belt object (486958) Arrokoth (provisionally designated 2014 MU69), possibly the most primitive object ever explored by a spacecraft. The I/F of Arrokoth is analyzed and fit with a photometric function that is a linear combination of the Lommel-Seeliger (lunar) and Lambert photometric functions. Arrokoth has a geometric albedo of p_v = 0.21_(−0.04)^(+0.05) at a wavelength of 550 nm and ≈0.24 at 610 nm. Arrokoth's geometric albedo is greater than the median but consistent with a distribution of cold classical Kuiper belt objects whose geometric albedos were determined by fitting a thermal model to radiometric observations. Thus, Arrokoth's geometric albedo adds to the orbital and spectral evidence that it is a cold classical Kuiper belt object. Maps of the normal reflectance and hemispherical albedo of Arrokoth are presented. The normal reflectance of Arrokoth's surface varies with location, ranging from ≈0.10–0.40 at 610 nm with an approximately Gaussian distribution. Both Arrokoth's extrema dark and extrema bright surfaces are correlated to topographic depressions. Arrokoth has a bilobate shape and the two lobes have similar normal reflectance distributions: both are approximately Gaussian, peak at ≈0.25 at 610 nm, and range from ≈0.10–0.40, which is consistent with co-formation and co-evolution of the two lobes. The hemispherical albedo of Arrokoth varies substantially with both incidence angle and location, the average hemispherical albedo at 610 nm is 0.063 ± 0.015. The Bond albedo of Arrokoth at 610 nm is 0.062 ± 0.015

    Titan’s “Magic islands”. Transient features in a hydrocarbon sea

    No full text
    The region of Titan's hydrocarbon sea, Ligeia Mare, where transient bright features were previously discovered, was anomalously bright in the first of two more recent Cassini RADAR observations but not the second. Another transient bright feature in a different region of Ligeia Mare was also discovered in the first of the new observations. Here we present all the high-resolution observations of the regions containing these transient features and the quantitative constraints that we derived from them. We argue that these features are unlikely to be SAR image artifacts or permanent geophysical structures and thus their appearance is the result of ephemeral phenomena on Titan. We find that the transient features are more consistent with floating and/or suspended solids, bubbles, and waves than tides, sea level change, or seafloor change and based on the frequency of these phenomena in terrestrial settings, we consider waves to be the most probable hypothesis. These transient features are the first instance of active processes in Titan's lakes and seas to be confirmed by multiple detections and demonstrate that Titan's seas are not stagnant but rather dynamic environments

    Surface roughness of Titan's hydrocarbon seas

    No full text
    We derive fields of solutions for the surface properties (roughness and permittivity) of the liquid hydrocarbon bodies Ligeia, Kraken and Punga Mare on Titan by applying the Radar Statistical Reconnaissance (RSR) technique to the Cassini RADAR observations in altimeter mode during the northern early summer. At the time of observation, Kraken and Ligeia were confined within root-mean-square heights of 1.5–2.5 mm (similar to wave heights of 6–10 mm), correlation lengths of 45–115 mm, and corresponding to effective slopes of 1.1–2.4◦. The latter extends up to 3.6–4.9◦ if the rougher Punga is included. The lower bound of those ranges has to be considered if the composition of the seas is methane-dominant. These are the first measurements to simultaneously constrain both the vertical and horizontal roughness parameters of Titan’s seas from the same observations. Our results are representative for the global properties of the sea-scaled portion of the studied tracks and suggest that quiet surfaces are a dominant trend over the seas during the northern early summer. Fields of rougher textures, if existent, might develop mainly over local patches and/or might not be sustained over significant periods of time
    corecore